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It is widely known that there is no sign problem in path integral Monte Carlo (PIMC) simulations of fermions
in one dimension. As far as the author is aware, there is no direct proof of this in the literature. This work
shows that the sign of the N-fermion antisymmetric free propagator is given by the product of all possible pairs
of particle separations, or relative displacements. For a nonvanishing closed-loop product of such propagators,
as required by PIMC, all relative displacements from adjacent propagators are paired into perfect squares, and
therefore the loop product must be positive, but only in one dimension. By comparison, permutation sampling,
which does not evaluate the determinant of the antisymmetric propagator exactly, remains plagued by a low-level
sign problem, even in one dimension.
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I. INTRODUCTION

It is common knowledge since Takahashi and Imada’s
calculation [1] that there is no sign problem in path inte-
gral Monte Carlo (PIMC) simulations of fermions in one
dimension. This conclusion is strongly supported by theoret-
ical arguments by Girardeau [2], Negele and Orland [3], and
Ceperley [4], but none of them are actual proofs specifically
for PIMC. Only recently has the author given a proof [5] of
this, based on Girardeau’s [6] topological insight.

That topological idea is very simple in the case of two
fermions in one dimension with coordinates x1 and x2. Since
the propagator must change sign when the two positions are
exchanged, the positive and negative regions of the propagator
are completely separated by the nodal line x1 = x2 where the
propagator vanishes. A closed-loop product of propagators in
the plane of (x1, x2), as required in PIMC, must therefore cross
this infinite nodal line, and changes sign, either zero, or even
number of times. Hence, the sign of a nonvanishing closed
loop product of propagators must be positive, with no sign
problem.

At higher dimensions, say two dimension, the space of the
propagator is four dimensional (x1, y1, x2, y2), but the coinci-
dental nodal plane [4] given by x1 = x2 and y1 = y2 is only
two dimensional. Just as a line, which is two dimensions less,
cannot divide the three-dimensional space, a two-dimensional
nodal plane, also cannot divide the four-dimensional space
into two halves. Hence, the previous argument fails and there
is a sign problem in more than one dimension.

Since this topological argument for the existence of the
sign problem in more than one dimension is less intuitive, I
alternately determined the sign of the two-fermion propagator
directly in terms of their relative displacements [5]. Since only
in one dimension can relative displacements from adjacent
propagators be paired into pure squares, the sign problem
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is absent only in one dimension. For completeness, this im-
portant two fermion case, for understanding the dimensional
dependence of the sign problem, is restated in Sec. III below.
However, at the time of Ref. [5]’s publication, there was no
known way of determining the sign of an arbitrary N-fermion
propagator in one dimension, and hence no general proof by
direct sign determination.

This work, by use of Mikhailov’s expansion [7] in terms of
Vandermonde determinants [8], can now compute the sign of
the N-fermion propagator directly and present a much simpler
proof. This work, which only computes the sign of the fermion
propagator, is purely a technical achievement, filling a missing
gap in the literature. However, as discussed in the conclusion,
this proof can now explain why permutation sampling [9,10],
which does not evaluate the fermion propagator’s determinant
completely, remains plagued by a low-level sign problem [10],
even in one dimension.

This work will be concise in presenting only technical
details; Ref. [5] can be consulted for more background dis-
cussions. After a brief summary of key PIMC equations and
defining the sign problem in Sec. II, Sec. III answers the
frequently asked question of why there is no sign problem
only in one dimension. The sign of two, three, and N-fermion
propagators is then determined in successive Secs. IV–VI. A
concluding summary is given in Sec. VII, with a comparative
discussion on permutation sampling.

