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Electrons are the carriers of heat and electricity in materials and exhibit abundant transport phenomena such
as ballistic, diffusive, and hydrodynamic behaviors in systems with different sizes. The electron Boltzmann
transport equation (eBTE) is a reliable model for describing electron transport, but it is a challenging problem
to efficiently obtain the numerical solutions of the eBTE within one unified scheme involving ballistic, hy-
drodynamics, and/or diffusive regimes. In this work, a discrete unified gas kinetic scheme (DUGKS) in the
finite-volume framework is developed based on the eBTE with the Callaway relaxation model for electron
transport. By reconstructing the distribution function at the cell interface, the processes of electron drift and
scattering are coupled together within a single time step. Numerical tests demonstrate that the DUGKS can be
adaptively applied to multiscale electron transport, across different regimes.
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I. INTRODUCTION

With the development of nanoscience and microscale
processing technologies and advancements in nanoscale tem-
perature measurement techniques, especially the continuous
miniaturization and integration of chips, the carrier transport
behavior of nanosystems has become an important scien-
tific issue in the statistical physics of nonequilibrium states
[1–7]. For transport in metals and semiconductors, electrons
play an important role and are characterized by rich trans-
port phenomena, such as the thermoelectric effect [8–10],
hydrodynamics [11–13], and size effects [14]. As one of
the widely used methods for studying electron transport, the
electron Boltzmann equation (eBTE) can be used to solve
problems over a large range of scales from the nanoscale to the
macroscale [15]. The Callaway approximation [16] divides
the scattering processes into two types. One conserves the
total crystal momenta, while the other does not. The Callaway
approximation is able to successfully characterize transport
behavior in the hydrodynamic regime [17,18], which has re-
ceived renewed interest in recent years due to the experimental
progress in graphene and other two-dimensional materials
[19–21]. The development of a multiscale and high accuracy
method for solving the eBTE under the Callaway approx-
imation is highly desirable to further explore the complex
characteristics of electron transport in realistic materials.

The numerical methods of the eBTE are mainly divided
into two types. One uses macroscopic models to approximate

*zlguo@hust.edu.cn
†jtlu@hust.edu.cn

the solution, such as the drift-diffusion model and hydrody-
namic equations [22–24]. These methods are simple in form,
with high computational efficiency, and can accurately de-
scribe the electron transport behavior in large-scale devices.
However, as the size of the device decreases, the electron
mean free path becomes comparable to the characteristic
length of the device. In such cases, the electron transport
behavior exhibits quasiballistic or ballistic characteristics,
rendering the aforementioned methods inaccurate. The other
type is the direct numerical solution of the eBTE, such as
the Monte Carlo (MC) method, the discrete ordinates method
(DOM), and the spherical harmonic expansion (SHE) method.
The MC method uses random numbers to select the scattering
mechanisms and determine the drift time under external field.
It is very flexible and can be combined with the actual energy
band structure to analyze the complex scattering process of
the carriers. Currently, MC schemes have been developed for
semiconductors [25] and metals [26] but are not suitable for
weak external fields due to unavoidable statistical noise; i.e.,
they converge slowly at small Knudsen numbers due to the de-
coupling of the particle drift and scattering. The DOM method
discretizes both real space and wave vector space and solves
the eBTE in the entire real space for each discretized wave
vector [27,28]. This method is suitable for systems with high
Knudsen numbers but exhibits significant numerical dissipa-
tion at small Knudsen numbers. The SHE method is widely
used for the simulation of semiconductor devices [29–32]. By
representing the electron distribution with spherical harmonic
functions of a certain order, a series of equations which can ac-
curately describe the transport behavior of carriers is obtained.
It is more advantageous than MC in weak external fields and
does not suffer from statistical noise. However, the numerical
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results depend on the order of the expansion, which needs
to be taken care of in the high-field region. Meanwhile, the
high computational complexity of SHE makes it challenging
to simulate high-dimensional materials, which requires the
use of matrix compression techniques [33]. In addition, lat-
tice Boltzmann methods [34] have been applied to multiscale
problems in nanosystems, but they may generate nonphysical
solutions at high Knudsen numbers [35].

