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Dynamics of packed swarms: Time-displaced correlators of two-dimensional incompressible flocks
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We analytically calculate the scaling exponents of a two-dimensional KPZ-like system: coherently moving
incompressible polar active fluids. Using three different renormalization group approximation schemes, we
obtain values for the roughness exponent χ and anisotropy exponent ζ that are extremely near the known exact
results. This implies our prediction for the previously unknown dynamic exponent z is likely to be quantitatively
accurate.
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The Mermin-Wagner theorem [1] states that in equilib-
rium, two-dimensional systems with finite-range interactions
cannot spontaneously break a continuous symmetry at any
finite temperature. One of the earliest and most surprising
results in the field of active matter was that there is no analog
of the Mermin-Wagner theorem in nonequilibrium matter. In
particular, it was explicitly demonstrated that active polar
units moving on a two-dimensional frictional substrate and
with purely short-range interactions can spontaneously break
continuous rotation symmetry in two dimensions and form
long-range ordered flocks [2–6]. Such flocks have a nonzero
mean speed 〈v〉 even at finite noise strengths.

Despite the fact that the existence of long-range-ordered
two-dimensional flocks has been demonstrated analytically,
determining their scaling behavior analytically has proved
much more challenging. One class of systems that has proved
amenable to analytical treatment is incompressible flocks
[7–13].

Incompressibility can arise in many ways. One way is to
make the density extremely high. In this limit the effective
compressibility of the flockers vanishes, with any departure
from the mean density being severely penalized [8,10]. More
accurately, as the compressibility goes to 0, the length scale
up to which the system is effectively incompressible diverges.
A flock formed by a suspension of motile swimmers in an
incompressible fluid on a substrate also inherits the incom-
pressibility of the fluid and is therefore incompressible [10].
This is distinct from the model we will consider here due
to the presence of an extra conserved quantity: the number
of swimmers. However, if the number of active units is not
conserved, for instance, due to birth and death [14–16], the
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dynamics of such a system belongs to the incompressible
flock universality class we consider here [10]. Such a system
has nonconserved dynamical quantities, like ours; therefore,
the only hydrodynamic field is the center of mass (of back-
ground fluid plus active particles) velocity field. Furthermore,
that velocity must also obey the incompressibility condition
∇ · v = 0. The system also has the same symmetry (rotation
invariance) as ours, and breaks that symmetry spontaneously
in the same way (by picking out a preferred direction of
motion). Therefore, it must be described by the same hydro-
dynamic equation as ours.

Our understanding of the equal-time behavior of incom-
pressible two-dimensional flocks is quite complete. Although
they are nonequilibrium systems, their hydrodynamic equa-
tions prove to be equivalent, once terms that are irrelevant
in the renormalization group sense are dropped, to those
of an equilibrium magnetic system [8,17] with long-ranged
interactions. Because of those long-ranged interactions, the
Mermin-Wagner theorem does not apply to these mag-
netic systems. The partition function for this equilibrium
system can then be further mapped [8] onto that for a
two-dimensional smectic, whose equal-time scaling laws are
known exactly via a further mapping [18] onto the (1 + 1)-
dimensional KPZ equation [19]. This analysis [8] gives the
scaling law for the equal-time fluctuations u(r, t ) of the local
active fluid velocity v(r, t ) about its mean value 〈v〉 ≡ v0x̂,
where we have defined our coordinate system so that x̂ is
along the mean velocity spontaneously chosen by the system.
Specifically

〈u(r, t ) · u(0, t )〉 = |x|2χGET

( |y|
|x|ζ

)
, (1)

where ET stands for equal time. The exponents χ and ζ were
determined exactly by the aforementioned mappings [8] to be
χ = −1/2 and ζ = 3/2.

Unfortunately, since this analysis was based entirely on the
partition function for the equivalent equilibrium model, no
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information about the dynamics of the system can be obtained
by this exact mapping. Most of this missing information can
be encoded in a single additional universal exponent, namely,
the dynamical exponent z. This can be defined by considering
the unequal-time correlation function of the velocity fluctua-
tions, which obeys the scaling law

〈u(r, t ) · u(0, 0)〉

= |x − vbt |2χGUET

( |y|
|x − vbt |ζ ,

|t |
|x − vbt |z

)
, (2)

and the subscript UET now means unequal time. The boost
velocity vb is a phenomenological parameter of our model.

