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We characterize the equilibrium properties of a model of y coupled binary perceptrons in the teacher-student
scenario, subject to a suitable cost function, with an explicit ferromagnetic coupling proportional to the Hamming
distance between the students’ weights. In contrast to recent works, we analyze a more general setting in which
thermal noise is present that affects each student’s generalization performance. In the nonzero temperature
regime, we find that the coupling of replicas leads to a bend of the phase diagram towards smaller values of «:
This suggests that the free entropy landscape gets smoother around the solution with perfect generalization (i.e.,
the teacher) at a fixed fraction of examples, allowing standard thermal updating algorithms such as Simulated
Annealing to easily reach the teacher solution and avoid getting trapped in metastable states as happens in the
unreplicated case, even in the computationally easy regime of the inference phase diagram. These results provide
additional analytic and numerical evidence for the recently conjectured Bayes-optimal property of Replicated
Simulated Annealing for a sufficient number of replicas. From a learning perspective, these results also suggest
that multiple students working together (in this case reviewing the same data) are able to learn the same rule both
significantly faster and with fewer examples, a property that could be exploited in the context of cooperative and

federated learning.
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I. INTRODUCTION

Statistical mechanics provides valuable tools for under-
standing machine learning. The goal is to describe the typical
behavior of a neural network with respect to global parameters
such as the training set size [1,2] or the gradient descent noise
[3,4]. This approach helps us to understand the conditions that
favor better learning and when achieving good performance is
impossible. An impressive example of this approach’s effec-
tiveness is the analysis of the solution space as a function of
the proportion of clauses in k-SAT in classical combinatorial
optimization problems [5-7].

At zero temperature, accurately classifying labeled data
with random labels can be seen as a constraint satisfaction
problem (CSP). The examples range from perceptrons [1,8] to
more complex architectures such as the Committee Machine
[9,10], Support Vector Machines [11], multilayered percep-
trons [12,13], or even continuous optimization problems in
condensed matter [14]. Surprisingly, despite the vast number
of potential solutions with poor generalization, perceptrons
and deep neural networks excel in classification tasks. This
suggests that the standard training methods do not explore the
entire space of quasi-optimal CSP solutions, but use a more
efficient approach.

In recent years, researchers have introduced a theoretical
framework based on the concept of local entropy to better
understand the effectiveness of training algorithms and to find
solutions that generalize well. This concept, along with the
coupled-replicas strategy, has been thoroughly investigated
in several studies [15-18], as well as in its connection to
quantum annealing protocols [19]. Moreover, a recent work
[20] has provided convincing evidence that coupling replicas
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can help in identifying favorable local minima and avoiding
entrapment in glassy states, as shown in the graph coloring
problem.

In this study we focus on the paradigmatic binary percep-
tron model in the teacher-student scenario, a well-established
example of a planted inference problem [2,3,21] where a stu-
dent perceptron attempts to learn the classification rule from
the examples given by a teacher perceptron. In this setting,
the ratio between the number of examples and the number of
parameters (o) acts as a signal-to-noise ratio.

Previous studies have shown that this model, unlike its
continuous counterpart, exhibits a first-order phase transition
at zero temperature, corresponding to a sharp decrease in
the generalization error as the number of training examples
increases [2,22,23]. Recent works have focused on describing
this storage performance at zero temperature in the so-called
robust ensemble [16,18,24], where multiple replicas of the
same model interact through a ferromagnetic coupling to favor
solutions with high local entropy. This ensemble is closely
related to the Franz-Parisi potential in glassy physics [25,26].
Similarly, the idea of coupled-replica models has been used to
design efficient cooperative local search strategies in simple
neural networks [27] or in deep learning contexts [28].

In this paper, we propose a more general theoretical ap-
proach in which we derive the entire («, T) phase diagram
of the binary perceptron in the robust ensemble as a function
of the number of coupled replicas y or the coupling y. This
phase diagram can be used to understand how the structure
of the solution space evolves during the training process and
how the y coupling favors broader and flatter landscapes. We
show that the phase diagram allows us to propose more effec-
tive annealing strategies, especially in non-Bayesian optimal
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scenarios. Moreover, we show that the so-called inference-
easy region is plagued by subdominant 1RSB metastable
states that make it practically impossible for annealing strate-
gies to find the teacher in a reasonable time. Using the phase
diagram obtained with the replica trick, we show that coupled
perceptrons can easily learn the teacher solution in this region
by avoiding the 1RSB states.

II. MODEL

The model we consider is defined by a number y of binary
perceptron students and a teacher perceptron. Each student
ue{l,...,y} is parameterized by a weight vector with N
components w, = {u),-,u}fv:1 with w;, € {—1, 1}. Students are
given the same set of M labeled data points u, each repre-
sented by a pair (§, o}'): the first is the training sample &,
an N-dimensional vector with binary entries &' € {—1, 1},
and of is the corresponding label, assigned by a teacher
perceptron with weight vector wy. The input-output relation
for both the teacher and the students is defined as follows:

ol =sign(wl) and ol = W - gﬂ, uef0, ...,y
u u u \/N
(D
for n € {1, ..., M}, where the multdot symbol denotes the

scalar product and u = 0O refers to the teacher. The normaliza-
tion factor in Eq. (1) ensures that the energy of the model is
extensive in the system size N. At fixed planted configuration,
the labels generated by the teacher are noiseless according to
(1) so that the Bayes-optimal temperature is 7 = 0.

