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Escape from the second dimension: A topological distinction between edge and screw dislocations
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Volterra’s definition of dislocations in crystals geometrically distinguishes edge and screw defects according
to whether the Burgers vector is perpendicular or parallel to the defect. A homotopy-theoretic analysis of
dislocations as topological defects fails to differentiate edge and screw. Here we bridge the gap between the
geometric and topological descriptions by demonstrating that there is a topological difference between screw
and edge defects. Our construction distinguishes edge and screw based on the disclination-line pairs at the core
of smectic dislocations. By exploiting the connection between topology and geometry in the form of Gaussian
curvature, this analysis results in an invariant for dislocations in the saddle-splay vector. This construction can
be generalized to crystals with triply periodic order.
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Introduction. It has been more than half a century since
de Gennes’s celebrated analogy between smectic liquid crys-
tals and superconductors [1]. The relationship between the
two systems has led to a greater understanding of smectic
phases, prominently providing portent for the prediction of
the twist grain boundary phase, an analogy to Abrikosov
lattices in type II superconductors [2]. However, the struc-
ture of topological defects in smectics is profoundly different
than that of the vortices in superconductors and superfluids.
Not only do smectics enjoy disclinations, defects with no
analog in superconductors, but smectics also differ from su-
perconductors by breaking translational rather than internal
symmetries [3]. The shortcomings of affording smectics only
the complex order parameter of superconductors have also
become apparent in recent numerical simulations of smectic
defects [4,5]. Note, too, that vortex lines in superconductors
have no special direction, but dislocations in smectics come
in two types: edge and screw, defined via their geometry.
On the other hand, the standard way of viewing disloca-
tions in crystals—that of Volterra [6]—is much older than
de Gennes’s analogy. The Volterra process explicitly takes
advantage of geometry by cutting, shifting, and gluing layers
from a perfect crystal to create defects [7]. The direction of
the Burgers vector with respect to the defect naturally falls
out of this procedure, affording edge and screw dislocations
their classical distinction: when the Burgers vector is parallel
to the defect it is screw and when it is perpendicular it is
edge.

While geometric constructions alla Volterra are useful for
visualizing dislocations and disclinations, classification of
defects and their properties falls within the realm of topol-
ogy. Here is where a symmetry-based approach more akin
to de Gennes’s would shine, especially given the success
of homotopy-theoretic descriptions of defects in superfluid
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phases [8]. However, it was recognized that, in systems
with broken translational order, the much-heralded homotopy
theory approach to classify defects is inadequate: formally
studying smectics as measured foliations, Poénaru proved
that disclinations of charge q > 1 cannot coexist with evenly
spaced smectic layers in two dimensions [9]. Disclinations in
smectics thus do not form a group in the usual homotopy
sense [3,10]. A homotopy-theoretic description of disloca-
tions alone does, on the other hand, predict integer-valued
Burgers charges. Still, it fails to distinguish between edge and
screw dislocations [3], leaving their distinction to Volterra’s
geometric classification alone. In this paper we resolve this
divide between the topological and geometric descriptions
of dislocations by demonstrating that there is a topological
distinction between screw and edge defects in smectics and,
by extension, in all crystals. By studying the pair of discli-
nations unique to each dislocation core, we are able to detect
the topological difference between edge and screw defects.
In addition, an integral invariant involving the saddle-splay
vector A allows us to measure this distinction away from
the core. This relationship between the local defect set and
boundary conditions in smectics also serves to answer the
question, After inserting one defect in a sample, how do you
decide whether the second defect is screw or edge? Should one
use the local layer normal to define the Burgers displacement
or the layer normal at infinity? The topology of the density
wave that forms the smectic resolves this issue as well. We
will also demonstrate that in the limit of a single defect in an
otherwise perfect ground state, the geometric and topological
determinations match.