The finite-volume discrete unified gas kinetic scheme
(DUGKS), which was originally developed for multiscale
gas flows [36,37], is a multiscale method with asymptotic
preservation (AP) properties and was developed to address
multiscale transport problems of other energy carriers. Ac-
tually, the DUGKS has been successfully applied in various
fields, such as multiscale gas flow, phonon heat transfer, ra-
diative heat transfer, and plasma transport [38]. By coupling
particle drift and scattering processes simultaneously in the
flux reconstruction, this scheme allows the cell size and time
step to be independent of the mean free path and relaxation
time and to recover adaptively from the ballistic limit to the
diffusive limit. Very recently, some progress was made in
electron-phonon coupled heat transfer based on the DUGKS
[39]. However, it cannot be used to describe thermoelectric
transport. Also, the single relaxation model used fails to cap-
ture the effects of electron momentum-conserving scattering.

In this study, we extend the application of the DUGKS to
study electrical, thermal, and thermoelectric transport of elec-
trons, incorporating the electronic band structure to iteratively
solve for the temperature and chemical potential distributions.
Numerical results are carefully compared to theoretical and
previous numerical results. The advantage of the DUGKS in
solving multiscale problems is illustrated. The rest of this
paper is organized as follows: Sec. II describes the electron
Boltzmann equation, Sec. III details the DUGKS for the elec-
tron Boltzmann equation, Sec. IV verifies the performance of
the proposed DUGKS by simulating several typical problems,
and conclusions are given in Sec. V.

II. ELECTRON BOLTZMANN TRANSPORT EQUATION

The Boltzmann transport equation describes the evolution
of the quasiparticle distribution driven by external fields ap-
plied to the system. The transport properties can be readily
calculated once the distribution function is known. The eBTE
is expressed as

∂ f

∂t
+ v · ∇r f + k̇ · ∇k f =

(
∂ f

∂t

)
coll

. (1)

The distribution function f = fn(r, k, t ) depends on band in-
dex n, position r, the wave vector k, and time t . Here, we write
it in an equivalent form f = f (r, εn, s, t ), where εn represents
the energy of the nth band (in the following, for convenience
of expression, we contract the band index n) and s repre-
sents the unit solid angle. For the three-dimensional (3D)
case, s = (cos θ, sin θ cos ϕ, sin θ sin ϕ), where θ and ϕ are
the polar and azimuthal angles. In the two-dimensional (2D)
case, only ϕ is needed, s = (cos ϕ, sin ϕ). The group velocity
of electrons depends on the band structure and is given by
v = ∇kεn(k)/h̄, where h̄ is the reduced Planck constant. The
electric field E determines the time derivative k̇ = −eE/h̄,

where e is the elemental charge. The right-hand side presents
the change of the distribution function due to electron colli-
sions. It depends on the specific scattering mechanism, which
can be expressed as(

∂ f

∂t

)
coll

= −
∫

dk′

(2π )3
{W (r, k, k′) f (k)[1 − f (k′)]

− W (k′, k) f (k′)[1 − f (k)]}, (2)

where W (k, k′) is the scattering kernel, which describes the
rate of electron transition from state k to k′ and is usually
obtained with Fermi’s golden rule.

The Boltzmann equation is a complicated nonlinear
integral-differential equation which is difficult to solve even
numerically. In this paper, we adopt the simplified Callaway
approximation to describe the collision term, which is divided
into two types, representing normal and umklapp processes.
The former fulfills crystal momentum conservation, while the
latter does not due to the involved extra reciprocal lattice
vector. A rich set of transport phenomena can be obtained
from this simplified approximation, including ballistic, diffu-
sive and hydrodynamic regimes.

