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Chebyshev polynomial approach to Loschmidt echo: Application to quench dynamics
in two-dimensional quasicrystals
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The understanding of quantum phase transitions in disordered or quasicrystal media is a central issue in con-
densed matter physics. In this paper we investigate localization properties of the two-dimensional Aubry-André
model. We find that the system exhibits self-duality for the transformation between position and momentum
spaces at a critical quasiperiodic potential, leading to an energy-independent Anderson transition. Most impor-
tantly, we present the implementation of an efficient and accurate algorithm based on the Chebyshev polynomial
expansion of the Loschmidt echo, which characterizes the nonequilibrium dynamics of quantum quenched
quasiperiodic systems. We analytically prove that the system under quench dynamics displays dynamical
quantum phase transitions and further provide numerical verification by computing the polynomial expansion of
the Loschmidt echo. Our results may provide insight into the realization of electronic transport in experiments.
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I. INTRODUCTION

The Aubry-André model [1] has been extensively stud-
ied in the context of electronic transport and topology in
condensed matter physics. Most essentially, the periodicity
of the diagonal potential is incommensurate with the lattice
periodicity, which turns out to be the most peculiar prop-
erty of the model [2–7]. Moreover, the energy spectrum of
the model is symmetric (E ↔ −E ) with respect to zero
energy in the noninteracting nearest-neighbor restrictions,
but loses the symmetry properties in the presence of non-
Hermiticity [8–10], next nearest-neighbor hopping [11], and
generalized Aubry-André quasiperiodic site energies [12,13].
Furthermore, the model exhibits a self-duality extended to
the localization transition at a critical point [14]. The Aubry-
André model has been experimentally realized in ultracold
atoms [15,16], photonic crystals [17], and polariton conden-
sates [18]. Recently, a quantum critical phase transition has
been realized experimentally in the generalized Aubry-André
model with superconducting circuits [19].

A mobility edge [4,5,20–22] demarcates the localized
and delocalized regimes, opening up a new avenue for a
better understanding of electronic properties in disordered
systems. It is well established that the standard one-
dimensional (1D) Aubry-André model [1] is self-dual under
the Fourier transformation at the critical quasiperiodic poten-
tial, leading to a quantum phase transition without mobility
edges. However, the generalized [5,21] and non-Hermitian
[8,9,23–26] 1D Aubry-André model possesses a self-duality
relation with mobility edges separating extended and localized
states for a fixed incommensurate potential strength. More-
over, a self-duality with an exact mobility edge has been
encountered in the two-dimensional (2D) non-Hermitian qua-
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sicrystal model [27] with parity-time PT symmetry. Remark-
ably, the system with a mobility edge exhibits large thermo-
electric effects, which are highly applicable in thermoelectric
devices [28].

Quantum phase transition in a nonequilibrium setting un-
der a quenching process is one of the most active areas
of research in condensed matter physics [29–45]. Quantum
quenches refer to an abrupt change of the system parame-
ters that govern time evolution and can lead to dynamical
quantum phase transitions (DQPTs), characterized by the non-
analytic nature of the Loschmidt echo [32]. A Loschmidt
echo is a measure of the return probability of the ground
state during the time evolution of the initial state [32–34],
particularly important in the characterization of the nonequi-
librium phase transition [37]. The quench process comes in
a variety of systems, including atomic Mott insulators [46],
Aubry-André models [27,32,41,42], the Lipkin-Meshkov-
Glick model [34], Aubry-André models with a p-wave
superconducting pairing [35], standard Anderson models [33],
2D p-wave topological superconductors [40], 2D transverse-
field Ising models [47], and correlated Anderson models [42].
Recently, DQPTs have been experimentally performed under
the quench dynamics of out-of-time-ordered correlators on a
nuclear magnetic resonance simulator [48].

Quantum simulations of lattice models are one of the sig-
nificant challenges in understanding localization properties
in large-scale condensed matter systems [49–52]. The main
task in this simulation is the eigendecomposition of a Hamil-
tonian matrix, which requires O(N3) numerical complexity
for an N-dimensional dense Hamiltonian matrix [49]. The
understanding of the electronic transport of quantum mate-
rials has been significantly enriched by the implementation of
the kernel polynomial method (KPM) [50–59]. The KPM is
a polynomial expansion-based algorithm and can efficiently
compute various physical quantities without diagonalizing
the Hamiltonian matrix. It has been successfully applied in
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calculating the Green’s functions of a superconductor [60], the
single-particle spectral function [56], the Thouless expression
of localization length [61], the conductance of twisted bilayer
graphene [62], topological spin excitations in non-Hermitian
spin chains [58], and dynamical correlations at zero tem-
perature [53,54]. The numerical calculations of Loschmidt
echo are computationally expensive for methods like exact
diagonalization, which are limited to small system sizes. Re-
markably, the KPM technique has been tremendously applied
for the simulations of Loschmidt echo in large-scale 1D sys-
tems [63].