Background. Smectic liquid crystals are phases with
a one-dimensional density modulation ρ(x) = ρ0 +
δρ cos �(x), where �(x) determines the phase of the
modulation.1 Density maxima, the level sets � = 2πZ,

1It should not be confused with the volume fraction in “phase field”
models.
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define the smectic layers with a director field parallel to the
layer normal N = ∇�/|∇�|. A free energy density that leads
to evenly spaced flat layers is, for instance [11],2

F = B

8
[(∇�)2 − 1]2 + K

2
(∇2�)2, (1)

where B is the bulk modulus controlling layer spacing and K
is the bend modulus. This free energy density achieves an ab-
solute minimum when � = k · x + φ, where |k| = 1 chooses
the direction of the ordering and φ is a constant offset. The
density wave is invariant under � → � + 2π and � → −�,
reflecting the discrete translational and rotational symmetries
of the smectic. Together, these invariances dictate that the
manifold of ground states, represented by different directions
of k and offsets φ, is a Klein bottle for two-dimensional
smectics [12] and a twisted circle bundle over RP2 for three-
dimensional smectics [13]. Dislocations are lines in three
dimensions (or points in two dimensions) around which a
Burgers circuit causes a displacement by some integer mul-
tiple of the lattice spacing. This winding in the layer labeling
causes � to be ill defined on the dislocation. Since the density
must be well-defined, this implies that δρ must vanish and
so the smectic order melts at the defect core. As noted in
Refs. [4,10,13–15], this melting can be avoided by breaking
the dislocation into a disclination pair, with one disclination
on a density maximum and the other on a density minimum.3

Explicitly, a rotation of k by π requires φ → 2πn − φ to
preserve the symmetries of �: a translation by δ is equivalent
to a rotation by π followed by a shift by 2πn − δ. Represent-
ing the rotation by π as F and a shift by δ as Sδ , we have
Sδ = F−1S2πn−δF for all n ∈ Z. From this relation we have
S2π = SπF−1S−πF , that is, a dislocation that induces a shift
by 2π and can be broken into a half shift, a rotation by −π ,
a half shift backwards, and a rotation by π . The net shift is
0 but is replaced by two rotations, i.e., disclinations. Whether
this disclination pair or a melted dislocation core is observed
in experiment is a matter of energetics—the core could melt
into a nematic to lower the overall energy. However, from the
topology of the phase field surrounding a melted dislocation
core, we can always construct a smectic configuration with a
disclination pair that fills the sample.

The disclination pairs are, however, different for an edge
dislocation and a screw dislocation. The classic construction
of two-dimensional edge dislocations in terms of a + 1

2/− 1
2

disclination dipole [16] extends to three-dimensional edge
dislocations, where the core is comprised of a + 1

2 and − 1
2

disclination line in parallel. The screw dislocation, on the
other hand, only exists in three dimensions. And, in contrast
to edge dislocations, screw dislocation cores decompose into a
pair of + 1

2 disclination lines. The geometry of the disclination
lines changes as well: were the two disclinations parallel to
each other, the requisite screw symmetry of the dislocation
would be broken. It follows that the two + 1

2 disclinations

2The normalization is chosen so that if we set � = z − u(x), we
then arrive at the standard form of the free energy [7].

3When the Burgers displacement, measured in layer spacing, is
even, both disclinations sit on density maxima or minima instead.

FIG. 1. Dislocations and the decomposition of their cores into
disclination pairs, reproduced from Ref. [14]. (Left) Screw disloca-
tion core composed of two helically winding + 1

2 disclination lines.
(Right) Edge dislocation comprised of a ± 1

2 disclination dipole.
Both dislocations have Burgers scalar +10, and the insets show
the infinite-compression phase structure of �screw and �screw before
replacing their cores. Note the radial nature of the smectic layers
entering the screw dislocation core, ensuring the geometry of a
+1 disclination, compared to the disclination-charge-neutral edge
dislocation.

wind around each other as a pair of regular helices as shown
in Fig. 1, reproduced from [14].