II. FERMION PATH INTEGRAL MONTE CARLO

Let x = (r1, r2 · · · rN ) denote the coordinates of N
fermions in d dimension. At the heart of PIMC is the Monte
Carlo sampling of the closed-end, k-bead path integral

Gk (x, x; τ ) = 〈x|(e−ε(T̂ +V̂ ) )k|x〉

=
∫ ∞

−∞
dx1 · · · dxk−1 G1(x, x1; ε)G1(x1, x2; ε) · · ·

×G1(xk−1, x; ε) (2.1)
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at imaginary time τ = kε, where T̂ and V̂ are the kinetic
and potential operators of the many-fermion system, and
G1(x′, x; ε) is a short-time propagator, of which the simplest
is the primitive second-order approximation

G1(x′, x; ε) = 〈x′|e−ε(T̂ +V̂ )|x〉
≈ e−(ε/2)V (x′ )G0(x′, x; ε)e−(ε/2)V (x), (2.2)

where G0(x′, x; ε) is the antisymmetric free-fermion
propagator

G0(x′, x; ε) = 1

N!
det

(
1

(2πε)d/2
exp

[
− 1

2ε
(r′

i − r j )
2

])
.

(2.3)

Since G0(x′, x; ε) is not positive definite, the integrand in
the loop integral (2.1) can be negative for some paths. This is
the fermion sign problem in PIMC. The goal of this work is
to show that, despite the fact that G0(x′, x; ε) can be of either
sign, the integrand of (2.1) over any closed path

x → x1 → x2 → · · · xk−1 → x, (2.4)

if it is non-vanishing, is always positive in one dimension.
The sign problem is due entirely to the fact that the free-

fermion propagator (2.3) can be negative. The interacting
potential V (x) is exponentiated in (2.2) and the exponential
function is always positive regardless whether the potential
is attractive or repulsive. In one dimension, where there is
no sign problem, the potential has no effect on sign of the
integrand in (2.1). In more than one dimension, where there is
a sign problem, it is possible that the exponentiated potential
in (2.2) can further aggravate the sign problem by giving more
weight to the negative region of the integrand.

III. WHY THERE IS NO SIGN PROBLEM ONLY
IN ONE DIMENSION

In d dimension, the two-fermion free propagator from (2.3)
is given by

G0(r′
1, r′

2, r1, r2; ε)

= 1

2

1

(2πε)d
det

(
e−(r′

1−r1 )2/(2ε) e−(r′
1−r2 )2/(2ε)

e−(r′
2−r1 )2/(2ε) e−(r′

2−r2 )2/(2ε)

)
(3.1)

= 1

2

1

(2πε)d
e− 1

2ε [(r′
1−r1 )2+(r′

2−r2 )2](1 − e− 1
ε

(r′
2−r′

1 )·(r2−r1 ) ),

(3.2)

whose sign is determined by the sign of

1 − exp

(
− 1

ε
r′

21 · r21

)
, (3.3)

where r′
21 = r′

2 − r′
1 and r21 = r2 − r1, which in turn is given

by the sign of r′
21 · r21. Therefore, one has

sgn(G0(r′
1, r′

2, r1, r2; ε)) = sgn(r′
21 · r21). (3.4)

Note that the sign of the propagator is solely determined by
particle positions and is independent of ε.

Since the loop product of one and two propagators is al-
ways positive, the sign problem only appears for three or more

propagators:

sgn(G0(r21, r′
21)G0(r′

21, r′′
21)G0(r′′

21, r21))

= sgn((r21 · r′
21)(r′

21 · r′′
21)(r′′

21 · r21)),

= |r21|2|r′
21|2|r′′

21|2sgn(cos θ cos θ ′ cos θ ′′). (3.5)

Since the cosine functions can take both signs, the sign
problems exist whenever the dot product produces a cosine
function, i.e., at dimensions greater than one. At one dimen-
sion, there’s no angles, no cosine functions and the sign is just

sgn(G0(x21, x′
21)G0(x′

21, x′′
21)G0(x′′

21, x21))

= sgn((x21x′
21)(x′

21x′′
21)(x′′

21x21)),

= sgn((x21)2(x′
21)2(x′′

21)2) � 0, (3.6)

where all displacements from adjacent propagators have
paired up as perfect squares, and hence there is no sign prob-
lem. This is also true for a loop of any number of propagators.
To prove the general case, one only needs to determine the
sign of the N-fermion propagator in one dimension.