The Aubry-André model has been the subject of extensive
research in the context of quantum transport. Most of the
up-to-date research is devoted to 1D systems [29–43], and
the results for 2D and three-dimensional systems are rare,
although from an experimental point of view, these dimen-
sions are the most interesting [47]. In this paper, we uncover
the electronic properties of a noninteracting 2D Aubry-André
model in the context of tight binding with an incommensu-
rate on-site potential. The system exhibits self-duality and
exhibits an insulator-metal transition at the critical strength
of the quasiperiodic potential without a mobility edge. Fur-
thermore, we investigate the nonequilibrium dynamics of the
model via a swift change in the strength of the quasiperiodic
potential. Taking advantage of the highly efficient polynomial
expansion-based method, which enables the accurate calcu-
lations of the Loschmidt echo to be possible, we explore
large-scale numerical simulations of the quench dynamics of
the model. It turns out that the quench dynamics under certain
conditions reveal the nonanalyticities of the Loschmidt echo at
critical times, reflecting the DQPTs in the system. Moreover,
we numerically explore that the finite system under quench
dynamics displays DQPTs when an initial reference extended
(localized) state is quenched into a localized (extended) time-
evolved state.

The structure of our paper is as follows: Sec. II discusses a
tight-binding 2D Aubry-André model with nearest-neighbor
interactions. Furthermore, we analyze the self-duality rela-
tions without mobility edges in the model analytically, which
is verified by the numerical calculations in the framework of
IPR and NPR. Section III briefly reviews the quench dynamics
formalism based on the Loschmidt echo and focuses on the
numerical calculations based on the polynomial expansion
method. Section IV demonstrates the numerical complexity
of the polynomial expansions of the Loschmidt echo. The last
section summarizes our conclusions.

II. THE AUBRY-ANDRÉ MODEL

This section is devoted to a comprehensive study of the 2D
Aubry-André model and discusses the dynamics properties
of the system in an equilibrium setting. The model consists
of noninteracting spinless fermions on a square lattice with
nearest-neighbor interactions and periodic boundary condi-
tions (PBC). The Hamiltonian of the system has the general
form [64–66]

Ĥ = −t
∑
x,y

(
c†

x,ycx+1,y + c†
x,ycx,y+1 + H.c.

) −
∑
x,y

εx,ynx,y,

(1)

where nx,y = c†
x,ycx,y denotes the number operator and

c†
x,y(cx,y) is a free fermionic creation (annihilation) operator

at site (x, y), where x and y are the 2D spatial coordinates
of the lattice. The parameter εx,y denotes the incommensurate
energy of an electron at the (x, y)-th site of the lattice of
size N = L × L and t is the hopping integral (transfer energy)
between the nearest-neighboring sites. It is important to note
that all energy scales are measured in units of t , where t
is set to unity. For this model, the lattice site energy is the
quasiperiodic potential given by [64]

εx,y = λ[cos(2πγ x) + cos(2πγ y)], (2)

where λ denotes the modulation amplitude of the incom-
mensurate diagonal energy, with γ = (

√
5 − 1)/2 being an

irrational number. The quasiperiodic potential will restrict
electrons to a finite region of space under certain conditions.

The Hamiltonian of the system can also be expressed in the
form of the eigenvalues equation:

t
(
�x+1,y + �x−1,y + �x,y+1 + �x,y−1

) = (E − εx,y)�x,y,

(3)
where �x,y is the wave function at site (x, y) of the 2D Aubry-
André model. To examine the self-duality in the system, we
introduce a duality Fourier transformation:

�p,q = 1√
N

∑
xy

�x,y exp [i(2πγ xp + 2πγ yq)]. (4)

Substituting �p,q in (3) gives

λ

2

(
�p+1,q + �p−1,q + �p,q+1 + �p,q−1

) = (E − εp,q )�p,q,

(5)
where εp,q = 2t[cos(2πγ p) + cos(2πγ q)]. The expres-
sion (4) transforms the real-space Hamiltonian into
momentum space. Most importantly, the 2D quasicrystal
is self-dual under the position-momentum transformation
by interchanging λ = 2t , leading to an energy-independent
metal-insulator transition in the system.