Clearly the geometry of edge and screw dislocation cores,
constructed as disclination pairs, is different. But are the two
configurations topologically distinct? From the perspective
of three-dimensional nematics, the defect geometries of the
screw and edge core are topologically equivalent: recall that
disclinations of a nematic director restricted to the plane are
characterized by π1(RP1) = Z, while a three-dimensional
nematic has disclinations characterized by π1(RP2) = Z2. A
pair of + 1

2 nematic line disclinations thus has no charge—it
escapes into the third dimension [17].

Distinguishing edge and screw. The topological equiva-
lence of the dislocation cores viewed as nematic configu-
rations does not carry over to the smectic phase. Among
the extra conditions for smectics, the director, as a surface
normal, must satisfy the Frobenius integrability condition
n · (∇ × n) = 0, i.e., there can be no twist. The transition
of a nematic disclination from pure + 1

2 to pure − 1
2 geome-

tries requires passing through intermediary states, known as
wedge-twist and pure-twist disclinations, that have nonzero
twist distortion. Hence the smooth transition from a − 1

2 to + 1
2

disclination is incompatible with smectic order. The discli-
nation pairs at the cores of screw and edge dislocations are
thus topologically distinct in the smectic phase. While the
dislocation cores cannot transform continuously into each
other, it is possible to construct a smectic configuration in
which an edge dislocation transitions into a screw dislocation
in space. As noted in [14], the transition requires a singular
point where the − 1

2 becomes a + 1
2 disclination. At this point

the Burgers’ charge is unchanged, the winding of the phase
field � is unchanged at large distances, but, importantly, the
disclination geometry changes.

It is only because the smectic cannot transition smoothly
from one disclination geometry to the other that we can ex-
ploit the dichotomy of dislocation cores. From this, it follows
that we can distinguish a screw dislocation from an edge
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dislocation by examining the local texture of the layer normal
around the disclination pair of which it comprises. Namely,
screw dislocations can be distinguished from edge by their
+ 1

2 disclination pair compared to the edge’s disclination-
charge-neutral core. There is no need to reference a special
direction for the Burgers charge, and, indeed, there is no real
sense in which it is a vector in R3—the phase field � does
not transform under rotations. This is often obscured when
one expands around a particular ground state so that � =
z − u(x), where the layers are normal to ẑ and where u(x) is
the standard Eulerian displacement field for a smectic [7]. In
this case the transformation of z requires a concomitant trans-
formation in u(x). From a Lagrangian point of view, where
we parametrize deformation of the ground state in terms of
displacements from a fiducial ground state, it is far more
compelling to view the Burgers charge as a vector, especially
in the case of three-dimensional crystals (to which we will
turn our attention in the following). The Volterra construction
relies on this Lagrangian form of elasticity, and therein lies
the need for it to distinguish edge and screw dislocations by
global geometry.

Two- and three-dimensional crystals can also be described
via phase fields: a d-dimensional crystal is created via ρ(x) =
ρ0 + δρ[

∑d
i cos(�i )] so that the lattice points sit at the max-

ima of all the density waves. Dislocations correspond to
winding in one of the �i and, in turn, this dislocation can be
split, mutatis mutandi, into disclinations associated with that
phase field. The remaining phase fields continue to provide
a simple, periodic wave in the other directions, creating a
dislocation with a Burgers charge in the ith phase field. More
generally, a dislocation would be characterized by d dislo-
cation charges, one for each phase field. In the ground state
�i = Gi · x + φi, where Gi are the reciprocal lattice vectors
and φi set the origin of the crystal. The topological charges
associated with each �i are 2πni with ni ∈ Z and can be
converted into the Burgers vector b = ∑

i niei, where the ei

are the basis vectors with Gi · ej = 2πδi j .
From here, the discussion of splitting dislocations into

