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For classic systems, the thermodynamic uncertainty relation (TUR) states that the fluctuations of a current have
a lower bound in terms of the entropy production. Some TURs are rooted in information theory, particularly
derived from relations between observations (mean and variance) and dissimilarities, such as the Kullback-
Leibler divergence, which plays the role of entropy production in stochastic thermodynamics. We generalize
this idea for quantum systems, where we find a lower bound for the uncertainty of quantum observables given
in terms of the quantum relative entropy. We apply the result to obtain a quantum thermodynamic uncertainty
relation in terms of the quantum entropy production, valid for arbitrary dynamics and nonthermal environments.
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Introduction. Entropy production is the main concept of
thermodynamics far from equilibrium. This concept has been
defined and explored extensively in stochastic thermodynam-
ics, where entropy production � and physical observables
become random variables at the trajectory level [1–9]. In this
case, the second law of thermodynamics is stated as

〈�〉 � 0. (1)

Among the cornerstones of stochastic thermodynamics, there
are the thermodynamic uncertainty relations (TURs) [10–24],
which usually take the form

〈φ2〉 − 〈φ〉2

〈φ〉2
� f (〈�〉), (2)

for a current φ, where f is a known function. The TUR es-
tablishes that there is always an inherent minimum fluctuation
(or uncertainty) in a process that is not reversible, 〈�〉 � 0.
This uncertainty is quantified as the ratio of the variance to
the mean squared, observed in the left-hand side of (2), and the
bound is given solely as a function of the entropy production.

In recent years, there have been significant advancements
in extending TURs to the quantum realm. These quantum
TURs establish connections between fluctuations and irre-
versibility, expanding our understanding beyond classical
contexts [25–30], for steady states [31,32], for the Lindblad’s
dynamics [33,34], and for general open quantum systems [35]
usually in terms of quantities other than the quantum entropy
production.

An even more direct generalization of (2) to quantum ther-
modynamics would benefit from (i) a bound given in terms of
the quantum entropy production itself and (ii) valid at strong
coupling, for any dynamics. In this sense, we first obtain our
main result: for any density matrices ρ and σ , and for any
Hermitian operator θ̂ , we have

〈θ̂2〉ρ − 〈θ̂〉2
ρ + 〈θ̂2〉σ − 〈θ̂〉2

σ

(1/2)(〈θ̂〉ρ − 〈θ̂〉σ )2
� f

(
S(ρ||σ ) + S(σ ||ρ)

2

)
,

(3)

for 〈θ̂〉ρ := tr(ρθ̂ ) �= 〈θ̂〉σ := tr(σ θ̂ ), f (x) = 1/ sinh2[g(x)/2],
and g(x) is the inverse of h(x) := x tanh(x/2) for x > 0.
S(ρ||σ ) = tr[ρ(ln ρ − ln σ )] is the quantum relative entropy.
The bound (3) is saturated by a minimal two-level system with
commuting operators ρ, σ, θ̂ . However, in general, (3) is not
an identity, as we show in the numeric simulations.

First, we observe that the bound (3) replicates classic
TURs in the absence of coherence. By setting [ρ, σ ] = 0,
which results in the states being diagonal in the same basis
|s〉, we get 〈s|ρ|s〉 = P(s) and 〈s|σ |s〉 = Q(s). This leads to
S(ρ||σ ) = D(P|Q) and S(σ ||ρ) = D(Q|P), where D(P|Q) :=∑

s P(s) ln[P(s)/Q(s)] represents the Kullback-Leibler (KL)
divergence. In this scenario, (3) reduces to a result in classic
information theory [24,36], applicable to probabilities P(s)
and Q(s). Specifically, for s = � (where � is a stochastic
trajectory), P := PF (�) and Q := PB(�†), with F and B de-
noting forward and backward processes, and �† as the inverse
trajectory, we derive a hysteretic TUR [21–23] in the tightest
form [24], identifying the KL divergence as the stochas-
tic entropy production, 〈�〉 := ∑

� PF (�) ln[PF (�)/PB(�†)].
Furthermore, in the symmetric case where PF = PB, bound
(3) results in the exchange TUR (2) as proposed in [18] for
θ (�†) = −θ (�). Intriguingly, the quantum uncertainty rela-
tion (3) not only reproduces classic results, but also maintains
its form in the presence of coherence, suggesting a more
fundamental basis for such TURs.