Each student adjusts their weights to minimize an ap-
propriate cost function, which accounts for the number of
misclassified examples, i.e., those where the assigned label
differs from that of the teacher. Moreover, the students will
interact through a pairwise ferromagnetic coupling that favors
configurations in which students have a high mutual overlap.
In other words: Imitation between students is encouraged.

The learning is defined by specifying the Hamiltonian of
the system. Following [29], we first define the stability pa-
rameters as A = o/'w!*, so that A# > 0 whenever the input
1 is correctly classified by the student u. Second, we define
an arbitrary potential V(A) = (—A)’O(—A), where v € Z™
and ®(x) denotes the Heaviside step function. The potential
assigns 0 energy to the weight vectors that correctly classify
a given example (i.e., those for which A¥ > 0) and a positive
cost oc (—A)” to misclassified ones (i.e., when o/ # 0(;‘ ).

The Hamiltonian of the model can be written as

»M
Htw o (w0 D) =Y V() - L3 w, w,.

u, i u<v

where B =7 and D = {(&*, aé‘ )}’M'/":1 denotes the train-
ing set of labeled examples. The second term quantifies the
interaction between student pairs, and it is proportional to
the Hamming distance between their weights. Equation (2)
describes a system in which y students try to learn the same
teacher’s rule, while interacting with a ferromagnetic potential
(tuned by y): The latter favors configurations in which stu-
dents have a similar w, i.e., students are actively encouraged
to be “inspired” by their peer perceptrons. Different choices of
the exponent v lead to distinct learning dynamics, each with

unique convergence properties and nonzero temperature phase
diagrams in the thermodynamic limit [2,30,31]. In this article,
we will focus on the case v=1, the so-called “perceptron
rule,” originally introduced by Rosenblatt [32] for continuous
weights. The case v=0 is less interesting as the system re-
mains frozen at all temperatures [30]; the case v >2 will be
the subject of future studies.

We consider a scenario where each student fluctuates with
a heat bath at a given f and a fixed interaction strength
between students, y. We seek to characterize whether and
how the different operating regimes of the binary percep-
tron change when considering multiple interacting replicas.
In other words, our goal is to understand and model how the
collective or cooperative learning of multiple students differs
at a fundamental level from that of a single student.

III. MEAN-FIELD THEORY

To characterize the equilibrium properties of the model
(2), we need to compute the quenched free entropy in the
thermodynamic limit where both N, M — oo keeping the ratio
« = M/N finite. The set of patterns {£" }ZI: 1 and the teacher’s
weight wy represent the quenched disorder to average over.
As each student reviews the same examples, the disorder is
the same for all students. The starting point of the derivation
is the partition function Z=3_ e P In our definition for
the Hamiltonian (2), the thermal noise affects only the first
term, but not the coupling between the students: this choice,
consistent with previous works [20], allows a finite y between
the replicas even in the 7 — 0 limit, where the model is re-
duced to a CSP in the space of students’ weights that satisfies
the constraints imposed by the teacher. The physical quantity
of interest is the quenched free entropy density

1
G(a, B, y,y) = lim y—N<10gZ)D,wo~ 3)

For simplicity, we restrict ourselves to finite values of y,
although in principle the limit y — oo could also be ana-
lyzed, since the coupling between the students is rescaled
so that (3) is an intensive quantity with respect to y. The
computation of (3) can be performed using the usual replica
trick in spin-glass theory [33,34]. The main difficulty here
lies in dealing with the coupled students. Formally, they are
“real” replicas: they share the same quenched disorder as the
replicas of the replica trick, but they also interact through an
explicit pairwise coupling. The mean-field theory requires the
introduction of a set of order parameters, to be evaluated with
the saddle-point method in the thermodynamic limit. These
are the overlap each student has with the teacher vector (in
eachreplicaa € {1, ..., n}) and the pairwise overlap between
two students u, v in replicas a, b, respectively:

1
§: (a), 0
RZ = N wi,u wi
i

The simplest Replica Symmetric (RS) ansatz imposes a
permutation symmetry between the overlaps in the replica
space, i.e., gy, = ¢, Ya#b. The diagonal blocks a=b repre-
sent the average correlation between the students, which in
general may depend on the topology of the interactions in the
replicated space. Assuming a fully connected topology as in

1
and g4 = N Z wgi)wgf’l}. 4)
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FIG. 1. (a,T) equilibrium phase diagram of the single, non-
replicated, binary perceptron (top panel) and the replicated percep-
tron according to Eq. (2) for a fixed coupling y =1 and y multiple
replicas (bottom panel). The color shades refer respectively to the
impossible (red), hard (yellow), and easy (green) inference phases
as extrapolated from 7' = 0. The (a)—(e) regions are discussed in the
text.

(2), it is natural to assume a uniform overlap between students
u#v in the same replica a, so that g’ =4, + p(1-48,,) Va
(the diagonal constraint §,, comes from the binary nature of
the weights). Due to the different nature of the replicas a, b
and the students u, v, the two values of the overlap used in this
ansatz are expected to be different: in particular, p > ¢ due to
the ferromagnetic coupling y in the Hamiltonian (the equality
holds at y =0). As far as the signal term R% is concerned,
the RS ansatz implies RY=R Vu,a. A complete derivation
of the explicit form of G in (3) under this ansatz is given
in Appendix A. In the thermodynamic limit, the equilibrium
behavior of the model is determined by the maxima of this free
entropy, which are found by imposing stationarity w.r.t. the
order parameters. In particular, the teacher configuration (i.e.,
the planted solution) corresponds to a free-entropy maximum
with R~ 1 (the strict equality holding at 7 — 0).