Generally, the electric potential ϕ and the electric
field E = −∇ϕ need to be obtained by solving Poisson’s
equation. However, when the external field is relatively
weak, the electric field can be represented by the gradi-
ent of the electrochemical potential, i.e., ∇μ ≈ −e∇ϕ. We
use this approximation and avoid solving the Poisson equa-
tion [17,18,40]. Appendix A contains further discussion of
this approximation. The resulting eBTE can be written as

∂ f

∂t
+ v · ∇r f = f U

0 (T U , μU ) − f

τU
+ f N

0 (T N , μN , u) − f

τN
.

(3)

Here, τU and τN are the relaxation times of the umklapp
process and normal process, respectively, and both depend
on the electron state. The Fermi-Dirac distribution f U

0 and
the shifted Fermi-Dirac distribution f N

0 with a common drift
velocity u for all electrons are given by

f U
0 = 1

exp [(ε − μU )/kBT U ] + 1
, (4)

f N
0 = 1

exp [(ε − μN − p · u)/kBT N ] + 1
, (5)

where p = h̄k is the electron momentum and kB is the Boltz-
mann constant. The two sets of parameters {μU , T U } and
{μN , T N , u} in f U

0 and f N
0 are Lagrange multipliers in the

maximum entropy principle and are responsible for the con-
servation of the particle number and energy in umklapp
processes and the conservation of the particle number, energy,
and momentum in normal processes. They are determined by
the following equations:∫

�d

∫ +∞

−∞
ψU D(ε)

�d

f U
0 (T U , μU ) − f

τU (ε)
dεd� = 0, (6)∫

�d

∫ +∞

−∞
ψN D(ε)

�d

f N
0 (T N , μN , uN ) − f

τN (ε)
dεd� = 0, (7)

where ψU = (1, ε)T and ψN = (1, ε, p)T denote the con-
served quantities of the umklapp process and normal process,
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respectively, D(ε) is the electronic density of states, and d�

is the differential of the solid angle. �d is a quantity related
to the dimension d . For the 3D case, i.e., d = 3, we have
�d = 4π ; for d = 2, we have �d = 2π . These equations can
be used to get {μU , T U } and {μN , T N , u}, once the nonequi-
librium distribution function f is obtained.

The temporal parameters T U , T N , μU , and μN with di-
mensions of the temperature and chemical potential can be
different from the physical ones. On the other hand, the cor-
responding physical quantities T̃ and μ̃ are determined from
the local conservation laws,∫ +∞

−∞

∫
�d

D(ε)

�d
f0d�dε =

∫ +∞

−∞

∫
�d

D(ε)

�d
f d�dε, (8)∫ +∞

−∞

∫
�d

ε
D(ε)

�d
f0d�dε =

∫ +∞

−∞

∫
�d

ε
D(ε)

�d
f d�dε, (9)

where f0 = f0(T̃loc, μ̃loc). It can be seen that the distribution
function f reduces to f U and f N in the diffusive and hydro-
dynamic regimes, respectively, while the intermediate regime
it is a weighted average of the two. If τ is constant, T̃ and μ̃

calculated in the diffusive and hydrodynamic regions are the
same as the spurious variables.

III. THE DISCRETE UNIFIED GAS KINETIC SCHEME

We introduce the DUGKS for solving Eq. (3) numerically.
To facilitate the solution, we rewrite Eq. (3) with discrete
angular space as

∂ f (r,ε, sα, t )

∂t
+ v · ∇r f (r,ε, sα, t ) = f0 − f (r,ε, sα, t )

τ
,

(10)

where f0 = (τN f U
0 + τU f N

0 )/(τN + τU ) and τ = τU τN/

(τU + τN ). In order to accurately evaluate the zeroth-order to
second-order moments of the distribution function, the dis-
crete angle sα needs to satisfy the following requirements:

∑
α

wα = �d ,
∑

α

wαsα = 0,
∑

α

wαsαsα = �d

d
I, (11)

where wα is the weight of the angular discretization and I is
the corresponding unit matrix.