IV. THE SIGN OF THE TWO-FERMION PROPAGATOR

The method of computing the sign of the propagator by
evaluating the determinant in (2.3) cannot be easily general-
ized to more than two fermions. Here, we first cast the one
dimensional propagator into a form suggested in Ref. [5].

For two (spinless) fermions, the one dimensional form of
(3.1) is just

G0(x′
1, x′

2, x1, x2; ε)

= 1

2

1

2πε
det

(
e−(x′

1−x1 )2/(2ε) e−(x′
1−x2 )2/(2ε)

e−(x′
2−x1 )2/(2ε) e−(x′

2−x2 )2/(2ε)

)
. (4.1)

Since this work is not interested in the actual value of the
propagator, but only its sign, all normalization factors and
purely positive functions can be ignored.

By factoring out, from (4.1), e−x′2
1 /(2ε), e−x′2

2 /(2ε) from row
one and two, respectively, and e−x2

1/(2ε), e−x2
2/(2ε) from column

one and two, one has

G0(x′
1, x′

2, x1, x2; ε) ∝ e−(x′2
1 +x′2

2 +x2
1+x2

2 )/(2ε)

× det

(
ex′

1x1/ε ex′
1x2/ε

ex′
2x1/ε ex′

2x2/ε

)
. (4.2)

The sign of G0 is therefore just the sign of the above deter-
minant. As noted in Sec. III, since the sign is fixed by the
positions only, independent of ε, it can be determined in the
limit of ε → ∞, yielding

sgn(G0(x′
1, x′

2, x1, x2; ε))

= sgn(e(x′
1x1+x′

2x2 )/ε − e(x′
1x2+x′

2x1 )/ε )

= sgn((x′
1x1 + x′

2x2 − x′
1x2 − x′

2x1)/ε)

= sgn(x′
21x21). (4.3)

It then follows that for x = (x1, x2), the sign of a loop product
of n propagator is given by

sgn(G0(x, x′; ε)G0(x′, x′′; ε)G0(x′′, x′′′; ε) · · ·
× G0(x{n−1}, x; ε))
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= sgn
(
x21x′

21x′
21x′′

21x′′
21 · · · x{n−1}

21 x21
)

(4.4)

= sgn
(
(x21)2(x′

21)2(x′′
21)2 · · · (x{n−1}

21

)2) � 0. (4.5)

Thus, for a product of any number of two-fermion propa-
gators, if it is nonvanishing, then its sign must be positive
because for a closed loop, relative displacements from adja-
cent propagators will always pair up to a perfect square.

The determinant in (4.2) can now be evaluated by an alter-
native method generalizable to N fermions. Since the ε → ∞
limit is the same as the x, x′ → 0 limit, one can just do the
latter and suppress the appearance of ε. For notational clarity,
we will also replace x′ by s in the discussion below and
evaluate the determinant as follows:

det

(
ex1s1 ex1s2

ex2s1 ex2s2

)
= ex1s1 ex2s2 − ex2s1 ex1s2

=
∞∑

n1=0

∞∑
n2=0

1

n1!n2!

(
xn1

1 sn1
1 xn2

2 sn2
2 − xn1

2 sn1
1 xn2

1 sn2
2

)

=
∞∑

n1=0

∞∑
n2=0

1

n1!n2!
sn1

1 sn2
2

(
xn1

1 xn2
2 − xn1

2 xn2
1

)

=
∞∑

n1=0

∞∑
n2=0

1

n1!n2!
sn1

1 sn2
2 det

(
xn1

1 xn2
1

xn1
2 xn2

2

)
. (4.6)

Since ni serve as a column index, the determinant above vanishes for n1 = n2. Therefore, the sum is over n1 < n2 and n2 < n1

only. The latter case can be viewed as the former case with n1 interchanged with n2. This changes the column of the determinant,
corresponding to the original determinant with a negative sign, hence,

det

(
ex1s1 ex1s2

ex2s1 ex2s2

)
=

∑
n1<n2

1

n1!n2!