IV. RESULTS

It is instructive to first discuss the phase diagram of the
single perceptron (i.e., y=1) under the RS ansatz, shown in
Fig. 1 (top), and previously derived in [30]. For 0<7 <0.2
five different equilibrium regimes are found as the fraction
of training examples « is increased. Above the dashed line
[region (a)], the free entropy has a unique maximum with
R <1, which corresponds to a solution with imperfect gen-
eralization. Below the dashed line [region (b)], the teacher’s
solution (R~1) appears as a metastable (i.e., subdominant
in the free entropy) fixed point, and it becomes dominant
after crossing the dotted line [region (c)]. Finally, beyond

the spinodal solid line, in region (e), the poor generalization
fixed point disappears and only the teacher solution remains.
Region (d) (below the dash-dotted line) corresponds instead
to the spin-glass phase where the solution with poor gener-
alization (R < 1) has negative RS entropy. This means that
a replica symmetry-breaking ansatz (RSB, with one or more
steps) would be required to correctly capture the model’s ther-
modynamics. The colored areas in Fig. 1 stand for the three
inference phases present in the 7' =0 phase diagram [3]: the
impossible (red) phase for o < oqr & 1.24, where the teacher
solution is surrounded by an exponential number of ground
states with O training error and therefore it is subdominant in
terms of entropy [16]; the hard (yellow) phase oqr <o <o =
1.49 where although the teacher is now dominant (after the
first-order transition at oqt) there still exists a subextensive
(in N) amount of ground states with O training error, with
a disconnected 1RSB-like structure; finally, the easy (green)
phase for o > «. where according to the RS ansatz only
the teacher configuration remains as a stable maximum of
the free entropy. At 7 = 0, the hard-easy boundary «. also
corresponds to the algorithmic threshold for the Approximate
Message Passing (AMP) algorithm (a numerical check on
finite-size systems is discussed in Appendix D).

From the phase diagram in Fig. 1 (top), one should be able
in principle to infer the performance of a Simulated Annealing
(SA) experiment (or, equivalently, a learning process modeled
by a slow decrease in the allowable number of errors) for a
given value of «. In particular, for o < o, SA (or AMP, or
any other known polynomial algorithm) is not be able to find
the teacher solution, while for & > «, SA should in princi-
ple easily find the planted solution because the equilibrium
measure is dominated by configurations close to the teacher
vector. However, as pointed out in the next section, SA gets
trapped into spurious minima of the energy with nonzero
training (and generalization) error even in a finite interval in
the easy phase o > «,. At nonzero temperature, the presence
of spurious minima can be tracked by computing the dynamic
transition temperature gy, [25,26], shown in red in Fig. 1
(top): this is the temperature at which spurious local minima
with a 1-RSB structure appear, which can act as algorithmic
traps for SA. Additional details about this quantity and how
to compute it are given in Appendix B 2 a, obtained using the
procedure discussed in Refs. [25,35]. Following the reason of
[20], SA should always be trapped into spurious minima of
the energy as long as the dynamic transition (red line) is met
before the spinodal of the imperfect generalization solution
(solid black line in Fig. 1) upon decreasing the temperature;
therefore, the intersection between the two should correspond
to the algorithmic threshold for SA, so that e>* ~ 1.56. In
particular, for & > a5, SA should always find the solution by
melting towards the planted configuration when the spinodal
[solid black line in Fig. 1 (top)] is crossed. For the sake of
completeness, we recall that another 1RSB-like analysis was
performed in [2] in the 7 =0 model: the authors revealed the
presence of 1-RSB frozen metastable states with poor gener-
alization, which cease to exist at «X58 2~ 1.628. The presence
of such 1RSB states at T = 0 does not affect the capabil-
ities Bayes-optimal algorithms such as AMP in the regime
o >, as discussed, e.g., in Ref. [36]: indeed, the algorithmic
threshold of AMP is exactly o, & 1.49. Conversely, a thermal
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algorithm like SA is severely affected by these metastable
states, although the interplay between the threshold computed
in [2], and the dynamic transition temperature is not yet clear.
Apart on this difference between the 1RSB analysis which
is not yet clarified, the general conclusion is that that the
higher a > a>* is, the easier it should be to find the teacher,
as the free entropy landscape becomes smoother as more
training examples are available: in particular, on the right
side of the intersection between the two spinodals and the
transition line (i.e., @ 2 2.0), there is no phase transition at
all and the generalization error becomes a smooth decreasing
function of temperature: in this regime, the energy landscape
becomes trivial and the system behaves as an effective param-
agnet with a strong external field pointing towards the planted
configuration.

Figure 1 (bottom) illustrates how the spinodal lines change
when y coupled replicas are considered (in this case for y =1).
The most interesting phenomenon is that the right spinodal
line, which marks the transition to perfect generalization, is
bending towards lower values of «. Therefore, in the range
of o > o, the free entropy landscape becomes smoother just
by increasing the number of coupled replicas. In terms of
performing a temperature annealing, this means that the stu-
dent perceptrons should not encounter the poorly generalizing
glassy states, as they would melt to the teacher solution be-
fore the dynamic transition. In practice, this phase diagram
shows us that many coupled students need to go through
fewer data examples to perfectly deduce the teacher’s rule.
The effect of the coupling y in the phase diagram is discussed
in Appendix A2 (see Fig. 4). A more detailed analysis on the
disappearance of metastable glassy states in the coupled sys-
tem would require a 1-RSB analysis, which is left for future
investigations.