Like for the calculation of the phonon Boltzmann transport
equation, we use the trapezoidal integration rule to discretize
the energy space. For the solid angle space, the conventional
SN quadrature is not accurate enough for large Knudsen num-
bers and may have a serious “ray effect.” To overcome these
difficulties, we choose the Gauss-Legendre (GL) rule to dis-
cretize the solid angle. The real space is discretized using the
finite-volume method, the midpoint rule is used for the time
integration of the advection term, and the trapezoidal rule is
used for the collision term. With these considerations, Eq. (10)
is discretized as

f n+1
α,ε,i − f n

α,ε,i + 
t

Vi
Fn+1/2

α,ε,i

= 
t

2

[
f n+1
0,ε,i − f n+1

α,ε,i

τε

+ f n
0,ε,i − f n

α,ε,i

τε

]
, (12)

where f n
α,ε,i denotes the cell-averaged occupation probability

of electrons moving along the sα direction in cell i at energy
level ε at time t = n
t , Vi is the volume of cell i, and Fn+1/2

α,ε,i
is the flux across the interfaces of cell i, expressed as

Fn+1/2
α,ε,i =

∑
j∈Ni

(vα,ε · ni j ) f n+1/2
α,ε (xi j )Si j, (13)

where Ni denotes the set of cells adjacent to cell i, ni j is
the unit normal vector pointing from cell i to cell j, Si j

is the area of the interface i j between cells i and j, and
f n+1/2(xi j ) denotes the distribution function at the interface at
time tn+1/2 = tn + 
t/2. Two new distribution functions are
introduced to remove the implicitness of Eq. (12):

f̃ n
α,ε,i = f n

α,ε,i − 
t

2

(
f n
0,ε,i − f n

α,ε,i

τε

)
, (14)

f̃ +,n
α,ε,i = f n

α,ε,i + 
t

2

(
f n
0,ε,i − f n

α,ε,i

τε

)
. (15)

Then, Eq. (12) can be rewritten as

f̃ n+1
α,ε,i = f̃ +,n

α,ε,i − 
t

Vi
Fn+1/2

α,ε,i . (16)

We can track the evolution of the distribution function f̃
following Eq. (16), where the interface distribution function
f n+1/2
i j at half-time steps is reconstructed based on the eBTE,

which is the key difference between the present DUGKS and
classical DOM using certain direct numerical interpolations.
First, along the characteristic lines of Eq. (3) from time tn to
tn+1/2, the end point xi j is at the center of the interface between
cell i and cell j:

f n+1/2
α,ε (xi j ) − f n

α,ε(x′
i j ) = 
t

4

[
f n+1/2
0,ε (xi j ) − f n+1/2

α,ε (xi j )

τε

+ f n
0,ε(x′

i j ) − f n
α,ε(x′

i j )

τε

]
, (17)

where x′
i j = xi j − v
t/2. Again introducing two auxiliary

distribution functions to remove the implicitness of Eq. (17),

f̄ n
α,ε,i = f n

α,ε,i − 
t

4

(
f n
0,ε,i − f n

α,ε,i

τε

)
, (18)

f̄ +,n
α,ε,i = f n

α,ε,i + 
t

4

(
f n
0,ε,i − f n

α,ε,i

τε

)
, (19)

then the Eq. (17) can be expressed as

f̄ n+1/2
α,ε (xi j ) = f̄ +,n

α,ε (x′
i j ). (20)

To evaluate the interface flux Fn+1/2
α,ε,i , we assume that the

electron distribution function varies linearly in each cell to
reconstruct the auxiliary function f̄ +,n