In this Letter, we obtain the dynamical exponent z for
the polar phase of two-dimensional, incompressible flocks
using four different dynamic renormalization group (DRG)
schemes: two different uncontrolled calculations exactly in
two dimensions, and two d = (dc − ε)-expansions, in which
we analytically continue our model, which is defined strictly
in two dimensions, to higher dimensions. The two ε expan-
sions, which we call the hard and soft continuations, have
dc = 5/2 and dc = 3, respectively. We get

z = 1.67 ± 0.05, (3)

where the error bars correspond to the standard error of the
four DRG schemes. We also calculate the roughness exponent
χ and the anisotropic exponent ξ in all four schemes.

As mentioned earlier, we already know the static exponents
χ and ζ exactly, so our purpose in performing this DRG
is only to calculate z. However, our knowledge of the exact
values of χ and ζ provides us with a useful check on the quan-
titative accuracy of our DRG calculations, because we can
compare the approximate values of χ and ζ that we get from
those schemes with the known exact values. And they prove
to be very close; indeed, one of our uncontrolled approxima-
tions, and the soft-continuation ε expansion, both reproduce
the known exact values χ = −1/2 and ζ = 3/2. We therefore
believe our prediction (3) is very accurate quantitatively, al-
though this argument is obviously far from rigorous.

In particular, inserting (3) and the exact value for χ into
(2), and considering the limit r → 0, we obtain the temporal
part of the velocity correlation:

〈u(0, t ) · u(0, 0)〉 ∼ At
2χ

z = At−0.60±0.02, (4)

where A is some nonuniversal constant.
We will now present the derivation of the above re-

sults. This begins with the hydrodynamic equation of motion
(EOM) of incompressible polar active fluids, which can be
constructed purely based on symmetry considerations (as has
been discussed in Ref. [8]), and is:

∂t v + λ(v · ∇)v = −∇� − (v · ∇�1)v + U (|v|)v
+μ1∇2v + μ2(v · ∇)2v + f (r, t ), (5)

where the pressure � is a Lagrange multiplier that enforces
the incompressibility constraint: ∇ · v = 0, the term involving
U (|v|)—a smooth, analytic function of |v|—ensures that there
is an ordered phase in which v has a nonzero mean magnitude
v0. That is, we assume that there is a regime in parameter
space of U (|v|) where U (|v|) > 0 for |v| < v0, U (|v|) = 0

for |v| = v0, and U (|v|) < 0 for |v| > v0. The anisotropic
pressure �1 is another generic function of |v|. Finally, f (r)
is a zero-mean, Gaussian white noise with the correlation

〈 fi(r, t ) f j (r′, t ′)〉 = 2Dδi jδ
2(r − r′)δ(t − t ′), (6)

where the indices i, j enumerate the spatial coordinates.
Expanding (5) about an ordered state using v = v0x̂ + u

and retaining only relevant terms (i.e., the terms that are im-
portant in the limit of large time and length scales), we obtain
the EOM governing u

∂t ui = −∂i� + μ⊥∂2
y ui + μ∂2

x ui

−α

(
ux + u2

y

2v0

)(
δix + uy

v0
δiy

)
+ fi, (7)

where α ≡ −v0( dU
d|v| )|v|=v0

, μ⊥ ≡ μ1, and μ ≡ μ1 + μ2v
2
0 . As

discussed in Refs. [8,14], we have performed a Galilean
transformation to a reference frame r′, which moves with
respect to our original reference frame in the direction of mean
flock motion at a speed vb = λv0; that is, r′ ≡ r − λv0t x̂,
or, equivalently, x′ = x − vbt . For simplicity, in (7) we have
dropped the prime in x. Note that u(r, t ) is also subject to the
incompressibility constraint ∇ · u = 0 inherited from ∇ · v =
0. The somewhat nontrivial power counting that leads to (7) is
detailed in Ref. [8].

We now perform a DRG analysis to obtain the dynamic
exponent for the incompressible flock. Fourier transforming
(7) and acting on the projection operator Pyi(q) to eliminate
the pressure term [20], we obtain

−iωuy = Pyx(q)Fq̃

[
−α

(
ux + u2

y

2

)]

+ Pyy(q)Fq̃

[
−α

(
ux + u2

y

2

)
uy + μ∂2

x uy + fy

]
,

(8)

where we have eliminated v0 by absorbing it into u (i.e.,
u → v0u), and the symbol Fq̃ represents the q̃-th Fourier
component.

Now we implement the standard DRG procedure [21] on
the EOM (8). First we decompose the field u into slow and
fast parts u<(q) and u>(q), which are supported at small q’s
and large q’s, respectively. (We will eventually take the large
q’s to lie in an infinitesimally thin shell along the outer edge
of the Brillouin zone.)