V. NUMERICAL EXPERIMENTS

We now investigate numerically the effects of the shifting
of the critical lines associated with the coupling between
students when training a binary perceptron model (2) via
SA with a fixed cooling rate. Our SA training protocol is
constructed as follows: We initialize student weights at high
temperature. At each training update, we perform a Monte
Carlo sweep (an update of the entire system in random order)
and reduce the temperature by 7, keeping « fixed. At each
o, we repeat the same process 100 times, using different
teacher perceptrons to average out the disorder fluctuations
(additional implementation details are given in Appendix C).
Figure 2(a) shows the results for a very slow cooling rate
n = 107 on different number of replicas y. It is striking that
the single perceptron (black dots) is not able to find the teacher
solution up to o =~ 1.6, i.e., deep into the easy phase: this is
in agreement with the presence of metastable states, as found
in the 1-RSB analysis, which trap the annealing dynamics and
prevent the system from melting towards the teacher solution.
A numerical determination of the precise algorithmic thresh-
old for SA on the single system is, however, out of reach
for computational reasons: first, because the system is dense,
so that a full MC swipe requires O(aN?) operations; second,
increasing N in order to perform a finite-size scaling for the
estimation of &> would require to rescale the annealing rate

0400 0.2 0.4

FIG. 2. Numerical performances of replicated SA (RSA) with
an annealing rate n = 107, With black lines we show the perfor-
mance of the single perceptron and with colors that of the coupled
perceptron with different y. (a) Empirical probability (from 100
training instances) of finding the teacher configuration at the end
of the annealing process, as a function of «, for N=2001, y =1.
The inset (b) shows the corresponding mean generalization error
g, = 7~ 'acos(R). The colored regions are the same as in Fig. 1:
in particular, the hard-easy phase boundary corresponds to the al-
gorithmic threshold for AMP at T = 0. (¢), (d) Examples of typical
annealing trajectories for two values of « (10 training trajectories are
shown for each y). The settings and color coding are the same as
in the top panel. The white outlined lines show the analytical result
obtained from solving the RS self-consistent equations, starting from
a poorly generalizing solution (R< 1) at 7 =0.5, and following the
fixed point as the temperature is linearly decreased.

with a certain power law of N [20], further increasing the
computational cost. The addition of replicas instead leads to
a net shift in the probability of finding the planted solution,
which appears to saturate very quickly with y and to approach
the theoretical threshold «.. Such a performance difference
between SA and RSA (i.e., SA on the replicated system) is
even more remarkable at much faster annealing rates 1 (see
Figs. 5 and 6 in Appendix C), where systems with larger
y find the solution faster. We also observe that even when
RSA does not find the planted configuration (e.g., in the
inference-hard phase), it still finds more optimal solutions [in
terms of generalization error; see Fig. 2(b)] compared to the
nonreplicated system, as previously noted in [16]. The change
in the flattering of the landscape with y is particularly clear in
Fig. 2 (bottom panel): the RSA trajectories show increasingly
smoother behavior (in terms of generalization error) as the
number of students increases, but at the same value of «. Note
also the good agreement between simulations and theory with
white outlined lines); the disagreement between theory and
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simulations for y = 1 and o = 1.56 [Fig. 2(c)] is expected to
be due to the failure of the theory at the RS level.

VI. DISCUSSION

In this paper we have illustrated how the phase diagram of
the binary perceptron in the teacher-student scenario changes
as more and more students try to learn the same teacher rule
while being coupled to each other. From this phase diagram,
we can draw conclusions not only about the number of exam-
ples required for perfect recovery (as a function of the number
of collaborating students), which is much smaller than for a
single perceptron, but also about the performance of a ther-
mal learning procedures such as SA or eventually stochastic
gradient descent (on models with continuous weights).

The coupled perceptron model discussed here provides
a toy model to shed light on the effectiveness of students’
collective learning in acquiring a particular set of predeter-
mined rules, as exploited in recent real-life experiences (see,
e.g., [37]). Within the framework of this rudimentary model,
further generalizations could explore the question of whether
diversifying the examples for each student improves the learn-
ing experience or whether alternative learning paths could
accelerate learning. In particular, our approach could be used
to rationalize the impact of federated or collaborative learn-
ing in machine learning, a decentralized approach to training
models [38]. In both contexts, our phase diagrams facilitate
the determination of the ideal number of collaborating teams,
the best number of examples, or the appropriate learning pace
to ensure optimal learning.

From a theoretical point of view, we believe that this work
contributes to a better understanding of the role of the robust
ensemble, which has been recently proposed to develop novel
algorithmic schemes for solving constraint satisfaction prob-
lems. In particular, our results seem to confirm that RSA is
a generic and robust inference algorithm that has a close-to-
Bayes optimal threshold for a sufficient number of coupled
replicas, as recently argued in another setup [20]. Our results
also suggest that coupled neural networks can in principle
perform better in terms of generalization error for a fixed
amount of data. It would be interesting to verify this effect
on more complex architectures for a supervised learning task
or on other examples of planted models with a hard inference
phase. In this regard, a more analytical study of the bending
of the phase diagram and the resulting change in the nature
of the phase transition in the inference easy phase in the limit
y — oo will be the subject of a follow-up work.