α,ε (x′
i j ) in Eq. (20), as

shown in Fig. 1; then

f̄ +,n
α,ε (x′

i j ) = f̄ +,n
α,ε (xc) + (x′

i j − xc) · σc, (21)

where σc is the slope of the auxiliary function f̄ +,n
α,ε (x′

i j ) in
the cell where xc is located. We have c = i if vα · ni j > 0 and
c = j otherwise. For smooth problems, σc can be obtained
using central difference, and for discontinuities, it can be con-
structed using methods such as the van Leer limiter to ensure
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FIG. 1. Schematic of the reconstructed distribution function at
the interface.

numerical accuracy and stability. In the one-dimensional (1D)
case, the van Leer limiter is defined as

σ i = [sgn(s1) + sgn(s2)]
|s1||s2|

|s1| + |s2| , (22)

where

s1 = f̄ +,n
α,ε,i − f̄ +,n

α,ε,i−1

xi − xi−1
, s2 = f̄ +,n

α,ε,i+1 − f̄ +,n
α,ε,i

xi+1 − xi
. (23)

As a result, the original distribution function f n+1/2
α,ε (xi j )

can be obtained from Eqs. (18), (20), and (21):

f n+1/2
α,ε (xi j ) = 4τ

4τ + 
t
f̄ n+1/2
α,ε (xi j ) + 
t

4τ + 
t
f n+1/2
0,α,ε (xi j ),

(24)

where f n+1/2
0,α,ε (xi j ) is a function of μ

n+1/2
loc,i j and T n+1/2

loc,i j , which
can be obtained with the particle number and energy conserva-
tion of the scattering operator. Since the original distribution
function f in Eqs. (6) and (7) is unknown, the conservation
equation needs to be converted to the form of f̄ from Eqs. (6),
(7), and (18):∫

�d

∫ +∞

−∞
ψU D(ε)

�d

[
(4τN + 
t ) f U,n+1/2

0,i j − 
t f N,n+1/2
0,i j

(4τ + 
t )(τU + τN )

− 4τ f̄ n+1/2
i j

(4τ + 
t )τU

]
dεd� = 0, (25)

∫
�d

∫ +∞

−∞
ψN D(ε)

�d

[
(4τN + 
t ) f N,n+1/2

0,i j − 
t f U,n+1/2
0,i j

(4τ + 
t )(τU + τN )

− 4τ f̄ n+1/2
i j

(4τ + 
t )τN

]
dεd� = 0. (26)

If multiple bands contribute to the transport, the above
equation should also include a summation over band indices.
In this way, the interface flux Fn+1/2

α,ε,i is fully determined by
Eqs. (13) and (24). From Eq. (16) we can obtain the distribu-
tion function f̃ n+1

α,ε,i at tn+1. Similarly, T n+1
loc,i and μn+1

loc,i can be
determined from the following two equations:∫

�d

∫ +∞

−∞
ψU D(ε)

�d

[
(2τN + 
t ) f U,n+1

0,i − 
t f N,n+1
0,i

(2τ + 
t )(τU + τN )

− 2τ f̃ n+1
i

(2τ + 
t )τU

]
dεd� = 0, (27)

∫
�d

∫ +∞

−∞
ψN D(ε)

�d

[
(2τN + 
t ) f N,n+1

0,i − 
t f U,n+1
0,i

(2τ + 
t )(τU + τN )

− 2τ f̃ n+1
i

(2τ + 
t )τN

]
dεd� = 0. (28)

To solve Eqs. (25)–(28), we use the Newtonian iteration
method. The electric and heat currents in the center of each
cell can be expressed as

J (xi, t ) = − e
∫

�d

∫ εmax

εmin

v
D(ε)

�d

2τ (ε)

2τ (ε) + 
t
f̃ (xi, t )dεd�,

(29)

Jq(xi, t ) =
∫

�d

∫ εmax

εmin

[ε − μ̃(xi, t )]

× v
D(ε)

�d

2τ (ε)

2τ (ε) + 
t
f̃ (xi, t )dεd�.