Next we average out u>(q) to get the effective EOM for
u<(q). In this step the various coefficients in (8) are renor-
malized; we call these changes graphical corrections. Finally
we rescale time, lengths, and fields as

t → tezd�, x → xed�, y → yeζd�, (9a)

uy → uyeχd�, ux → uxe(χ+1−ζ )d�, (9b)

to restore the Brillouin zone to its original size. Note that the
form of the rescaling in ux is imposed by the incompressibility
condition. This whole process is then repeated iteratively,
which leads to recursion relations for the three coefficients α,
μ, and D in (8). [Note that D is hidden in the correlations of
the noise f (6).]
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As usual in DRG calculations [21], we need to make
approximations to perform the averaging step. We use four
distinct DRG approximation schemes. Two of these are one-
loop-order DRG calculations in exactly two dimensions,
which are uncontrolled approximations since there is no limit
in which they become exact. The third scheme is an εh =
5/2 − d expansion to O(εh), in which we analytically con-
tinue our calculation to d > 2 by treating the y direction as
(d − 1) dimensional, and the fourth scheme is an εs = 3 − d
expansion to O(εs) in which we analytically continue our
theory to higher dimensions by treating the x direction to
be (d − 1) dimensional. We call the former the hard con-
tinuation (hence the subscript “h” in εh), and the latter the
soft continuation (hence the subscript “s” in εs). These last
two are controlled approximations, since they formally be-
come exact in the limit εh,s → 0. Obviously, they are also
only approximate in d = 2. The first of the two uncontrolled
approximations uses a Brillouin zone (BZ) −∞ < qy < ∞,
− < qx < , where  is the ultraviolet cutoff, and the
second uses the BZ −∞ < qx < ∞, − < qy < . The ε-
expansion results are independent of the shape of the Brillouin
zone as we explicitly demonstrate in the Supplemental Mate-
rial [22]. All four approaches yield values of the dynamical
exponent that are fairly close to each other. Furthermore, all
four obtain values of the already exactly known exponents
χ and ζ which prove to be very close to those known exact
values; indeed, the first uncontrolled approximation and the
soft-continuation ε expansion yield the exact values of the χ

and ζ .
Crucially, in all four DRG calculations, we use the sym-

metry properties of the EOM for u to make two important
simplifications. First, the rotation invariance of our hydrody-
namic EOM is ensured by choosing the values of χ and ζ to
keep all four “α”s appearing in (8) (i.e., the coefficients of ux,
u2

y , uxuy, and u3
y) the same under rescaling, i.e.,

χ = 1 − ζ . (10)

This simplification reduces the total number of recursion rela-
tions to three. These are quite generally

d ln α

d�
= z − 2ζ + 2 + ηα, (11)

d ln μ

d�
= z − 2 + ημ, (12)

and
d ln D

d�
= z − ζ − 2χ − 1 + ηD (13)

for the uncontrolled approximations (which are done in
d = 2), or

d ln D

d�
= z + (1 − d )ζ − 2χ − 1 + ηD (14)

for the hard-continuation ε expansion, or

d ln D

d�
= z − ζ − 2χ − (d − 1) + ηD (15)

for the soft-continuation ε expansion. In all of these equations
(11)–(15), ηα, u,D denote graphical corrections.

Note that these recursion relations imply that the fixed
point values of ηα, u,D are determined entirely by z, ζ , and χ

(and vice versa). Indeed, setting all � derivatives equal to zero
in (11), (12), and (13) implies that

ημ = 2 − z, ηα = 2ζ − z − 2, and

ηD = 2χ − ζ − z + 1. (16)

Next, the fact that the dynamics of u obeys detailed balance
introduces another simplification. This becomes clear if we
formally introduce a friction coefficient in the dynamics for
u; �∂t ui = −δH/δui + fi, which is just the time-dependent
Ginzberg-Landau model, or model A [23,24], with H (M) the
Hamiltonian for a ordered divergence-free two-dimensional
magnet expanded around its minimum at nonzero magne-
tization, where M = (v0 + ux )x̂ + uyŷ. � = 1 in (8) but it
does not retain that value under renormalization. This would
appear as a renormalization of the coefficient of −iωuy; in
general, this is an independent quantity. However, here de-
tailed balance implies that the ratio D/� cannot change under
renormalization, i.e., � and D must renormalize in the same
way. This implies that the correction to ln � is the same as the
correction to ln D. If we denote the direct graphical correction
to the annealed noise ηdir

D and the direct graphical correction to
� as ηω, the argument just given implies ηω = ηdir

D . To avoid
retaining the friction coefficient as another extra parameter,
we divide both sides of the renormalized EOM by the co-
efficient of −iωuy to fix the coefficient of −iωuy at 1. This
effectively introduces an additional correction −ηdir