In scenarios where we describe the temporal evolution of
a state, we define ρ = ρ(t ) and σ = ρ(0). In such cases, it is
important to note that the denominator in (3) is represented
by a time-integrated current, φ := tr{θ̂ [ρ(t ) − ρ(0)]}, which
aligns with the classic forms of the TUR (2), even when co-
herence is present, i.e., [ρ(0), ρ(t )] �= 0. We will delve deeper
into this aspect when applying (3) to quantum channels.

Finally, with our main result (3) in hand, we now turn
to a general setup of quantum thermodynamics [1], where
the system and environment are prepared in arbitrary states
ρS and ρE , followed by a unitary evolution, such that the
final state is entangled and given by ρ := U(ρS ⊗ ρE )U†.
After the evolution, we define the reduced state of the system,
ρ ′

S := trE (ρ). In this notation, the quantum entropy production
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is defined as [37,38]

� := S[U(ρS ⊗ ρE )U†||ρ ′
S ⊗ ρE ] = S(ρ||σ ), (4)

which is a dissimilarity between the final state of the for-
ward process ρ := U(ρS ⊗ ρE )U† and a specific choice for
the initial state of the backward process σ := ρ ′

S ⊗ ρE . We
now define a dual of the entropy production as the following
dissimilarity:

�∗ := S(σ ||ρ) = S(U†σU||ρS ⊗ ρE ), (5)

where the last identity used the fact thatU is unitary. Perhaps
not surprisingly, the dual (5) is also given in terms of an
average stochastic entropy production, as it happens with �

[38], as discussed later on. However, �∗ is not to be confused
with the entropy production of the backward process. As a
matter of fact, the specific form of �∗ allows us to apply our
main result (3) for any quantum observable θ̂ acting on the
system + environment, using (4) and (5),

〈θ̂2〉ρ − 〈θ̂〉2
ρ + 〈θ̂2〉σ − 〈θ̂〉2

σ

(1/2)(〈θ̂〉ρ − 〈θ̂〉σ )2
� f

(
� + �∗

2

)
, (6)

which is our second main result and highlights the role played
by �∗ in thermodynamics. The quantum thermodynamic un-
certainty relation expressed in (6) is notably general. It covers
a quantum thermodynamics framework that accommodates
strong coupling and remains valid even when arbitrarily far
from equilibrium. Furthermore, it is defined explicitly in terms
of the entropy production and its dual.

The Letter is organized as follows. First, we present the
formalism and prove (3), which is a result in quantum infor-
mation. Then, we test the theoretic result with Monte Carlo
simulations with two random qubits and a random observable
in the presence of coherence, where the bound is verified. We
also discuss the saturation of the bound, the role of coherence
between ρ and σ , followed by applications to arbitrary quan-
tum channels and quantum thermodynamics.

Formalism. The idea behind the proof of (3) goes as fol-
lows. First, we find a lower bound for the left-hand side of
(3) in terms of a classic uncertainty, with probabilities P, Q
and a complex random variable �. Then, we use a result from
information theory, which is a lower bound for such classic
uncertainty in terms of the symmetric KL divergence of P and
Q. Finally, we show that for our specific choices of P and Q,
the symmetric KL equals the symmetric quantum relative
entropy between ρ and σ , and that ends the proof. Details are
given below.