(30)

It is notable that the distribution functions f̃ +, f̄ +, and f̃
satisfy the following relationship, which simplifies the calcu-
lation:

f̃ + = 4

3
f̄ + − 1

3
f̃ . (31)

Importantly, in the DUGKS, the time step 
t is determined
by the Courant-Friedrichs-Lewy (CFL) condition


t = γ min

(

x

v

)
, (32)

where γ ∈ (0, 1) is the CFL number, such that the defined
time step remains consistent for any relaxation time and has
the AP property.

The procedure of the present DUGKS can be summarized
as follows:

(1) Set the initial temperature T0, chemical potential μ0,
discrete energy space, real space, and solid angle space, and
set the initial distribution function f̃ n

α,ε,i according to Eq. (14).
(2) Calculate f̄ +,n

α,ε,i and its slope σc, and construct the dis-
tribution function f̄ +,n

α,ε (x′
i j ) according to Eq. (21).

(3) Calculate the interface distribution f̄ n+1/2
α,ε (xi j ) based on

Eq. (22).
(4) Calculate the local temperature T n+1/2

loc,i j and local chem-

ical potential μ
n+1/2
loc,i j at the cell interface based on Eqs. (25)

and (26) to obtain the corresponding equilibrium distribution
f n+1/2
0,α,ε (xi j ).

(5) Calculate the original distribution function f n+1/2
0,α,ε (xi j )

at the cell interface based on Eq. (24), and update the cell
interface flux Fn+1/2

α,ε,i by Eq. (13).
(6) Calculate f̃ +,n

α,ε,i based on Eq. (31) to update f̃ n+1
α,ε,i at the

new time step using Eq. (16).
(7) Update the temperature T n+1

loc,i and chemical potential
μn+1

loc,i of the cell at the next time step based on Eqs. (27) and
(28).

(8) Repeat steps 2 to 7 until the stop criterion is reached.
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Boundary conditions

For isothermal boundary conditions, electrons colliding
with the boundary are absorbed, while an electron in equilib-
rium at the boundary temperature Tb and chemical potential
μb is emitted into the computational domain,

f (xb, ε, s) = f0(Tb, μb, ε), s · nb > 0, (33)

where nb > 0 is the unit normal vector pointing from the
interface to the domain.

For periodic boundary conditions, driven by the temper-
ature and/or chemical potential gradient, an electron leaves
one boundary while another electron with the same velocity
and energy enters the domain from the corresponding periodic
boundary. The distribution of these two electrons deviates
equally from the equilibrium state at the passing boundary,

f (xb1, ε, s) − f0(Tb1, μb1, ε)

= f (xb2, ε, s) − f0(Tb2, μb2, ε), (34)

where b1 and b2 denote the corresponding periodic bound-
aries.

For the diffusive reflection boundary, it is assumed that
electrons reflected from the boundary are isotropic:

f (xb, ε, s) =
∫

s′ ·nb<0 (s′ · nb) f (xb, ε, s′)d�∫
s′ ·nb>0 s′ · nbd�

, s · nb > 0.

(35)

Meanwhile, for the specular reflection boundary, we have

f (xb, ε, s) = f (xb, ε, s′′), s · nb > 0, (36)

where s′′ = s − 2(s · nb)nb. It is noted that for both diffusive
and specular boundaries no energy and particle exchanges oc-
cur at the interface, and they are therefore also called adiabatic
boundaries.

IV. NUMERICAL RESULTS

In this section, numerical calculations of four types of
problems are performed to test the performance of the
DUGKS. For the first two examples, we consider the cross-
plane (Sec. IV A) and in-plane (Sec. IV B) electron transport
of the Au films to verify the DUGKS solution against the devi-
ational MC scheme available in the literature [26]. In the third
example (Sec. IV C), we consider hydrodynamic transport in
2D systems using the parameters of graphene. In the last
example (Sec. IV D), we consider quasi-1D thermoelectric
transport in model metal and semiconductor systems.