=3 [ TTaugact [ [ astuadtioen| -5 3 vist)

w® w,a,u

X exp Zwowo—fZA“(w 5“)+1ZAZGN‘
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APPENDIX A: DERIVATION OF QUENCHED
FREE ENTROPY

In this Appendix we discuss how to compute the averaged
quenched free energy for the model (2). As standard in spin-
glass models with quenched disorder, the first step requires the
introduction of a number n of replicas, whose limit n — 0 is
taken afterwards. These replicas differ from the ones in the
original Hamiltonian because they are independent and no
explicit coupling is present between them. In the following
derivation, and in order to avoid confusion between the two
sets of replicas, we always use indices a,b € {1,...,n} to
denote “fake” replicas and u, v € {1, ..., y} to index students
(i.e., real replicas in the original Hamiltonian). Replicating all
the degrees of freedom w;, n times (with integer n) we can
write the replicated partition function as

2= exp| -8 Vv(aL,) yZZwW w®@

w@ a,u, b a u<v

(Al)

A schematic representation of the model is given in Fig. 3. We
start by introducing the definition of the stabilities

(a) , gH
awy -8
At = o :

u,a \/N

with aé‘ given by Eq. (1). Enforcing definitions (A2) and (1)
by using delta functions and exploiting their Fourier represen-
tation, the partition function (A1) can be rewritten as

(A2)

LY Z 3w w

a,u, [ a u<v

‘fZAM (W g0 (l) | (A3)

a,j,u a,L,u

where @ (resp. Aﬁ,a) are the conjugate variables of wj (resp. Al ) introduced through a Fourier transform. The dependency
of the teacher label on its input simply follows from the perceptron classification rule, i.e., o (wfy) = sign(wy ), although in
the rest of the calculation we will drop this dependency for notation convenience. It is now easy to perform the average over
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FIG. 3. Schematic representation of the model defined by Eq. (2) for y = 4 student perceptrons interacting over a fully connected graph.
The dashed blue lines represent the coupling y between students.

the disorder given by the pattern components. As for now we do not perform the average over the teacher weight vector, but
it will become trivial in the final expression. As specified in the main text, we assume the pattern components to be i.i.d. with
binary entries, so that §/ € {—1, 1} with equal probability. The average concerns only the second and fourth terms in the second
line of (A3):

i o L g (@, i R
(™ I T 06 W&~ g X Aoy’ (wl Eﬂ)>{€"}ﬁtl :1—[<exp _ —Si"<w§w?+o ZA <a>)}>
i | VN ”

:1_[2cosh ﬁ A“w +06LZA (“)

1
Nexp|—o— Y @gwuooZA wi | |- (A4)

where in the first line we use the fact that pattern components are i.i.d., and in the last line we expanded for N — oo, keeping
only the first order, the other ones being subdominant in the thermodynamic limit.

As usual, the disorder average results into an effective coupling between replicas a, b, and another coupling will also be taken
into account between students in the same replica a on top of the explicit one in the Hamiltonian. We can now introduce a set of
order parameters, namely, the overlap between student « (in replica a) with the teacher and the two-replica overlap between two
student vectors u, v, respectively, given by

Z wiw! (A5)

ZZ — Z w(a) (b). (A6)

It is easy to visualize the overlap matrix (A6) in a block-matrix form. We can write a n x n block matrix of the type

Qn ... CQu
Q= : . i (A7)
in oo an
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where each inner matrix Q,, has dimension y x y. Each of these matrices describes the typical two-point overlap between
students with two generic replica indices a and b. Exploiting trivial symmetries under indices permutations, the number of
independent overlaps is equal to n(3) + (5)y* = (3). Substituting (A4) and enforcing definitions (A5) and (A6) through delta
functions, we can rewrite the averaged partition function as

| [Tar.ar; [ 11 dawdan | [Taohder [ T1 T aatas,

w'® a,b,u,veP .a,u jL,a,u

X exp —ﬂZV( o +1Za)0a)0+1ZA“ A“ +iNZRZR“+1N Z qurghy — Z(&)(’f)z

a,u,ju a,p,u a,u a,b,u,veP Iz
ST TEDNLRES N WL B ) IR
;L,a,u n.,a u<v " a<b uv
LY Z Z w@ . w IZRM Z w @) Z Qe Z w@uw® |, (A8)
a u<v a,u a,b,u,veP i

where the symbol P is a short-hand notation to indicate all the possible independent overlaps. In particular, »_ , , ,cp =
YouDuen T D ouch 2wy We can notice now how the integrals over u-dependent quantities can be factorized, as well as the
sum over weight components i. We can therefore rewrite Eq. (A8) in a saddle point form. Using the property that the teacher
vector components are i.i.d, we can write

(Z") (g wy = / ]_[ddeIéz / [T dawddamexp [NyG({R:, qip. RS 35 })], (A9)
ahuve'P
i 1
G({Ra- qa- Ri- Gy }) = 5 ZR”R”+ - D dndim+ GE({RZ,qZZ}) + ;Gz({RZ, dap })- (A10)

a,u abquP

where G plays the role of a free entropy with opposite sign. The equilibrium behavior is thus determined by the maximum of
Eq. (A10) w.r.t. the order parameters. The quantities and Gg and G, represent the usual entropic and energetic terms, respectively,
given by