D to both α

and μ, and −2ηdir
D to D. (The factor of 2 arises because D is

proportional to the correlation of two noises.) Therefore, the
overall graphical corrections to α, μ, and D are given by

ηα = ηdir
α − ηdir

D , ημ = ηdir
μ − ηdir

D , (17)

ηD = ηdir
D − 2ηdir

D = −ηdir
D . (18)

Using these considerations, and explicitly evaluating the
graphical corrections to one-loop order [22], we find the
following graphical corrections for the first uncontrolled ap-
proximation, i.e., using the BZ −∞ < qy < ∞, − < qx <

 in exactly d = 2:

ηα = −3gU1

4
, ημ = gU1

4
, ηD = −gU1

4
, (19)

where

gU1 = α1/2D

4μ3/2π
. (20)

Using the recursion relations (11), (12), (13), and the defini-
tion of gU1, implies the following recursion relation for gU1:

d ln gU1

d�
= 2 + 2ηD + ηα − 3ημ

2
≈ 1 − gU1, (21)

where we have used the identity (10). The first equality is
exact, and the second, approximate, equality is valid only to
one-loop order, and is obtained from combining (11), (12),
(13), (19) with (20). This implies that there is a stable fixed
point at (gU1)∗ = 1. While this fixed point is only valid to
one-loop order, since gU1 does have a nonzero fixed point
value at all orders, and since the first equality in (21) is valid
to all orders, setting the left-hand side of (21) to 0 leads to an
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exact identity between the values of ηα,μ,D at the fixed point:

2 + 2ηD + ηα − 3ημ = 0. (22)

Using our relations (16) in d = 2, we can see that this expres-
sion (22) implies (10), which we already required to keep all
α’s the same.

An exactly analogous calculation for the second uncon-
trolled approximation, using the BZ −∞ < qx < ∞, − <

qy < , yields the following graphical corrections [22] to
one-loop order in exactly d = 2:

ηα = −7gU2

8
, ημ = 5gU2

8
, ηD = −3gU2

8
, (23)

where

gU2 = ζα1/4D

8
√

2μ5/4π
√


. (24)

This definition of gU2 implies the recursion relation

d ln gU2

d�
= 2ζ + 4ηD + ηα − 5ημ

4
≈ 4ζ − 11gU2

8
, (25)

where, again, the first equality is formally valid to all orders,
but the second, approximate equality, to only one-loop order.
Since ζ > 0, the approximate equality implies a stable fixed
point at (gU2)∗ = 4ζ/11 to one-loop order.

The first, exact, relation implies another exact scaling law
at the fixed point:

2ζ + 4ηD + ηα − 5ημ = 0. (26)

However, this relation again proves to be exactly equivalent to
(10), as can be seen by again using our relations (16) in d = 2.

Next, we turn to the ε-expansion calculations. Analytically
continuing our calculation to d > 2 by treating the y direc-
tion as (d − 1) dimensional (hard continuation) and using the
BZ −∞ < qx < ∞, 0 < |qy| < , we obtain the following
graphical corrections [22] in the recursion relations (11), (12),
(14) to one-loop order:

ηα = −7gh

8
, ημ = 5gh

8
, ηD = −3gh

8
, (27)

where

gh = ζα1/4DSd−1
d−5/2

8
√

2(2π )d−1μ5/4
. (28)

Combining this definition of gh with the recursion relations
for α, μ, and D implies

d ln gh

d�
= (10 − 4d )ζ + 4ηD + ηα − 5ημ

4

≈ 5 − 2d

2
ζ − 11

8
gh. (29)

This second, approximate equality implies that the critical di-
mension is 5/2: for d < 5/2, gh flows to a nonzero stable fixed
point (gh)∗ = 8εh

11 ζ to O(εh), where εh = 5/2 − d; while for
d > 5/2, gh is attracted to (gh)∗ = 0 (i.e., the Gaussian fixed
point). Note once again that the first exact equality implies an
exact scaling relation between the anisotropy exponent ζ and
the η’s for d < 5/2:

(10 − 4d )ζ + 4ηD + ηα − 5ημ = 0. (30)

Note that this relation reduces to (26) in d = 2, as it must.