For the generality of the program, we use the van Leer
limiter to construct the gradient σc. In all calculations, we
take into account electrons in the energy window of [μ+ +
15kBT0, μ− − 15kBT0], with μ+ and μ− being the higher and
lower chemical potentials, respectively. The energy window
is uniformly discretized. The grid number is denoted as Nε.
In the solid angle space, θ and ϕ are discretized into the Nθ

and Nϕ subdirections using the GL rule. The weights and
coordinates of the GL quadrature can be computed using a
standard computer code [41].

Note that if real physical quantities are used in the com-
putation, large round-off errors may occur due to the large

disparity of their magnitudes. Therefore, dimensionless quan-
tities are employed in our computation, where the following
nondimensional variables are employed:

ε∗ = ε

εF
, μ∗ = μ

εF
, T ∗ = T

T0
, p∗ = p

h̄kF
,

u∗ = h̄kF

εF
u, r∗ = r

Lref
, t∗ = vFt

Lref
, v∗ = v

vF
,

KnU = vF τU

Lref
, KnN = vF τN

Lref
,

where ∗ denotes that the quantity is dimensionless (omitted
in the text for ease of presentation); KnU and KnN are the
Knudsen numbers of the umklapp process and the normal pro-
cess; εF , kF , and vF are the Fermi energy, Fermi wave vector,
and Fermi velocity, respectively; and Lref is the characteristic
length.

A. Cross-plane electron thermal transport

The reciprocal lattice of Au is of the bcc type, and the first
Brillouin zone is a truncated octahedron. The Fermi surface,
although distorted along the 〈111〉 direction, is approximately
spherical, so we use the nearly free electron model ε =
h̄2k2/(2m) and set the Fermi energy to εF = 5.51 eV. To make
a comparison with the analytical results, we focus on only the
umklapp processes and set τU = 27.7

√
ε/εF fs and τN → ∞.

The CFL number is fixed at 0.7. The average temperature T0

is set to 300 K.
We first consider the cross-plane (x direction) electron

thermal transport. The structure is shown in Fig. 2(a). This is a
quasi-1D problem since the system is translationally invariant
in the y and z directions. We use isothermal boundary con-
ditions with TL = T0 + 
TL and TR = T0 + 
TR. When 
TL

and 
TR are relatively small, the distribution function can
be linearized as f ≈ CT 
T + Cμ
μ, with CT = ∂ f0/∂T and
Cμ = ∂ f0/∂μ. A semianalytical solution can then be obtained
using the linear approximation, following Ref. [42],

2
∫ εmax

εmin

D(ε)

τ (ε)

(
εCT εCμ

CT Cμ

)
dε

(

T (x̂)

μ(x̂)

)

= F (x̂) +
∫ 1

0
K (x̂, x̂′)

(

T (x̂)

μ(x̂)

)
dx̂′. (37)

This is the second type of Fredholm integral equation, with
x̂ = x/L being the dimensionless coordinate and

F (x̂) =
∫ εmax

εmin

D(ε)

τ (ε)

(
εCT εCμ

CT Cμ

)[
E2

(
x̂

Knε

)(

TL


μL

)

+E2

(
1 − x̂

Knε

)(

TR


μR

)]
dε, (38)

K
(
x̂, x̂′) =

∫ εmax

εmin

D(ε)

Knετ (ε)
E1

( |x̂ − x̂′|
Knε

)(
εCT εCμ

CT Cμ

)
dε.

(39)

Here, En(x) = ∫ 1
0 θn−2 exp(−x/θ )dθ , and Knε = vετε/L is

the energy-dependent Knudsen number. From the above equa-
tions, we can obtain 
T (x̂) and 
μ(x̂) using the degenerate
kernel method.
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FIG. 2. Cross-plane electron thermal transport in Au films. (a) Schematic of the system setup. The energy band structure is shown in the
middle. The gray area is the energy range considered in the calculation. We choose 
TL = −
TR = 10 K without initial chemical potential
difference. (b) Steady-state temperature distribution, (c) steady-state chemical potential distribution, and (d) variation of the effective thermal
conductivity with the Knudsen number.