G = wolog Z exp —Zwa —1wOZR”w —i Z c}Zwa , (A1)

a u<v a,bu,veP

Gp = 1ogfdw0d@0dAgdAg exp | —p Zv ) + iwodvo +1Z ACAS — —@f — = Z(Au )

A . 1 .
—non ) AR — Z AiAidas — 5D > AuBldy | (A12)
a,u

a,u#v a#b u,v

where in the last line we exploited the fact that the teacher vector components are i.i.d. by assumption. Notice that the expectation
over one representative component wy becomes dummy by means of a gauge transformation w? — w®w? for all the weight
components, so we will drop it from now on. Before going on, note that the integral over &g in Eq. (A12) can be carried out
explicitly, leading to

Gr = log / Dogd AldAlexp { =B 3 V(AL +1 Y AY(AY — wooR") — % > [ - R (A

a,u a,u a,u

1 Ao
3 3 Auhu(als — RR) — 5 Y037 AdAL(gly — RIRY) | (A13)
a,u#v a;éb u,v

where Dx = e/2dx /~/ 27 denotes the standard Gaussian probability measure.
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1. Replica symmetric ansatz on both spaces

The simplest possible ansatz corresponds to assume a permutation symmetry over both replica spaces. For what concerns
the “fake”-replicated space, this is the simplest choice in any spin-glass model [33]. On the other hand, a symmetry ansatz
between the pairwise correlations between students (i.e., the overlaps ¢4) comes naturally from the fully connected topology
of interactions between the students’ weight vectors as assumed in Eq. (2). Choosing different topologies would imply to
parametrize the matrices Q,, in such a way to reflect the behavior of nonconnected correlations in that specific graph, which
is itself a nontrivial problem unless in very specific architectures (e.g., trees or planar graphs). However, restricting to the fully
connected topology as in the main text, within this extended RS assumption we have only three order parameters (and their
conjugates) left, namely,

R =R VYu,a, q,=p Yu#v,a, q,,=q Yu,v,a#Db, (Al4a)
R =iR Yu,a, ¢ =ip VYu#v,a, §"y=i§ Yu,v,a#b. (A14b)

By inserting the above ansatz into Egs. (A10), (A13), and (A11) and taking the n — O limit, after some calculations we can
rewrite the RS quenched free entropy as

G =—RR-— (y; 1)pﬁ+ g(yq -1+ 2—a/Dt ¢>(at)10g/DrEy + l/DzlogZ(y), (A15)
y y
where
da ex [ BV (A) — (A + gt +/p 1)2} (A16)
= P ( —q
Zy) = Z exp [( +p— 6]) Z waw, + (w'R + /4z) Z wu], (A17)
wyexl u<v

with ®(x) = j; Dz = %erfc(x / V/2) and for notational brevity we defined the following three quantities:
R —
4= —, b= [T = P71 (A18)
q— R? l-p I—=p

Concerning the energetic term in (A15), explicit formulas for ters (R, ¢, p, R, 4, p) as
E (A16) depend on the specific choice for the potential. For

a potential of the type V(A) = (—A)"O(—A), with v = 1, it P = /zaﬂ [ 4 . /Dte,azf
reads T q—R

DtTO(BJS1—p—bt — Zy—1
V(A)= —AO(=A) —> | DT /D - O (A200)
TE
E=®bt +cr) e 7 AR
j =2ap? | Dt (at
x O(B/1—p—bt —c1). (A19) q=2ap f (at)
Interestingly, the entropic term can be seen as an averaged [ [ D' TOBST—p—bt — cf)]
: , (A20b)
free entropy (apart on a sign) of a reduced system of y degrees [/ DrE y]2
of freedom (in this case, binary spins due to the binary nature
of the starting weights): specifically, at fixed z Eq. (A17) 5_ 12 Z/Dt D(at) /D 2 922
defines the partition function of a Curie-Weiss model of y p=2p [ DrEy TTE

spins with an effective ferromagnetic coupling and a global
external field given by the sum of two terms: a signal one x (By/1—p—bt —c7), (A20c)
proportional to R, and a global Gaussian field z to be further

for the conjugate order parameters—where we defined for
averaged over.

. 2a-p) — X
convenience 7 = ¢z AVI=plr+ct)_gpd

Saddle point equations R = f Dz Q2(wy), (A21a)

The equilibrium behavior of the system at fixed control
parameters is given by the maximum of G w.r.t. all the order g = /DZ Q(w))Q(w,) = /DZ Qz(w]), (A21b)
parameters, whose values are determined by imposing sta-
tionarity of the free entropy. After some calculations, we can
write the self-consistent equations for the six-order parame- p= / Dz 2(wiwy), (A2lc)
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FIG. 4. Phase diagram of y = 2 coupled binary perceptrons in
the (T — «) plane at different values of y (values given in the
legend). Comparison with the single perceptron in the RS approach
(black lines).

with ©(0O) denoting the expectation of a generic observable O
for the partition function (A17), namely,

ZOexp[( =)

wyexl

X Zwuwv (R+fz)2w]

u<v

QO
©)r= Z(v)(R b, 4

(A22)

In the limit y — O the different students are uncoupled and
the free entropy becomes identical to that of the nonreplicated
model: in other terms, the only possible solution of the saddle
point equations at y = 0is p =g and p = §.