To explicitly verify the phenomenon of the metal-insulator
transition, we numerically calculate the inverse participation
ratio (IPR) and normalized participation ratio (NPR), which
are the most reliable theoretical tools to characterize the
Anderson transition. The IPR for a single-particle system is
defined as

IPR =
∑

x,y |ψx,y|4(∑
x,y |ψx,y|2

)2 , (6)

where ψx,y is the normalized eigenstate of the system’s
Hamiltonian, i.e.,

∑
x,y |ψx,y|2 = 1. In general, the IPR for

an extended state is proportional to 1/
√

N , which approaches
zero in the thermodynamic limit. On the other hand, the IPR
tends toward unity in a strongly localized state of the system.
On the other hand, the NPR is defined as

NPR = 1

N
∑

x,y |ψx,y|4 . (7)

The NPR is a complementary quantity of the IPR, typically
approaches unity for an extended state, and goes to zero for
a localized state of the system in the thermodynamic limit.
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FIG. 1. IPR (symbols) and NPR (dashed curves) of the 2D
Aubry-André model with various linear system sizes in log-linear
scale.

In Fig. 1 we present the IPR and NPR averaged over all
eigenstates of the 2D quasicrystal with different linear system
sizes. The IPR (NPR) shows strong system-size dependence
in the weak (strong) potential regime, indicating the extended
nature of the system. At stronger potential strength, the IPR is
nearly size-independent and approaches unity, reflecting the
localized nature of the system. On the other hand, the NPR
turns out size-independent and tends to unity in the vanishing
potential strength in the thermodynamic limit. However, a
small deviation of the NPR is observed for L = 50 in the
weak potential limit due to a small system size effect. One can
see clearly that for λ � 2 the IPR approaches zero, whereas
the NPR is finite, resulting in delocalized eigenstates of the
system. On the contrary, the IPR is finite and the NPR ap-
proaches zero for λ � 2, reflecting the insulating behavior
of the system. At a critical point, the IPR starts to increase
while the NPR drops to zero. Figure 2 demonstrates the log-
arithm of the IPR of different eigenstates as a function of the
corresponding eigenvalues E and incommensurate potential
strength under PBC. It is pointed out that the metal-insulator
transition happens at λ = 2t with no mobility edge emerging
in the spectrum.

The fidelity susceptibility is a diagnostic tool of the quan-
tum phase transition extensively studied in various physical
systems [67–77]. In general, the system Hamiltonian (1) can
be expressed as

Ĥ = Ĥ0 + λĤ1, (8)

where Ĥ0 is the kinetic, Ĥ1 is the on-site potential part of
the Hamiltonian, and λ is a potential controlling parameter,
triggering a quantum phase transition at critical strength. The
ground-state fidelity, F (λ, δλ), is the overlap between the
ground states |�0(λ)〉 and |�0(λ + δλ)〉:

F (λ, δλ) = |〈�0(λ)|�0(λ + δλ)〉|. (9)

It is important to mention that the states |�0(λ)〉 and |�0(λ +
δλ)〉 are the initial ground states of the system’s Hamiltonian
at potential λ and λ + δλ, respectively. The fidelity of the
system depends on the strength of λ and δλ, where λ � δλ.

FIG. 2. Phase diagrams of the 2D Aubry-André model in the
energy-potential plane. The phase diagram is obtained by computing
the logarithm of the IPR of the system with linear size L = 100 and
averaged over all eigenstates.

The fidelity turns out to be unity when two ground states
are in the same phase: �0(λ) = �0(λ + δλ). On the other
hand, fidelity exhibits a sharp dip at the critical point, where
the two ground states are qualitatively in different phases. In
general, the F (λ, δλ) vanishes exponentially with the system
size at the quantum critical point; therefore, the concept of
fidelity susceptibility [67,68], XF (λ), naturally appears to be
the dominant contribution to the fidelity in the limit δλ → 0,
defined as

XF (λ) = −2 lim
δλ→0

ln F (λ, δλ)

(δλ)2
. (10)

Figure 3 shows the rescaled fidelity susceptibility of the model
as a function of incommensurate potential strength λ with dif-
ferent linear system sizes in the log-linear scale. The XF (λ)δλ2

exhibits a peak near the critical point and becomes more
profound with increasing sizes. In fact, the peak value of the
XF (λ)δλ2 increases exponentially with the system’s size, as
shown by the magenta dashed line in the inset. The divergence
behavior of the fidelity susceptibility at λ = 2 signals the
metal-insulator transition of the system.