Finally, we analytically continue our calculation to d > 2
by treating the x direction as (d − 1) dimensional (soft con-
tinuation) and use the BZ 0 < |qx| < , −∞ < qy < ∞. We
obtain the following graphical corrections in the recursion
relations (11), (12), and (15) to one-loop order [22]:

ηα = −3gs

4
, ημ = gs

4
, ηD = −gs

4
, (31)

where

gs = Dα1/2Sd−1
d−3

4μ3/2(2π )d−1
. (32)

The closed recursion relation for gs is

d ln gs

d�
= 6 − 2d + 2ηD + ηα − 3ημ

2
≈ 3 − d − gs. (33)

Here the critical dimension is 3. For d < 3, the second approx-
imate equality implies a stable fixed point (gs)∗ = εs to O(εs),
where εs = 3 − d . Note that again the first exact equality
implies an exact scaling relation between η’s for d < 3

6 − 2d + 2ηD + ηα − 3ημ = 0, (34)

which reduces to (22) in d = 2.
We now use the trajectory integral-matching formalism

[25] to calculate C(r, t ) = 〈u(r, t ) · u(0, 0)〉, by relating the
correlators in the original system to those of the rescaled
system, via

C(α0, μx0, D0, r, t )

= e2χ�C

[
α(�), μ(�), D(�),

|y|
eζ�

,
|x − vbt |

e�
,

|t |
ez�

]
, (35)

with α, μ, and D controlling the magnitude of C(r, t ), and the
subscript 0 denotes the bare values of the parameters. Note
the argument x − vbt appears in these expressions because we
have undone the aforementioned Galilean boost to return to
the laboratory coordinate system.

We will illustrate this calculation in detail for the first
uncontrolled approximation; for the other approximations the
calculation is very similar. We choose ζ and z to fix α, μ, and
D [of course, due to the exact relation (10), fixing ζ also fixes
χ ]. This gives

zU1 = 7

4
, ζU1 = 3

2
, χU1 = −1

2
. (36)

Then setting � = ln(|x − vbt |) casts the right-hand side of
(35) in the form (2) where

GUET

( |t |
|x − vbt |z ,

|y|
|x − vbt |ζ

)

≡ 2χC

[
α0, μ0, D0,

|y|
(|x − vbt |)ζ

,
1


,

|t |
(|x − vbt |)z

]
.

(37)

Since the static limit of the correlator C(r, t = 0) has been
obtained in Ref. [8], we focus here on the dynamic limit
C(0, t ). In this limit we expect the correlator to be a power law
of t only. As a result, the scaling function GUET must behave
as (t/|x − vbt |z )

χ

z to cancel out the prefactor |x − vbt |2χ in
(2). Thus we obtain (4). We remind the reader that the static
exponents ζU1 and χU1 in this approximation, coincidentally,
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are identical to the exact static exponents obtained in Ref. [8].
We however note that, as these are one-loop calculations, the
static exponents have no reason to coincide with their exact
values and, indeed, they do not in two of the three other
approximations.

Likewise, the second uncontrolled approximation yields

zU2 = 23
14 , ζU2 = 11

7 , χU2 = − 4
7 , (38)

the hard continuation

zh = 2 − 10
11εh = 17

11 , (39)

ζ h = 2 − 12
11εh = 16

11 , (40)

χh = −1 + 12
11εh = − 5

11 , (41)

where εh = 5/2 − d and in the second equality d = 2 is taken,
and the soft continuation

zs = 2 − 1
4εs = 7

4 , (42)

ζ s = 2 − 1
2εs = 3

2 , (43)

χ s = −1 + 1
2εs = − 1

2 , (44)

where εs = 3 − d and in the second equality d = 2 is taken.
Taking an average over the four sets of values of the

exponents leads to the value z = 1.67 ± 0.05 quoted ear-
lier, ζ = 1.51 ± 0.02, and χ = −0.507 ± 0.024. Note that the
predictions for ζ and χ are extremely close to their exact

values ζ = 3/2 and χ = −1/2, which implies our prediction
for z is almost certainly also very accurate. This also implies
that, although the linear theory suggested that velocity fluc-
tuations in incompressible flocks are diffusive, nonlinearities
lower the dynamical exponent, which makes the dynamics
superdiffusive: that is, distance scales like t1/z with z < 2,
which means distance grows faster with time than the t1/2

diffusive law.
In summary, we have calculated the dynamical exponent

z characterizing the scaling of velocity fluctuations with time
in incompressible two-dimensional flocks. We did so using
four different approximation schemes, and demonstrated that
the dynamics is significantly modified; specifically, the value
of z is substantially changed by nonlinearities, which turn the
fluctuations superdiffusive. Interestingly, due to the mapping
[8] between this system and the model-A dynamics of a
divergence-free magnet [17], this implies that magnetization
fluctuations of a divergence-free magnet or a two-dimensional
magnet with two-dimensional dipolar interactions are also
superdiffusive.
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