2. Effect of y

In Fig. 4 we show the effect of changing y at a fixed
number of coupled students y. The spinodal lines continu-
ously approach the result for the single system y = 1 when
y — 0, confirming the validity of the theory. This holds in-
dependently on the number y of students. As long as y is
increased, the phase diagram seems also to shift at higher
temperatures: this would imply that the larger y, the higher
the starting temperature for RSA should be, in such a way to
start the annealing in a regime where the interaction between
replicas has a lower effect w.r.t. the cost function of each
student.

APPENDIX B: MF THEORY OF SINGLE PERCEPTRON

For the sake of completeness, in this Appendix we report
the expressions of the free entropy—and the corresponding
self-consistent equations for the order parameters—for the
single perceptron (i.e., at y = 1), obtained both through
a replica-symmetric (RS) and one-step replica-symmetry-
breaking (1-RSB) ansatzs. We omit the derivation of all the
following expressions as they have been extensively computed
in several works (see e.g., [2,23,29] and references therein). In
both cases, the two control parameters are simply the fraction
o of examples provided to the student and the temperature 7.

The following expressions are reported considering the same
learning rule as in the main text, i.e., V(A) = —AO(—-A),
where A is the stability parameter.

1. RS free entropy

In this case, there are two order parameters R, g (and
their conjugates R, §) where R is the typical overlap between
student and teacher’s weights, and ¢ is the (unique by as-
sumption) two-replica overlap. The free entropy as a function
of these order parameters (R, ¢, R, g) and the corresponding
self-consistent equations read

|
G =—-RR+ E(q - 1)6}—}—201/732‘ d(at)log E

+ / Dzlog 2cosh(R + \/;}Z), (B1D)

20
E=db)+e T VIDBS/T—g—b), (B2

and

= /Dz tanh(R + \/;}z),

5 20513/ [ ®(vz) 8 _Rzz_ﬁz(lqil_l
R=2L [Defi Va Fel

Nezd R R TN e s
(B3a)

q= /Dz tanh?(R 4 \/42)

d(bt)
D(BJT—q — bt)

-2
21,
4 =2ap’ /chp(m)[l + VA=t q] ,

(B3b)

where

R — R2
a=———, b= L, v = 4 . (B4)
VTR I~

2. 1-RSB free entropy

In this case there are three order parameters R, qi, qo
(and their conjugates R, §i, §o) with gy > ¢ (resp. §o = 4):
the two values of the overlap arise from the usual 1-
RSB structure of the overlap matrix Q = {g.»} [33]. There
is an additional order parameter 6 that tunes the relative
weight of the two overlaps, so that the overlap distribu-
tion follows P((gap)) = 08((gan) — qo)+(1 — 6)8({gap) —41)
The free entropy as a function of these order parameters
(R, q1, 90, R, 41, Go) and the corresponding self-consistent
equations read

I o, . n
G =—RR+ 5610(610 -1)- E(qoqo —q1q1)
2
+ %/Dt CD(at)log/DtEa

1
+ 5/1)1 log/DzZecoshex, (BS)
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FIG. 5. Numerical performances of SA/RSA: the top row shows the empirical probability that the teacher configuration is found at the
end of the SA, the bottom row shows the mean generalization error; both quantities are plotted vs the fraction of samples «, for a system
with N = 2001 weights, for different values of the annealing rate n (shown at the top of each column). Comparison between the single
nonreplicated perceptron (black lines) and a system of y coupled perceptrons with different values of y, with fixed coupling y = 1. Fory > 2,
the top row shows the probability that all the y students find the teacher configuration at the end of the SA, and the bottom row displays the
mean generalization error averaged also on the y students. However, we numerically observe that, except at extremely fast annealing rates (e.g.,
the first panel with n = 1072), the students display a practically identical behavior in temperature. The rightmost panels are the same shown in

Fig. 2.

E = Ot + c1) + ¢ AR e
x ®(B
X =R+G4 —qiz+Var. (B7)

1 —gqo— bt —c1), (B6)

and

R /‘ . [ Dz tanhy cosh? x
= T
[ Dzcosh’x

.2
R=/Zap /szpt
T ql—R

a2 [DtTO(BYT—qo— bt —ct)E!
e [ DrE? ’

g = /DT(sztanhx cosh? x )?
: (f Dzcosh’x )2

g = 201,32/7)1‘ ®(at)
[/ DB T (BT —qo — bt — c0)]
[/ pear]’

/ D [ Dz tanh*y cosh’ x
= T
? [ Dzcosh’x

(B8a)

X , (B8b)

D(at)

Go = 20p* | Dt ——=" | DrT?E 202
J Dre’
TE

x (By/1—qo — bt —c1), (B8c)

ﬁz(lfqo)_ — .
where T = e 7 = —BVT=a0bi+ct) gng

R —
0=, b= [T o= [TTO (g
Vo —R? I—qo 1 —qo

Note that the structure of both the free entropy and the self-
consistent equations (in particular the block related to the
energetic term) are almost equivalent to the ones shown in
Appendix A for the coupled system with y students [see in
particular Eqgs. (A15) and (A20)], provided the mapping p <>
q0, ¢ < q1 (and the same for their conjugates) and y <> 9,
although the interpretation of the two parameters y € Z and
0 € [0, 1] in the two models is completely different and an
additional ferromagnetic interaction y is present in the first
case. Given this mapping, also the left equations in (B8) are
equivalent to (A21a), (A21b), and (A2lc) upon a Hubbard-
Stratonovich transform.