Let ρ and σ be any density matrices [Hermitian, semipos-
itive, and tr(ρ) = tr(σ ) = 1]. Let θ̂† = θ̂ be any Hermitian
operator with 〈θ̂〉ρ �= 〈θ̂〉σ . We have the spectral decom-
position, ρ = ∑

i pi|pi〉〈pi| and σ = ∑
j q j |q j〉〈q j |, with

0 � pi, q j � 1, 〈pi|p j〉 = δi j , and 〈qi|q j〉 = δi j . The expected
value of θ̂ with respect to ρ is

tr(ρθ̂ ) =
∑

i

pi〈pi|θ̂ |pi〉 =
∑

i j

pi〈pi|θ̂ |q j〉〈q j |pi〉, (7)

and the expression above can be written as

∑
i j

pi〈pi|θ̂ |q j〉〈q j |pi〉 =
∑

i j;〈q j |pi〉�=0

pi|〈q j |pi〉|2 〈pi|θ̂ |q j〉
〈pi|q j〉 ,

(8)

where we used 〈pi|q j〉 = 〈q j |pi〉∗. Now we define Pi j :=
pi|〈q j |pi〉|2 for all (i, j) and define �i j := 〈pi|θ̂ |q j〉/〈pi|q j〉,
if 〈pi|q j〉 �= 0, and �i j := 0, if 〈pi|q j〉 = 0. In terms of P and
�, we have, from (7) and (8),

tr(ρθ̂ ) =
∑

i j

Pi j�i j := 〈�〉P, (9)

where we note that P is a probability function, 0 � Pi j � 1,
and

∑
i j Pi j = ∑

i j pi〈q j |pi〉〈pi|q j〉 = tr(ρ) = 1. Similarly,

we obtain, for the expected value of θ̂ with respect to σ ,

tr(σ θ̂ ) =
∑

i j

Qi j�i j := 〈�〉Q, (10)

for Qi j = q j |〈q j |pi〉|2, which is also a probability function,
0 � Qi j � 1 and

∑
i j Qi j = tr(σ ) = 1. Analogously, we have,

for the expected value of θ̂2 with respect to ρ,

tr(ρθ̂2) =
∑

i j

pi〈pi|θ̂ |q j〉〈q j |θ̂ |pi〉 =
∑

i j

pi|〈pi|θ̂ |q j〉|2,

(11)

where we used θ̂ = θ̂†. Then, note that∑
i j

pi|〈pi|θ̂ |q j〉|2 �
∑

i j;〈q j |pi〉�=0

pi|〈pi|θ̂ |q j〉|2 =
∑

i j

Pi j |�i j |2,

(12)

which yields, after combining (11) and (12),

tr(ρθ̂2) �
∑

i j

Pi j |�i j |2 := 〈|�|2〉P. (13)

We have a similar expression in terms of σ ,

tr(σ θ̂2) �
∑

i j

Qi j |�i j |2 := 〈|�|2〉Q. (14)

Combining expressions (9), (10), (13), and (14), one obtains

〈θ̂2〉ρ − 〈θ̂〉2
ρ + 〈θ̂2〉σ − 〈θ̂〉2

σ

(1/2)(〈θ̂〉ρ − 〈θ̂〉σ )2

� 〈|�|2〉P − |〈�〉P|2 + 〈|�|2〉Q − |〈�〉Q|2
(1/2)|〈�〉P − 〈�〉Q|2 , (15)

which completes the first part of the proof.
In the second part of the proof, we import a result from

information theory [24,36] and modify it to include complex
random variables. For any probabilities P, Q and complex
random variable �, with 〈�〉P �= 〈�〉Q, the theorem states that

〈|�|2〉P − |〈�〉P|2 + 〈|�|2〉Q − |〈�〉Q|2
(1/2)|〈�〉P − 〈�〉Q|2 � f [D̃(P, Q)],

(16)
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where D̃(P, Q) := [D(P|Q) + D(Q|P)]/2 is the symmetric
KL divergence and D(P|Q) = ∑

s P(s) ln[P(s)/Q(s)] is the
KL divergence, and f (x) = sinh[g(x)/2]−2 and g(x) is the
inverse of h(x) = x tanh(x/2) for x > 0. The proof of (16) is
given in the Appendix.