disclination pairs proceeds as with the smectic for each den-
sity wave. It is essential to note that the disclinations are
in the phase fields �i and are not necessarily the geometric
disclinations that the Volterra construction creates. In the case
of a smectic they coincide, but in general, the phase disclina-
tions and geometric disclinations are distinct [15]. Again, we
can classify screw and edge based on the two topologically
distinct disclination geometries that comprise the dislocation
core. In an otherwise perfect ground state, the standard dis-
tinction between edge and screw (Burgers vector parallel or
perpendicular to the dislocation line) provides the same classi-
fication as the topological character of their cores. What about
adding a defect to a distorted ground state that is otherwise
free of topological defects? If the distortions vanish at the
boundary, then we can define asymptotic basis vectors ei from
which to specify the Burgers vector. But a dislocation in the
bulk need not remain a straight line—smooth deformations of
a screw or edge dislocations may change the direction of the
Burgers vector with respect to the asymptotic basis vectors.
Any diffeomorphism of the sample preserves, however, the
distinction between screw and edge, because the disclination

geometry at the defect core cannot change without twist and
hence a change in topology of �. As an illustrative example,
consider again the singular configuration in which an edge dis-
location transforms at a point to a screw. Smooth deformations
of the sample can move around the singular point at which the
+ 1

2 disclination becomes a − 1
2 , changing the direction of the

Burgers vector. However, the screw and edge character of the
dislocations—defined by their local disclination geometry—
remains in character on either side of the singular point at all
times. Even in cases like this, where expanding the Burgers
vector in the asymptotic conflicts with the standard geometric
classification of screw versus edge, our classification consis-
tently defines screw and edge dislocations.

Gaussian curvature and the escape of smectic disclination
charge. To make this discussion concrete and to demonstrate
the effects of the distinction between screw and edge far
from the defect core, we focus on the screw dislocation in
a smectic. A screw dislocation of Burgers displacement b has
the form �screw = z − b

2π
arctan(y/x) at large distances. The

Euler-Lagrange equation for (1) is

0 = 1
2 B∇ · [∇�(|∇�|2 − 1)] − K∇2∇2�. (2)

Because �screw is harmonic in x and y and the gradient of
the compression (radial) is orthogonal to the layer normal
(azimuthal and along ẑ), it satisfies the necessary conditions
for a minimum. However, all layers of a helicoid meet at the
center to become one surface, yielding infinite compression
energy at the screw defect core and a melting of the smectic
order. To avoid this melting, the smectic may instead form a
core of two + 1

2 disclinations, shown in Fig. 1 (right). Here
we briefly review the geometry of such a configuration, as de-
scribed in Refs. [14,18]. The construction starts with a central
helicoid upon which subsequent layers are built by pushing off
a constant distance along the layer normal. By construction,
this creates a family of evenly spaced layers with zero com-
pression. However, just as with evolutes in two-dimensional
curves, this family of surfaces will develop linelike cusps on
either side of the initial helicoid, the first pair forming a double
helix at a radius ρ0. These first cusps are precisely the location
of the + 1

2 disclination geometry. Thus a cylinder of radius
ρ0 can be constructed with zero compression and be used for
the core of screw dislocation. An alternative way to visualize
this and similar [19] constructions of screw defect cores is to
take a pair of + 1

2 smectic disclinations in two dimensions and
create surfaces in three dimensions by continuously rotating
the configuration as it is extended out of the plane. Here it
is clear that the radial nature of the layers near the helicoidal
core requires the geometry of +1 disclination charge.

Recall that two + 1
2 disclinations cannot smoothly trans-

form into a ± 1
2 pair in a smectic, suggesting that the +1

disclination charge of the screw dislocation core might be
present throughout the system. This, however, cannot be
the case: boundary conditions require that ∇� be constant
for both edge and screw dislocations, specifying no free
disclination charge. We can track the behavior of the discli-
nation geometry by analyzing the nematic director defined by
∇�screw at z = 0:

n = ∇�screw

|∇�screw| = 1√
r2 + −b2

(−−b sin θ, −b cos θ, r), (3)
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where r, θ , and z are the usual cylindrical coördinates and
−b ≡ b/(2π ). This form of n has the geometry of a +1 discli-
nation at the origin: looking down the screw axis of the
helicoid yields normals that wind by 2π around the center,
and hence the reason two +1/2 disclinations were required to
build the core. However, in the smectic phase the director is
not defined homogeneously throughout the sample but instead
only normal to the layers. Rather than taking a projection for
constant z, one only defines n||N on a surface of constant �.
For instance, taking �screw = 0, i.e., θ = (2π/b)z, yields

N = 1√
r2 + −b2

[−−b sin (z/−b), −b cos (z/−b), r] (4)

at the point on the two-dimensional surface parameterized by
r and θ , P = (r cos θ, r sin θ, −bθ ).