Dynamic transition line

The dynamic 1-RSB transition temperature Tyy, (o) can be
found as the largest temperature at which the 1-RSB free
entropy admits a local maximum at 6 — 1 with gg > ¢q;. We
recall the procedure discussed in [35] that we used also in
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FIG. 6. Same results as in Fig. 5, but this time each panel refers to one value of y: each panel shows the probability of finding the teacher
solution at the end of the SA for different values of n: we can observe how the cooling rate seems to converge to the same curves in the case
y = 5 and 8. The leftmost panel (y = 1) shows also the result obtained with an annealing rate = 10~° over 50 seeds (dotted line). The vertical
gray line in the leftmost panel shows the critical value of a at which 1-RSB glassy states disappear, «XE & 1.6. The settings are identical to

those of Fig. 5.

this case. We start from the 1-RSB free entropy (B5), and we
expand it around € = 1 to the first order:

G'®SB(R, Rq1, 90, 41, Go, 0)
=GR, q1, R, §1)

+ (0 — D3G™B s + O[(0 — 1)°]. (B10)

In particular, the 1-RSB free entropy computed at 8 =1
gives the RS expression by construction with gy = ¢;. On the
other hand, the first-order contribution §G = 3,G'®SB|,_, is
given by

aglRSB
a0

—Ewo/Dr log/choshX

LR /D [ Dzcoshy log coshy
T
v J Dzcoshy

L .
lo=1 = —5(40610 —q141)

—205/Dtd>(at)log/DzE

[ DzElog E

W. (B11)

+2a/Dtd>(at)

The procedure is to find the global maximum of the Oth-order
term (i.e., the RS part); then, at fixed (R, g;) we compute the
equilibrium value of the first-order correction (B11) through
another saddle point w.r.t. go. The latter order parameter
and its conjugate gy are fixed by the following saddle point
equations:

_ (b [ Dztanhy sinhy B12)
o [ Dzcoshy
) [ Dz(3,,E)log &
=4 Dt®d(at)| —————
do Oé/ (a )|: [DzE
_ (/DzElog B\ ([ Dz3,,E B13)
[ DzE J/ DzE ’

where x, E are given by Egs. (B7) and (B6), respectively.

c

APPENDIX C: SIMULATED ANNEALING
IMPLEMENTATION DETAILS AND
ADDITIONAL NUMERICAL RESULTS

In this Appendix we discuss the implementation param-
eters of the simulated annealing (SA). The model (2) is
initialized at a temperature Tp = 0.4, and each student’s
weight vector w, is drawn at random from {—1, 1}V, inde-
pendently on the others. At each temperature we perform
one Monte Carlo sampling sweep, where a move is proposed
for every degree of freedom w; ,, and it is accepted/rejected
according to the Metropolis choice. Then the temperature is
linearly decreased so that 7; = T;_; — n with n a suitable
annealing rate, and the sampling is repeated starting from the
last configuration at the previous (higher) temperature. The
annealing process continues up to a final temperature Ty =
1072 In all the simulations shown performed in this work, we
used n € 10t-273=4=5=6 (for computational time reasons,
the latter value has been used only for y = 1; see Fig. 6).
The energy shifts can be efficiently computed using the same
procedure discussed in [17] (Supporting Information).

I 1 et et

W

vV
=08

=)

IS

. 0.6 N =219 — 100 seeds
N N =21 — 100 seeds
T0.41 — N =212 - 100 seeds
2 — N =21 100 seeds

| 0.21 — N =2 — 100 seeds
anl — N =2 — 75 seeds
001 N =2 — 50 seeds

1.40 1.45 1.50 1.55 1.60 1.65 1.70

FIG. 7. AMP’s empirical probability of finding the teacher con-
figuration vs the fraction of examples «. Each curve corresponds
to a different system size N (shown in the caption) and shows the
amount of instances for which AMP converges to the teacher, i.e., to
a set of marginals m such that 1 — )", m;w?/N < & where w" is the
teacher configuration and ¢ is the convergence threshold on the AMP
marginal probabilities used for these experiments (here &€ = 1077).
The simulations are done at the Bayes optimal temperature 7 = 0.
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APPENDIX D: APPROXIMATE MESSAGE PASSING

In this section we discuss some numerical experiments on
the Approximate Message Passing (AMP) algorithm that we
used to check the spinodal point at 7 = 0, i.e., the hard-easy
boundary as found by the RS theory. We do not discuss the
details of the method itself, as has been extensively analyzed
in several previous works: in particular, the AMP implemen-
tation we used here is taken from the general derivation for
generalized linear estimation problems (GLMs, the binary
perceptron in the teacher-student scenario being an example
) presented in the review article [3] (Sec. VI C). Similarly to
the SA experiments, we run the AMP algorithm by fixing the

system size N and varying the amount of examples « = M/N.
For each instance, AMP is run until convergence is reached
on the marginal probabilities for each weight (with a finite
tolerance & = 10~7). We then compute the empirical proba-
bility (averaging over all the instances) that the final overlap
between the teacher configuration and the AMP’s marginal
is 1. Results are shown in Fig. 7 for different system sizes N.
We can clearly see how the curves get sharper and sharper
by increasing N, and the transition to a perfect recovery ap-
proaches the boundary between the hard and the easy phases
as computed from the RS phase diagram at 7 = 0, so that
dAMP = .
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