Finally, for the third part of the proof, take again Pi j =
pi|〈q j |pi〉|2 and Qi j = q j |〈q j |pi〉|2. In this case, we have

D(P|Q) =
∑

i j

Pi j ln
Pi j

Qi j
=

∑
i j

|〈q j |pi〉|2 pi ln
pi

q j
, (17)

and, after using
∑

j |〈q j |pi〉|2 = 1, Eq. (17) simplifies to

D(P|Q) =
∑

i

pi ln pi −
∑

i j

|〈q j |pi〉|2 pi ln q j = S(ρ||σ ).

(18)

Similarly, we have D(Q|P) = S(σ ||ρ) and the following iden-
tity:

D̃(P, Q) = 1
2 [S(ρ||σ ) + S(σ ||ρ)] := S̃(ρ, σ ). (19)

Combining (15), (16), and (19), we obtain our main result (3).
The quantum thermodynamics application (6) follows imme-
diately from the definitions of the quantum entropy production
(4) and the dual (5), where we used

S(U†σU||ρS ⊗ ρE ) = S[σ ||U(ρS ⊗ ρE )U†] = S(σ ||ρ).

(20)

Discussion. Let us discuss the meaning and the broad scope
of (3). First, we note that the form of the left-hand side of (3)
resembles the uncertainty of classic TURs. We define

U (θ̂ ; ρ, σ ) := 〈θ̂2〉ρ − 〈θ̂〉2
ρ + 〈θ̂2〉σ − 〈θ̂〉2

σ

(1/2)(〈θ̂〉ρ − 〈θ̂〉σ )2
(21)

as a type of quantum uncertainty of the observable θ̂ with
respect to two states ρ and σ . By definition, this uncertainty
is symmetric, U (θ̂ ; ρ, σ ) = U (θ̂ ; σ, ρ), as in other quantum
uncertainty relations [34]. Using the notation (21), relation (3)
may be presented as a lower bound for the symmetric quantum
relative entropy in terms of any observable θ̂ ,

S̃(ρ, σ ) � B[U (θ̂ ; ρ, σ )], (22)

where B(x) := 2(1 + x)−1/2 tanh−1[(1+x)−1/2] = (1+x)−1/2

ln[(
√

x + 1 + 1)/(
√

x + 1 − 1)], which might be useful in
situations where the statistics of any θ̂ is easier to compute.
In the specific case 〈θ̂〉σ = −〈θ̂〉ρ and 〈θ̂2〉σ = 〈θ̂2〉ρ , we get

U (θ̂ ; ρ, σ ) = 〈θ̂2〉ρ − 〈θ̂〉2
ρ

〈θ̂〉2
ρ

� f [S̃(ρ, σ )], (23)

which corresponds to the uncertainty of classic currents in the
exchange TUR (2) [18]. More generally, the absence of coher-
ence, [ρ, σ ] = 0, reduces U (θ̂ ; ρ, σ ) in (22) to the uncertainty
used in other classic generalizations of the exchange TUR,
such as the hysteretic TUR [21–24].

The analogy with classic TURs immediately sug-
gests which quantum system would saturate the bound,
U (θ̂ ; ρ, σ ) = f [S̃(ρ, σ )]. As in the classic case, the bound
in (3) is saturated for a specific minimal two-level system.

FIG. 1. Monte Carlo simulation of the uncertainty U =
U (θ̂ ; ρ, σ ) as a function of the symmetric quantum relative entropy
S̃(ρ, σ ) = [S(ρ||σ ) + S(σ ||ρ )]/2. Each one of the n = 104 blue
points is a pair (U, S̃) computed for the random qubits ρ, σ and
random Hermitian operator θ̂ . The lower bound f (S̃) from (3) is
depicted in the solid black line, confirming U � f (S̃). Inset: The
same uncertainty U vs S̃cl , which represents the classic component
S̃ that disregards coherence between ρ and σ , where the uncertainty
clearly violates the classic bound f (S̃cl ), shown in solid red.