III. NONEQUILIBRIUM QUENCH DYNAMICS

A quantum quench process is the simplest paradigmatic
protocol for studying nonequilibrium dynamics, where a swift
change of the system parameters can independently control
the time evolution of the system [29,31,78]. The fundamental
object that describes the dynamical properties of systems is
the Loschmidt echo [29,32], which is a measure of the overlap
between an initial ground and its time-evolved state. Let α

be the prequench system parameter that controls the strength
of the on-site potential of the system Hamiltonian H (α). Ap-
plying the eigenproblem, one can get the normalized ground
state |�(α)〉 of the system at time τ = 0. However, after the
quenching process, the Hamiltonian H (β ) governs the time
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FIG. 3. The rescaled fidelity susceptibility of the 2D Aubry-
André model as a function of λ at δλ = 10−3 for different linear
system sizes in log-linear scale. The X (λ)δλ2 has a peak near the
critical potential strength that increases exponentially with increasing
size. Inset: Maximum of XF (λ)δλ2 as a function linear system size.
The XF (λ)δλ2 are very well fitted by a curve y ≈ e0.5x (magenta
dashed line).

evolution of the system at certain times τ > 0, reaching the
unitary evolving state [27,32,42],

|�(α, β, τ )〉 = e−iτH (β )|�(α)〉, (11)

where β controls the strength of the postquench diagonal
potential. In particular, the quenching process changes the
ground state |�(α)〉 under the postquench Hamiltonian H (β )
and starts to experience the time evolution for τ > 0. A
Loschmidt amplitude, G(α, β, τ ), can be applied to charac-
terize the overlap between the initial ground and time-evolved
state,

G(α, β, τ ) = 〈�(α)|�(α, β, τ )〉. (12)

A Loschmidt echo, L(α, β, τ ), is the squared modulus of
the Loschmidt amplitude, analogous to the dynamical version
of the ground-state fidelity (return probability), and has the
form [27,32]

L(α, β, τ ) ≡ |G(α, β, τ )|2 = |〈�(α)|�(α, β, τ )〉|2. (13)

It is well known that the Loschmidt echo typically decays
from unity, oscillating with constant frequency and damping
amplitude to zero after some time interval [32]. However, this
strongly depends on the prequench and postquench system
Hamiltonians [42]. More importantly, the echo periodically
approaches zero at critical times under certain conditions,
characterizing the DQPTs.

It is worthwhile to mention that the Loschmidt echo plays
a fundamental role in characterizing the quench dynamics
of the system. The singular behavior of the logarithm of
the Loschmidt echo, termed the dynamical quantum phase
transition, has been the subject of several experimental and
theoretical investigations. In order to get a better understand-
ing, we analytically calculate the Loschmidt echo of the
quench processes between states with prequench on-site po-
tential λi = 0(∞) and postquench modulation potential λ f =

∞(0) in the thermodynamic limit. In the first case, the ini-
tial eigenstates of the system Hamiltonian (λi = 0) are plane
waves:

|k〉 = 1√
N

L∑
x=1

L∑
y=1

exp
(
ikxx + ikyy

)
ĉ†

x ĉ†
y |0〉, (14)

where kx and ky are the wave vectors lying in the first
Brillouin zone, i.e., kx ∈ (−π/a , π/a] and ky ∈
(−π/a , π/a] with lattice spacing a and N = L × L
(square lattice). The corresponding eigenvalue of the
system Hamiltonian is E = 2t[cos(kxa) + cos(kya)]. After
performing sudden quench of λi = 0 to λ f = ∞, the
Loschmidt amplitude can be written as

G(λ f , τ ) = 〈k|e−iτ H̃ (λ f )|k〉, (15)

=
L∑

x=1

L∑
y=1

〈k|e−iτ Ĥ (λ f )|�xy(λ f )〉〈�xy(λ f )|k〉,

=
L∑

x=1

L∑
y=1

e−iτExy |〈�xy(λ f )|k〉|2, (16)

where Exy and �xy(λ f ) denote the eigenspectrum and eigen-
state of the postquench system Hamiltonian, respectively. In
the limit, λ f → ∞, the eigenstates of the system Hamiltonian
are localized on a single site, |�xy〉,

|�xy(εx,y = ∞)〉 =
L∑

i=1

L∑
j=1

δixδ jyĉ†
i ĉ†

j |0〉. (17)

Plugging (17) into (16), we obtain

G(λ f , τ ) = 1

N

L∑
x=1

L∑
y=1

e−iτλ f [cos(2πγ x)+cos(2πγ y)]. (18)

The phases θ = 2πγ x and φ = 2πγ y for an irrational num-
ber α are randomly distributed between −π and π in the
thermodynamic limit. Therefore, we may approximate the ex-
pression (18) by replacing summation over integration, which
reads

G(λ f , τ ) = 1

(2π )2

∫ π

−π

∫ π

−π

dθ dφe−iτλ f [cos(θ )+cos(φ)],

= J2
0 (λ f τ ). (19)

The Loschmidt echo turns out to be

L(λ f , τ ) = ∣∣J2
0 (λ f τ )