[
sn1

1 sn2
2 det

(
xn1

1 xn2
1

xn1
2 xn2

2

)
− sn2

1 sn1
2 det

(
xn1

1 xn2
1

xn1
2 xn2

2

)]

=
∑

n1<n2

1

n1!n2!

(
sn1

1 sn2
2 − sn2

1 sn1
2

)
det

(
xn1

1 xn2
1

xn1
2 xn2

2

)

=
∑

n1<n2

1

n1!n2!
det

(
sn1

1 sn2
1

sn1
2 sn2

2

)
det

(
xn1

1 xn2
1

xn1
2 xn2

2

)
. (4.7)

The above is the simplest 2 × 2 version of of Mikhailov’s method [7] of expanding a determinant of mixed variable into a product
of two determinants of separated variables.

In the limit of si, xi → 0, the single leading order term in the above sum is given by n1 = 0 and n2 = 1:

det

(
ex1s1 ex1s2

ex2s1 ex2s2

)
→ det

(
1 s1

1 s2

)
det

(
1 x1

1 x2

)
= (s2 − s1)(x2 − x1) = s21x21, (4.8)

reproducing the sign of the two-fermion propagator (4.3).

V. THE SIGN OF THE THREE-FERMION PROPAGATOR

For three fermions,

det

⎛
⎝ex1s1 ex1s2 ex1s3

ex2s1 ex2s2 ex2s3

ex3s1 ex3s2 ex3s3

⎞
⎠ = det

(
ex1s1 ex1s2

ex2s1 ex2s2

)
ex3s3 − det

(
ex1s1 ex1s2

ex3s1 ex3s2

)
ex2s3 + det

(
ex2s1 ex2s2

ex3s1 ex3s2

)
ex1s3

= det

(
ex1s1 ex1s2

ex2s1 ex2s2

)
ex3s3 − (x2 ↔ x3) + (x2 ↔ x3 then x1 ↔ x2), (5.1)

corresponding to

=
∞∑

n1=0

∞∑
n2=0

∞∑
n3=0

1

n1!n2!n3!
sn1

1 sn2
2 sn3

3

[ (
xn1

1 xn2
2 − xn1

2 xn2
1

)
xn3

3 − (
xn1

1 xn2
3 − xn1

3 xn2
1

)
xn3

2 + (
xn1

2 xn2
3 − xn1

3 xn2
2

)
xn3

1

]

=
∞∑

n1=0

∞∑
n2=0

∞∑
n3=0

1

n1!n2!n3!
sn1

1 sn2
2 sn3

3 det

⎛
⎜⎝

xn1
1 xn2

1 xn3
1

xn1
2 xn2

2 xn3
2

xn1
3 xn2

3 xn3
3

⎞
⎟⎠. (5.2)
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This is the three fermion generalization of (4.6). As in the two-fermion case, the sign changes in permuting the unrestricted sum∑
n1,n2,n3

into the ordered sum
∑

n1<n2<n3
result in a determinant for si:

det

⎛
⎝ex1s1 ex1s2 ex1s3

ex2s1 ex2s2 ex2s3

ex3s1 ex3s2 ex3s3

⎞
⎠ =

∞∑
n1<n2<n3

1

n1!n2!n3!
det

⎛
⎜⎝

sn1
1 sn2

1 sn3
1

sn1
2 sn2

2 sn3
2

sn1
3 sn2

3 sn3
3

⎞
⎟⎠ det

⎛
⎜⎝

xn1
1 xn2

1 xn3
1

xn1
2 xn2

2 xn3
2

xn1
3 xn2

3 xn3
3

⎞
⎟⎠. (5.3)