Consider ρ = [eε/2|1〉〈1| + e−ε/2|0〉〈0|]/[2 cosh(ε/2)], σ =
2 cosh(ε/2)[e−ε/2|1〉〈1| + eε/2|0〉〈0|]/[2 cosh(ε/2)], and θ̂ =
ω(|1〉〈1| − |0〉〈0|). In this case, one has tr(ρθ̂ ) = ω tanh(ε/2),
tr(σ θ̂ ) = −ω tanh(ε/2), and tr(ρθ̂2) = tr(σ θ̂2) = ω2, such
that

U (θ̂ ; ρ, σ ) = sinh−2(ε/2) = f [h(ε)] = f [S̃(ρ, σ )], (24)

since S̃(ρ, σ ) = h(ε), so that (23) saturates the bound (3). In
general, however, identity (24) does not hold, not even for
two-level systems, as we show in the Monte Carlo simulations
below.

Simulations. Motivated by the minimal system that satu-
rates the bound (24), we now numerically test our main result

(3) for two qubits ρ, σ including quantum coherence. For
each run, we draw random operators (ρ, σ, θ̂ ). Then, we com-
pute U = U (θ̂ ; ρ, σ ) as in (21) and S̃ = S̃(ρ, σ ).

For the simulation, we denote X ∼ Ix as a random vari-
able uniformly distributed in the interval Ix. We consider the
decomposition ρ = (1 − p1)|0〉〈0| + p1|1〉〈1|, where p1 ∼
[0, 1] for each run. Similarly, for each run, we independently
draw a random σ = (1 − q1)|0〉〈0| + q1|1〉〈1| + C|0〉〈1| +
C∗|1〉〈0|, where q1 ∼ [0, 1], with C := |C| exp(φ1i), where
|C|2 ∼ [0, q1(1 − q1)], φ1 ∼ [0, 2π ), so that σ is com-
pletely positive. Finally, we draw a random Hermitian
operator θ̂ = ω(|1〉〈1| − |0〉〈0|) + D|0〉〈1| + D∗|1〉〈0|, where
ω ∼ [0, 1] and D := |D| exp(φ2i), with |D|2 ∼ [0, 1], φ2 ∼
[0, 2π ). Then, for each run, we plot a pair (U, S̃) as a single
blue point in Fig. 1 and repeat the process for 104 runs. One
can see that our main result (3) is validated, U � f (S̃) for all
runs. Some of them touch the bound, as expected, since the
minimal system described in (24) can be randomly drawn in
this setup.

We also check the role of coherence between ρ and σ in
our main result (3). In this case, we start by splitting S̃(ρ, σ )
in two positive contributions [39,40],

S(ρ||σ ) = S(
σρ||σ ) + Cσ (ρ), (25)

where Cσ (ρ) = S[
σ (ρ)] − S(ρ) is the relative entropy
of coherence, S(ρ) = −tr(ρ ln ρ) is the entropy, and

σ (ρ) := ∑

j |q j〉〈q j |(〈q j |ρ|q j〉) is a dephasing map
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in the basis of σ . In this case, we define S̃cl (ρ, σ ) =
[S(
σρ||σ ) + S(
ρσ ||ρ)]/2,

S̃(ρ, σ ) = S̃cl (ρ, σ ) + 1
2 [Cρ (σ ) + Cσ (ρ)], (26)

where the absence of coherence between ρ and σ , [ρ, σ ] = 0,
makes S̃(ρ, σ ) = S̃cl (ρ, σ ). In the general case, one has

S̃(ρ, σ ) � S̃cl (ρ, σ ) → f [S̃(ρ, σ )] � f [S̃cl (ρ, σ )], (27)

because f is decreasing. Note that we have both U (θ̂ ; ρ, σ ) �
f [S̃(ρ, σ )] from (3) and f [S̃cl (ρ, σ )] � f [S̃(ρ, σ )] from (27),
so it is tempting to check if f (S̃cl ) is a viable (and possibly
more efficient) lower bound for U (θ̂ ; ρ, θ ). If this is the case,
then the coherence between ρ and σ could be ignored in the
uncertainty relation, as we could just use S̃cl instead of S̃. To
check this, the inset of Fig. 1 shows U (θ̂ ; ρ, σ ) vs S̃cl , where
f (S̃cl ) is depicted in solid red. For several runs, one can see
that U � f (S̃cl ) is not true, where in all of them we have
U � f (S̃), showing that we need to take coherence between
ρ and σ into account for the uncertainty relation (3) to hold.