∣∣2
, (20)

where J0(xs) is the zero-order Bessel function of the first kind
and has a series of zeros at critical times τ ∗

s = xs/λ f , with s
the set of positive roots. In the small s limit, the roots of J0(xs)
can be computed approximately by Stokes’ s approximation:

xs = μ

4

(
1 + 2

μ2
− 62

3μ4
+ 7558

15μ6

)
, μ = π (4s − 1). (21)

The most peculiar property of the quantum quenched sys-
tem is the occurrence of a series of zeros of the Loschmidt
echo at critical times, known as the DQPTs. An absolute
error of the Loschmidt echo |�L(τ )| = |L(τ ) − L̃(τ )| for the
2D AA model is illustrated in Fig. 4. Here, L(τ ) and L̃(τ )
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FIG. 4. Absolute error of the Loschmidt echo, |�L(τ )|, for an
initially localized state quenched into a time-dependent state with
λ f = 0.3 in log-linear scale. Numerical calculations are carried out
for a system of linear size L = 100 using exact diagonalization and
KPM with different degree of expansion coefficients.

represent Loschmidt echos computed by using an exact diago-
nalization method (EDM) and KPM, respectively. Numerical
calculations are carried out for an initially localized state of
the system of size L = 100 with λ f = 0.3. Remarkably, for
sufficiently large Chebyshev moments, the KPM procedure
computes accurate numerical results in the quench dynamics.

Now we turn to the case where an initially ground state
of the prequench Hamiltonian with an infinite diagonal po-
tential (λi → ∞) is quenched into an extended time-evolved
state of the postquench Hamiltonian with zero diagonal po-
tential. In this limit, λi → ∞, the initial eigenstates of the
system Hamiltonian are localized at a single site, |�xy〉. The
Loschmidt amplitude in this case can be written as

G(τ ) = 〈�xy|e−iτ H̃ (λ f )|�xy〉, (22)

=
∑

kx

∑
ky

〈�xy|e−iτ Ĥ (λ f )|k〉〈k|�xy〉,

=
∑

kx

∑
ky

e−iτE |〈�xy|k〉|2,

= 1

N

∑
kx

∑
ky

e−2iτ [cos(kxa)+cos(kya)]. (23)

In the large-N limit, we can replace the summation by the
integration, which reads

G(λ f , τ ) = a2

(2π )2

∫ π
a

− π
a

∫ π
a

− π
a

dkx dkye−2iτ (cos kxa+cos kya),

= J2
0 (2τ ). (24)

The Loschmidt echo has the form

L(τ ) = ∣∣J2
0 (2τ )

∣∣2
. (25)

From this expression, it is clear that the Loschmidt echo is
nonanalytic at critical times τ ∗ = xs/2, reflecting the DQPTs
in the system. Moreover, this transition turns out to be λ f

independent in the thermodynamic limit. An EDM is used

to numerically calculate the Loschmidt echo of the system,
which turns out to be computationally costly and limited
to small system sizes. In order to overcome this problem,
we employ the KPM [53], which allows us to compute the
Loschmidt echo efficiently for infinitely large systems without
exactly diagonalizing the system Hamiltonian. The KPM is
a polynomial expansion-based method that computes various
physical quantities with controlled accuracy at a moderate
computational cost. It makes use of Chebyshev polynomial
expansion, which has good convergence properties [79], to-
gether with optimal damping kernels. However, it turns out
that accuracy and numerical convergence can be controlled
only by using large enough polynomial moments without
optimal damping kernels, reflecting the continuously differ-
entiable nature of the Loschmidt echo.

Note that for the KPM implementations, the Hamiltonian
spectrum and all the associated energy scales must be normal-
ized in the standard range of orthogonality of the Chebyshev
polynomials ([−1 1]). Thus, dividing the Hamiltonian and
all energy scales by a positive energy scale (4 + 2λ) will
impose the normalization condition. Next, we define the set
of Chebyshev polynomials:

Tm(z) = cos[m arccos(z)], m ∈ N, (26)

where Tm(z) denotes the mth degree Chebyshev polynomials
of the first kind. Moreover, the Tm(z)’s obey the following
recurrence relation:

Tm(z) = 2zTm−1(z) − Tm−2(z), m > 1, (27)

starting with T0(z) = 1 and T1(z) = z, and also satisfying the
orthogonality relation,

〈Tn(z)|Tm(z)〉 = 1

π

∫ 1

−1
Tn(z)Tm(z)(1 − z2)−1/2 dz,

= 1

2
δn,m(δn,0 + 1).