As r → 0 we see that the layer normal still rotates by
2π , and each full rotation is accompanied by a concomitant
change in z: the Burgers displacement. The helicoid is simply
connected, so in order to measure the disclination charge with
a closed loop, we must rely on the density wave, which is
well-defined everywhere, to fill in the remaining space with
“virtual layers” between the density maxima. Only then do
we see the nematic disclination on every constant z slice.
However, as r → ∞, N → ẑ and n → ẑ. At constant height
z a closed measuring circuit reports no disclination charge at
large r, despite the charge at small r. Unable to flip one of its
+ 1

2 disclinations, how is the smectic able to satisfy boundary
conditions? Once again we can return to three-dimensional
nematics for comparison. While a planar +1 disclination tex-
ture in a three-dimensional nematic may self-annihilate by
splitting into two + 1

2 disclinations and flipping one to a − 1
2 ,

a +1 disclination may also vanish by escaping into the third
dimension [17].

In the smectic we find that the mechanism allowing the
disclination charge of the screw dislocation’s core to relax
is the Gaussian curvature of the level sets of the smectic.
Though the Gaussian curvature of a two-dimensional mani-
fold interacts with the defects of director fields lying in the
local tangent plane [20], here the situation is quite different;
since the director is always normal to the surface, the director
itself defines the surface. The fact that in the smectic-A phase
the director and layer normal are one in the same is the key
to connecting topological defects to Gaussian curvature: it
allows us to construct a Gauss map for disclinations in the
director field. Recall that the Gauss map is defined by taking
the unit normal to a surface at a point and mapping it to
the unit sphere. The collection of normals to a patch of the
original surface sweeps out a corresponding signed area on
the unit sphere, and the Jacobian that converts area on the
manifold to area on the sphere is the Gaussian curvature [21].

With this in mind, consider a texture with the geometry of
a +1 disclination line in a three-dimensional director field.
The charge can be measured by a circle taken around the
disclination. If the nematic director measured along this cir-
cle defined the normal to a smectic layer, we could use the
director to to define a Gauss map. This measuring circuit
may move between level sets while enclosing the defect, just
like the measuring loop for the screw core. By definition,
the director along the measuring circuit enclosing the +1

FIG. 2. The Gauss map on the helicoid for contours at varying
distances from the core. (Top) Near the core the geometric texture of
the director winds by 2π and maps the equator on the unit sphere.
(Bottom) Far from the core the director and normals align along ẑ
in accordance with boundary conditions. Connecting the two con-
tours requires sweeping out the entire upper hemisphere under the
Gauss map.

texture will be mapped to the equator of the unit sphere.
Imposing the boundary conditions that the normals all point
along ẑ at infinity, a contour stretched out to infinity must
map to a point on the unit sphere (the North pole): as the
contour is stretched continuously from the original measuring
circuit to infinity, the Gauss map sweeps out area on the unit
sphere and it follows that the surfaces must have Gaussian
curvature. Indeed, by checking the relative orientation of the
areas, we see that the surfaces must have a negative integrated
Gaussian curvature. This is exactly what happens in the case
of the screw dislocation, where the Gaussian curvature of the
helicoid, K = −−b2/(r2 + −b2)2, allows for the equatorial loop
on the unit sphere to be moved up along to a point infinitely
far from the helicoid core (Fig. 2). Importantly, the +1 discli-
nation charge is able to relax in this way without twist: the
helicoidal surfaces ensure � remains well defined away from
the core as the director conforms to boundary conditions.