This is the 3 × 3 version of Mikhailov’s method [7] of expanding a mixed variable determinant.
The leading order term in the above sum is n1 = 0, n2 = 1, and n3 = 2,

→ 1

2
det

⎛
⎜⎝

1 s1 s2
1

1 s2 s2
2

1 s3 s2
3

⎞
⎟⎠ det

⎛
⎜⎝

1 x1 x2
1

1 x2 x2
2

1 x3 x2
3

⎞
⎟⎠ = 1

2
s21s31s32x21x31x32, (5.4)

which correctly changes sign whenever any pair of particles
is exchanged. All relative displacements will again pair up as
perfect squares for any closed loop product of propagators.

VI. THE SIGN OF THE N-FERMION PROPAGATOR

The two determinants in (4.8) and (5.4) are simple cases of
the general N × N Vandermonde determinant [8]:

det

⎛
⎜⎜⎜⎜⎜⎜⎝

1 x1 x2
1 · · · xN−1

1

1 x2 x2
2 · · · xN−1

2

1 x2 x2
2 · · · xN−1

2

1 · · · · · · · · · · · ·
1 xN x2

n · · · xN−1
N

⎞
⎟⎟⎟⎟⎟⎟⎠

=
∏

1�i< j�N

(x j − xi ).

(6.1)

The generalization of (5.4) to N fermions then follows from
(6.1) immediately as

G0(s1, s2, · · · sN , x1, x2, · · · xN , ε) ∝
(∏

i< j

s ji

)(∏
i< j

x ji

)
,

(6.2)

which changes sign whenever any pair of si or xi is exchanged.
This then again entails that a nonvanishing closed-loop prod-
uct of propagators (6.2) will have paired displacements as
squares and its sign will always be positive.

VII. CONCLUSIONS

This work has proved that fermion PIMC using antisym-
metric free propagators has no sign problem in one dimension.
This proof is based solely on determining the sign of the
N-fermion free propagator, without referencing anything ex-
ternal, such as equivalent bosons [2], a preferred subspace
[3], restricted nodal regions [4], or even topology [5]. The
proof gives insight into why there is no sign problem in
one dimension by showing that in a closed loop of propa-
gators, all relative displacements are paired up as squares.

However, the proof depends crucially on knowing the sign
of the determinant exactly, as dictated by (6.2). This implies
that if fermion PIMC is implemented by sampling permuta-
tions [9,10] only, then the determinant’s sign is not exactly
determined, with displacements not precisely paired up as
squares. Permutation sampling (PS) refers to the fact that the
antisymmetric free-fermion propagator (2.3) can be expanded
as a sum over permutations,

G0(x′, x; ε) = 1

N!
det

(
1

(2πε)d/2
exp

[
− 1

2ε
(r′

i − r j )
2

])
,

= 1

N!

∑
P

(−1)P 1

(2πε)Nd/2
exp

[
− 1

2ε
(x′−xP )2

]
,

(7.1)

but only a single random permutation is sampled for each
propagator. This clearly then does not determine the sign of
each propagator exactly but only on the average. The result
is a lingering low-level sign problem, yielding poorer results
than that of evaluating the determinant of the antisymmetric
propagator (AP), as reported by Lyubartsev [10]:

“In the case of the PS scheme, it was only possible to
evaluate the density of the first excited state of the
one-dimensional harmonic oscillator with a few percent
precision. However, in the case of the AP scheme applied
to the same system, very accurate estimations of the
densities of up to at least the eighth excited state become
possible. The key to success lies in the fact that the AP
scheme solves the sign problem completely, providing
a strictly positive weight function for fermions in one
dimension.”

The fundamental reason why the AP scheme should pro-
vide “a strictly positive weight function for fermions in one
dimension” can now be understood, according to this work,
as due to the fact that all relative displacements from adjacent
propagators can be paired up as pure squares only in one
dimension.
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