For the KPM estimates of Loschmidt amplitude, we make use
of the identity [80],

e−izτ =
∞∑

m=0

2i−m

1 + δm,0
Jm(τ )Tm(z), |z| � 1, (28)

for the e−iHτ part of Loschmidt amplitude. Here Jm(z) is the
Bessel function of mth order. The expansion of e−iHτ in terms
of the Chebyshev polynomial becomes

e−iH̃�τ =
∞∑

m=0

2i−m

1 + δm,0
Jm(�τ )Tm(H̃ ), (29)

where H̃ = H/� is the rescaled Hamiltonian of the system
and � is a positive energy scale that normalizes the Hamilto-
nian to place its spectrum within [−1 , 1]. The KPM estimates
of Loschmidt amplitude, G̃(α, β, τ ), have the following form:

G̃(α, β, τ ) =
∞∑

m=0

2i−m

1 + δm,0
Jm(�τ )〈�(α)|Tm[H̃ (β )]|�(α)〉.

(30)

Note that the KPM expansion in practical numerical calcu-
lations can be carried out only for a finite Chebyshev series.
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Hence, the truncated form of the Loschmidt amplitude is

G̃(α, β, τ ) =
M−1∑
m=0

2i−m

1 + δm,0
Jm(�τ )〈Tm[H̃ (β )]〉, (31)

where

〈Tm(H̃ (β ))〉 = 〈�(α)|Tm[H̃ (β )]|�(α)〉 (32)

is the expectation value of the Chebyshev polynomials in the
Hamiltonian (31) shows the truncated KPM approximations
of the Loschmidt amplitude. It is worthwhile to mention that
the truncated expansions for nondifferentiable functions lead
to unwanted oscillations known as Gibbs oscillations which
can be eliminated by using an optimized damping factor [53].
However, a Loschmidt echo is a differentiable function whose
accuracy and numerical convergence can be controlled only
by using large enough Chebyshev moments.

The main focus is to employ the KPM algorithm for the
numerical calculations of the Loschmidt echo when an initial
eigenstate [|�(α)〉] is either extended or localized. In the
absence of on-site potential, the eigenstates of the system
Hamiltonian are plane waves, |�(α)〉 = |k〉. On the other
hand, in the presence of an infinite diagonal potential (εx,y →
∞), the initial eigenstates of the system Hamiltonian are lo-
calized on a single site i j.

The expectation value of Chebyshev polynomials in the
Hamiltonian can be handled straightforwardly by using
the recursion relations for the Tm(z) [Eq. (27)]. Starting from
the initial state |�(α)〉, we can iteratively construct the expec-
tation value of Tm[H̃ (β )] as

〈T0[H̃ (β )]〉 = 〈�(α)|T0[H̃ (β )]|�(α)〉 = 1, (33)

〈T1[H̃ (β )]〉 = 〈�(α)|H̃ (β )|�(α)〉 = 〈H̃ (β )〉, (34)

and for m > 1,

〈Tm[H̃ (β )]〉 = 2〈H̃ (β )〉〈Tm−1[H̃ (β )]〉 − 〈Tm−2[H̃ (β )]〉.
(35)

It is noted that the numerical complexity of the KPM al-
gorithm for the calculations of Loschmidt echo scales as
O(MN ) for a sparse matrix of the system Hamiltonian, where
N is the system size and M is the number of Chebyshev
moments. The time-consuming part of the algorithm is the
iterative computation of the expectation value 〈Tm[H̃ (β )]〉,
costing O(N ) numerical complexity. The O(M ) comes from
the summing over the Chebyshev series. However, the com-
putational cost becomes O(MN2) for a dense Hamiltonian
matrix due to multiplications for all elements of H̃ (β ) and the
initial state |�(α)〉. As stated above, the numerical conver-
gence and resolutions of the KPM estimates of the Loschmidt
echo are controlled by the number of Chebyshev series (M ).
This means that the absolute difference between the ex-
act L(α, β, τ ) and KPM estimates of the Loschmidt echo
L̃(α, β, τ ) goes to zero,

|L(α, β, τ ) − L̃(α, β, τ )|→0, (36)

for sufficiently large Chebyshev series in the N → ∞ limit.
The KPM estimates converge uniformly for a sufficiently
large Chebyshev series.

FIG. 5. The quench dynamics of the 2D Aubry-André model,
when an initial ground state (plane wave) is quenched into a
time-evolved strongly localized regime (λ f → ∞). The evolution
of the Loschmidt echo for various (a) linear system sizes and
(b) postquench modulation potential amplitudes. All computations
are carried out for a system with periodic boundary conditions
(PBCs) with M = 1024 Chebyshev moments and a wave vector
kx = ky = π/2. The black bold curve corresponds to the analytical
result [Eq. (20)] obtained in the thermodynamic limit. A logarithmic
scale has been chosen to highlight the zeros of the Loschmidt echo.