Here we have arrived at the answer for how the screw
dislocation, without allowing twist distortions, can have both
the local geometry of two + 1

2 disclinations and no disclination
charge at infinity: the nematic director “escapes from the
second dimension” by following smectic layers of negative
integrated Gaussian curvature! For comparison, we can ap-
ply the same Gauss map procedure to an edge dislocation
core. However, in this case the disclination-charge-neutral
core already shows no winding; in order to match boundary
conditions, the smectic layers around the edge dislocation
must have exactly zero integrated Gaussian curvature. Under
fixed boundary conditions, the integrated Gaussian curvature
of the smectic layers is fixed: deformations to the system may
add local curvature to surfaces, but the total integrated Gaus-
sian curvature remains invariant. So, while edge and screw
dislocations can be distinguished locally by the disclination
geometry of their cores, the distinction between edge and
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screw leads to a global difference in their structure in the form
of Gaussian curvature.

The topology of dislocation cores and commensurate
Gaussian curvature-moderated escape of disclination charge
in smectics are captured by the saddle-splay vector A. Recall
that the saddle-splay term in the nematic is

Fss = −K24

∫
d3x ∇ · A, (5)

where A = n(∇ · n) − (n · ∇ )n. Because it is a total diver-
gence it contributes only at boundaries, which include the
cores of defects. While we have shown that disclinations can
be arranged at dislocation cores so that the smectic need
not melt, the disclinations themselves require vanishing of
the nematic order since n becomes undefined. The saddle
splay then integrates to the surface bounding the melted re-
gion. Note that for an m-fold, two-dimensional disclination,
n = [cos mθ, sin mθ, 0] (with m ∈ 1

2Z), we find that A =
−mr̂/r—it has a nonzero divergence at the origin and is singu-
lar when m �= 0 (note, as well, that it is a true vector even when
the defect is half-integer). Indeed, integrating around the inner
boundary of the nematic (the disclination) in the xy plane,
we find a total saddle splay of 2πm. What is this quantity?
Recall that the divergence of the saddle-splay vector is twice
the Gaussian curvature of the smectic layers, ∇ · A = 2K . For
a planar disclination of charge m = 1, the divergence of the
saddle splay integrates to 2π . Similarly, twice the Gaussian
curvature of a screw dislocation of +1 Burgers displacement
integrated over the xy plane yields 2π . This can be calculated
either by direct integration, by application of the Gauss map
on the half-helicoid as in Fig. 2, or from the saddle splay.
The final option corresponds precisely to the fact that the
cross section of helicoidal layers in the xy plane has the
geometry of a +1 disclination. Indeed, the saddle-splay vector
A reveals both the smectic disclination charge at the origin
and the negative Gaussian curvature required to let it escape
from the second dimension! This vector quantity is a measure

of the smectic complexion that allows us to distinguish the
topology of screw from edge dislocations. Namely, for screw
dislocations the divergence of the saddle splay must integrate
to exactly 4π for each deck of the helicoid, and for edge
dislocations it must integrate to zero. Again, to generalize to
three-dimensional crystals it is only required to examine each
phase field separately as discussed above. All the geometry
and topology of the level sets follows the discussion for smec-
tics.

Conclusion. By studying the topological properties of
screw and edge dislocations according to their disclination
cores, we provide a description of dislocations that both
distinguishes screw from edge and unifies topological and
geometric properties of dislocations. Our classification dis-
tinguishes screw and edge dislocations based on the ± 1

2
disclination geometry of the edge defect core compared to the
topologically distinct pair of + 1

2 disclinations of the screw
core. Based on the need to satisfy boundary conditions, the
disclination geometry of the dislocation cores forces the smec-
tic layers to have a particular integrated Gaussian curvature,
allowing the dislocations to be differentiated away from the
core. The disinclination charge’s “escape from the second
dimension” plays a central role for screw dislocations, and its
signature is captured by the saddle-splay vector A. This inter-
pretation is essential when considering smooth deformations
of crystals with embedded dislocations, as the local geom-
etry can deviate from the crystalline axes specified by the
boundary conditions. Whether further topological information
regarding the entangling of dislocations and disclinations can
be characterized is an open question.
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