Application to quantum channels. An interesting applica-
tion of (3) is obtained considering a completely positive trace
preserving (CPTP) map Et . In this case, we have from the data
processing inequality S̃[Et (ρ),Et (σ )] � S̃(ρ, σ ). Using that
f is decreasing, we have f {S̃[Et (ρ),Et (σ )]} � f [S̃(ρ, σ )]. In
this case, the bound (3) has a looser form in terms of the initial
conditions,

U [θ̂ ; ρ(t ), σ (t )] � f {S̃[ρ(t ), σ (t )]} � f {S̃[ρ(0), σ (0)]},
(28)

for any CPTP map Et , where ρ(t ) = Et [ρ(0)] and σ (t ) =
Et [σ (0)], and t � 0 is a time parameter. The time-dependent
statistics of any observable θ̂ has a lower bound that depends
on initial conditions only, but not on the dynamics Et . Par-
ticularly, if ρ∗ is a fixed point of the dynamics Et , we have
Et (ρ∗) = ρ∗; then, using (28) with σ (0) = ρ∗ results in

U [θ̂ ; ρ(t ), ρ∗] � f {S̃[ρ(0), ρ∗]}, (29)

in which the bound is also a constant in time as it depends
solely on the dissimilarity between the initial state ρ(0) and
the fixed point ρ∗.

Application to quantum thermodynamics. Also note that
the specific choice θ̂ → ln ρE , ρ → ρE , and σ → ρ ′

E =
trS[U(ρS ⊗ ρE )U†] in the main result (3) yields

χ + χ ′

(1/2)�2
� f

(
S(ρ ′

E ||ρE ) + S(ρE ||ρ ′
E )

2

)
� f

(
� + �∗

2

)
,

(30)

where � := trE [(ρE − ρ ′
E ) ln ρE ] is the entropy flux [1],

with generalized capacities χ := 〈ln ρ2
E 〉ρE − 〈ln ρE 〉2

ρE
, χ ′ :=

〈ln ρ2
E 〉ρ ′

E
− 〈ln ρE 〉2

ρ ′
E
, and the last inequality comes from � +

�∗ � S(ρ ′
E ||ρE ) + S(ρE ||ρ ′

E ) and f is decreasing. Using the
inversion (22) in (30), one also gets

� + �∗

2
� B

(2(χ + χ ′)
�2

)
, (31)

which is a general relation in quantum thermodynamics in-
volving the entropy production and flux.

Now we briefly discuss the physical interpretation of �∗.
We consider the quantum trajectory of four measurements,
following the stochastic treatment of [1,38]. In this case,
γ = {m, ν ′, n, ν}, where (m, ν ′) represents the outcomes of
the initial measurement in the basis |ψm〉 ⊗ |ν ′〉, built from the
eigenbasis of ρ ′

S = ∑
m p′

m|ψm〉〈ψm| and ρE = ∑
ν qν |ν〉〈ν|.

The pair (n, ν) represents the final measurement in the basis
|n〉 ⊗ |ν〉, built from the eigenbasis of ρS = ∑

n pn|n〉〈n| and
ρE . Note that both initial and final local measurements of the
environment are performed in the same basis.