Our goal is to efficiently compute the KPM estimates of
the Loschmidt echo under the quantum quenched 2D Aubry-
André model, where the quench dynamics are induced by a
sudden change in the diagonal potential strength. First, we
consider a limiting case when an initial ground state (plane
wave) is quenched into a strongly localized time-evolved
state (λ f → ∞). In order to validate the KPM algorithm,
we compute the numerical approximation of the Loschmidt
echo in the large postquench modulation potential strength,
as illustrated in Fig. 5(a). Here the KPM simulations are car-
ried out for various linear system sizes with PBC, M = 1024
Chebyshev moments, λi = 0, λ f = 1000, and wave vector
kx = ky = π/2. Elegantly, we find an excellent agreement
between the KPM estimates of the Loschmidt echo and the
analytical result (black bold curve) in the strong potential
limit, confirming the validity of the KPM procedure. Most im-
portantly, the Loschmidt echo turns out to be zero periodically
at critical times, reflecting the DQPTs in the system. We also
study the role of postquench modulation potential on the time
evolutions of the Loschmidt echo, as shown in Fig. 5(b). It is
noted that the zeros of the Loschmidt echo deviate from the
analytical result in the weak postquench modulation potential
limit (λ f = 10), but start to converge with increasing poten-
tial. This shows that the system exhibits DQPTs as long as the
time-evolved state is in the localized regime (λ f > 2).

We now discuss the nonequilibrium dynamics under the
prequench localized and postquench extended states of the
model. We observe excellent agreement of the numerical data
with the analytical result obtained in the thermodynamic limit
(black bold curve), confirming the KPM method as depicted
in Fig. 6(a). The numerical calculations are performed for
various system sizes, M = 1024 Chebyshev moments, λi =
1000, and λ f = 0. Analogous to the previous case, the system
exhibits DQPTs, characterized by the nonanalytic behavior of
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FIG. 6. The quench dynamics of the 2D Aubry-André model,
when an initially localized state (λi → ∞) is quenched into a time-
evolved extended regime (λ f = 0). The evolution of the Loschmidt
echo for various (a) linear system sizes and (b) postquench modu-
lation potential amplitudes. All computations are carried out for a
system with PBCs and M = 1024 Chebyshev moments. The black
bold curve corresponds to the analytical result [Eq. (25)] obtained
in the thermodynamic limit. A logarithmic scale has been chosen to
highlight the zeros of the Loschmidt echo.

the Loschmidt echo at critical times. However, for a fixed
system size, the singularities are progressively broadened
(smoothed out) with increasing postquench potential strength,
as shown in Fig. 6(b). This means that the system will display
no DQPTs in the limit of strong potential strength (λ f > 2).
In fact, in this limit, both the initial and its time-evolved states
are in the localized regime. As a consequence, the overlap
between the two localized states yields a finite value.

To get a better understanding of the quench dynamics
around the critical point λ f = 2, we numerically calculate the
KPM estimates of the logarithm of the Loschmidt echo in
the time–potential plane for an initial localized state that is
quenched into a time-evolved state of the Hamiltonian with
incommensurate potential. At τ = 0, one can obviously get
the maximum Loschmidt echo [ln(LE ) = 0], resulting from
the overlap of the two plane waves as presented in Fig. 7.
However, after a certain time interval, the Loschmidt echo
for λ f < 2 turns out to decay to zero periodically, predicting
DQPTs in the quenched system. On the other hand, the sys-
tem displays no DQPTs for an extended time-evolved state
of the system Hamiltonian (λ f > 2). The logarithm of the
Loschmidt echo in this case remains finite and negative at
any instant of time. Remarkably, the negative value of the
logarithm of the Loschmidt echo predicts the nonexistence of
the DQPTs.

IV. NUMERICAL COMPLEXITY

The numerical complexity of the polynomial expansion
method for tailoring the nonequilibrium dynamics is O(MN )
for a sparse and O(MN2) for a dense matrix of the system
Hamiltonian, where O(N ) is the system size of the square
lattice and M is the number of Chebyshev series. Here we
perform a set of KPM simulations for the system with differ-
ent system sizes in order to estimate the computational time

FIG. 7. Time evolution of the logarithm of the Loschmidt echo as
a function of postquench potential λ f and evolving time τ . Numerical
computations are performed for an initially localized state (λi → ∞)
quenched into a time-evolved state for a system of linear size L =
1024 with M = 1024 Chebyshev moments.

(sec) and memory usage (GB). The numerical calculations
are carried out for quench dynamics, where an initial plane
wave is quenched into a time-evolved state of the system
Hamiltonian with λ f = 10 (localized time-evolved state). It is
important to mention that the numerical data converge to ana-
lytical data for sufficiently large system sizes with M = 1024
Chebyshev moments. Thus, by keeping the moments fixed,
we estimate the computational time and memory usage for

FIG. 8. Scaling of the (a), (c) execution time (sec) and (b), (d)
memory usage (GB) for calculating the Loschmidt echo of the model
based on the EDM (upper panels) and the polynomial-expansion
technique (lower panels) in log-log scale. Numerical computations
are performed for an initial plane wave (k = π/2) quenched to a
time-evolved state with λ f = 10 for the 2D model with M = 1024
Chebyshev moments. Numerical data are very well fitted to axb (ma-
genta dashed lines), (a) b = 2.9, and (c) b = 1.085 for the execution
time, and (b) b = 1.88 and (d) b = 0.999 for the memory usage.
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the simulation. For the sparse matrix Hamiltonian, the size
scaling of the execution time and memory usage are illustrated
in Fig. 8. Importantly, the execution time and memory usage
are very well fitted to axb for large system sizes, where a
and b are real constants. It is clearly shown that the execution
time and memory usage of the EDM are approximately scaled
as N2.9 and N1.8 for a sparse Hamiltonian matrix obtained
by fitting the data as shown by the magenta dashed line in
Figs. 8(a) and 8(b), respectively. Most importantly, the KPM
algorithm proves to be an efficient numerical method with a
computational cost as well as memory usage scale linearly
with the system size, as illustrated in Figs. 8(c) and 8(d),
respectively. This shows that the higher numerical complexity
of the EDM technique can be successfully circumvented by
using the polynomial-expansion scheme.

V. CONCLUSION

We have investigated the localization properties of the
noninteracting tight-binding 2D Aubry-André model. We
have pointed out that the IPR starts to increase, whereas
the NPR drops to zero at λ = 2, signaling a metal-
insulator transition in the system. Moreover, we have shown
that the model exhibits self-duality at critical diagonal

incommensurate potential, leading to an energy-independent
Anderson transition. Moreover, we pointed out that the fi-
delity susceptibility has divergent behavior around λ = 2,
verifying the metal-insulator transition. Furthermore, we in-
vestigated the nonequilibrium dynamics of the noninteracting
tight-binding 2D Aubry-André model by quenching the dis-
order strength. We have performed numerical simulations of
quench dynamics in the model using an efficient numerical
technique based on the polynomial expansion method. We
observed that the quench dynamics trigger the DQPTs, char-
acterized by the nonanalyticities in the Loschmidt echos at
critical times. The numerical results agree with the analytical
calculations obtained for the infinite on-site potential in the
thermodynamic limit. In addition, the computational cost of
the Loschmidt echo simulations is greatly reduced by apply-
ing the polynomial expansion approach, which scales linearly
with the system size.
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280, 108477 (2022).

[51] Z. Fan, J. H. Garcia, A. W. Cummings, J. E. Barrios-Vargas, M.
Panhans, A. Harju, F. Ortmann, and S. Roche, Phys. Rep. 903,
1 (2021).

[52] Y. Li, Z. Zhan, X. Kuang, Y. Li, and S. Yuan, Comput. Phys.
Commun. 285, 108632 (2023).

[53] A. Weiße, G. Wellein, A. Alvermann, and H. Fehske, Rev. Mod.
Phys. 78, 275 (2006).

[54] S. M. João, M. Andelkovic, L. Covaci, T. G. Rappoport,
J. M. V. P. Lopes, and A. Ferreira, R. Soc. Open Sci. 7, 191809
(2020).

[55] S. M. João, J. M. V. P. Lopes, and A. Ferreira, J. Phys. Mater. 5,
045002 (2022).

[56] N. A. Khan, J. M. V. P. Lopes, J. P. S. Pires, and J. M. B. L. dos
Santos, J. Phys.: Condens. Matter 31, 175501 (2019).

[57] L.-W. Wang, Phys. Rev. B 49, 10154 (1994).
[58] G. Chen, F. Song, and J. L. Lado, Phys. Rev. Lett. 130, 100401

(2023).
[59] N. A. Khan, Chin. J. Phys. 85, 733 (2023).
[60] L. Covaci, F. M. Peeters, and M. Berciu, Phys. Rev. Lett. 105,

167006 (2010).
[61] N. A. Khan and S. T. Amin, Phys. Scr. 96, 045812 (2021).
[62] S. G. de Castro, A. Ferreira, and D. A. Bahamon, Phys. Rev. B

107, 045418 (2023).
[63] N. A. Khan, W. Chen, M. Jan, and G. Xianlong, Comput. Phys.

Commun. 299, 109132 (2024).
[64] M. Rossignolo and L. Dell’Anna, Phys. Rev. B 99, 054211

(2019).
[65] A. Szabó and U. Schneider, Phys. Rev. B 101, 014205 (2020).
[66] A. Štrkalj, E. V. H. Doggen, and C. Castelnovo, Phys. Rev. B

106, 184209 (2022).
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