Now we take the initial state as ρ ′
S ⊗ ρE , perform

the first measurement, yielding (m, ν ′), apply the unitary
U† and perform the second measurement, yielding (n, ν),
such that the forward probability is defined as PF (γ ) =
|〈n, ν|U†|ψm, ν ′〉|2 p′

mqν ′ . Now for the backward process, we
consider the initial state ρ̃ := ρS ⊗ ρE , perform the first mea-
surement with value (n, ν), then the unitary U and the final
measurement, (m, ν ′), which results in the probability of
the backward process, PB(γ ) = |〈ψm, ν ′|U|n, ν〉|2ρ̃nν , where
ρ̃mν := 〈n, ν|ρ̃|n, ν〉 = pnqν . Finally, we define the average
stochastic entropy production for the path probabilities PF (γ )
and PB(γ ), 〈σ 〉 := D(PF |PB), resulting in

〈σ 〉 =
∑

|〈n, ν|U†|ψm, ν ′〉|2 p′
mqν ′ ln

(
p′

mqν ′

pnqν

)
= �∗,

(32)

after some manipulation, using (5). Note that we used the
same measurement scheme for the reservoir in both ends of
the path, as suggested in the original derivation of � [1,38].
However, in the derivation of �∗, a different initial state is
used for the backward process. For that reason, although �∗
has a stochastic interpretation, it relies on a specific choice of
backward process that differs from the original protocol for
the definition of �. Thus, �∗ is not a entropy production in
the sense of (4) in the general case.

Conclusions. We have proposed an uncertainty relation on
quantum information (3). The theorem states that a certain
statistics of any Hermitian operator θ̂ has a lower bound in
terms of the quantum relative entropies between ρ and σ .
We verified the bound for Monte Carlo simulations using
two random qubits and random operators in the presence of
coherence, where the saturation of the bound and the role
of coherence was discussed. We also applied the result for
general quantum channels, obtaining a lower bound for the
time-dependent uncertainty in terms of the initial conditions
(28), and the fixed point (29). Finally, we applied the result in
the most general setup of quantum thermodynamics, obtaining
a quantum thermodynamic uncertainty relation in terms of the
quantum entropy production and its dual (6).

Appendix. We used an expression (16) from information
theory that connects observables and divergences in the form
of a uncertainty relation. The original idea [24,36] uses
real observables and here we need to fix it for complex
ones, although the proof is essentially the same as [24].
Consider probabilities P, Q in s ∈ S,

∑
s P(s) = ∑

s Q(s) = 1
and a complex-valued random variable θ (s) ∈ C. If P and
Q are not absolute continuous [P(s) > 0 and Q(s) = 0 or
P(s) = 0 and Q(s) > 0 for some s ∈ S], then (16) is triv-
ial because D(P|Q) + D(Q|P) = ∞ and f (∞) = 0. So we
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consider the relevant case, which is P(s) = 0 ⇐⇒ Q(s) =
0. We define S′ = {s ∈ S|P(s) + Q(s) > 0} and the proba-
bility P̃(s) := [P(s) + Q(s)]/2 in S′,

∑
s∈S′ P̃(s) = 1, θX :=

〈θ〉X = ∑
s θ (s)X (s), for X ∈ {P, Q, P̃}. Note that the expres-

sion |θP − θQ|2 can be rewritten as

1

4
|θP − θQ|2 =

∣∣∣∣∣
∑
s∈S′

[θ (s) − c]
[P(s) − Q(s)]

2

∣∣∣∣∣
2

, (A1)

for any complex c. Using Cauchy-Schwarz inequality, we also
obtain, for any complex c,∣∣∣∣∣
∑
s∈S′

[θ (s) − c]
[P(s) − Q(s)]

2

∣∣∣∣∣
2

�〈|θ − c|2〉P̃

〈(
P − Q

P + Q

)2
〉

P̃

,

(A2)

so that by combining (A1) and (A2) for c = θ P̃, it yields

1

4
|θP − θQ|2 � 〈|θ − θ P̃|2〉P̃

〈(
P − Q

P + Q

)2
〉

P̃

. (A3)

Finally, as shown in [24], we use the results〈(
P − Q

P + Q

)2
〉

P̃

� tanh2{(1/2)g[D̃(P, Q)]}, (A4)

where D̃(P, Q) = [(D(P|Q) + D(Q|P)]/2, and the identity

4〈|θ − θ P̃|2〉P̃ = 2(〈|θ |2〉P − |θP|2) + 2(〈|θ |2〉Q − |θQ|2)

+ |θP − θQ|2. (A5)

Combining (A3)–(A5) results in (16).
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