We can then calculate the steady-state heat flux density as

Jq =
∫ ∫ 1

0
(ε − εF) f +vθdθdε −

∫ ∫ 1

0
(ε − εF) f −vθdθdε,

(40)

where f + and f − describe the forward and backward transport
of electrons, respectively, and can be written as

f +(x̂) = (CT 
TL + Cμ
μL )e− x̂
Knεθ

+
∫ x̂

0

CT 
T (x̂) + Cμ
μ(x̂)

Knεθ
e

x̂′−x̂
Knεθ dx̂′, (41)

f −(x̂) = (
CT 
TR + Cμ
μR

)
e− 1−x̂

Knεθ

+
∫ 1

x̂

CT 
T (x̂) + Cμ
μ(x̂)

Knεθ
e

x̂′−x̂
Knεθ dx̂′. (42)

The effective thermal conductivity of the system is then ob-
tained from

κeff = LJq/|TL − TR|. (43)

Different transport regimes can be characterized by the
Knudsen number Kn = λ/Lref , where λ is the electron mean
free path. When Kn � 1, electrons are frequently scattered
and exhibit diffusive transport; when Kn � 1, they move
through the material almost without scattering and exhibit

ballistic transport. We consider several different lengths, L =
5 µm, 400 nm, 70 nm, and 7 nm. The corresponding Kn
are 0.0077, 0.096, 0.55, and 5.5, respectively, going from
the diffusive to ballistic regime. We compare our numerical
results with the above semianalytical solution and deviational
MC results [26]. The solid angle is discretized into Nθ = 100
subdirections using the GL rule, and the system in the x direc-
tion is uniformly discretized to N = 60 and 10, respectively.
The results are shown in Figs. 2(b)–(d). Figure 2(b) shows that
as the film size decreases, the system deviates from Fourier’s
law, and the boundary temperature slip becomes significant.
As the mean free path of electrons increases, the electrons
moving to the boundary are not sufficiently thermalized and
strongly scatter with the electrons emitted from the bound-
ary, giving rise to a nonlinear temperature distribution. Our
scheme also captures the temperature-induced change in the
chemical potential [Fig. 2(c)], caused by the thermoelectric
effect. For a small temperature difference, this change is so
tiny that we can ignore it when considering electron thermal
transport. However, this small change is an essential factor
in maintaining particle number conservation. The behavior
of the effective thermal conductivity [Fig. 2(d)] is similar to
that in the phonon case, with enhanced boundary scattering
suppressing the thermal conductivity as the film thickness
decreases.

Thus, we find good agreement of our numerical results
with the analytical solutions in the whole range from ballistic
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FIG. 3. In-plane electrical and thermal transport in Au films, with L = 5 µm, 400 nm, 70 nm, and 7 nm, covering both diffusive and
ballistic transport regimes. The real space grids are set to Nx × Ny = 2 × 60, and the solid angle grids are Nθ × Nϕ = 40 × 40. (a) Schematic
of the transport setup. (b) Heat flux density Jqx distribution along y driven by the temperature gradient in the x direction. (c) Current density Jx

distribution along y driven by a chemical potential gradient in the x direction. (d) The effective conductivity σeff = eJ̄x/(dμ/dx) as a function
of the Knudsen number. Here, J̄x is the average of Jx along y.

to diffusive transport, with good convergence on multiscale
numerical simulations. Due to the coupled treatment of drift
and scattering, in our scheme the mesh size does not have to be
smaller than the particle mean free path. The results converge
well even for sparse meshes with N = 10. In addition, the time
step 
t is completely determined by the CFL number and is
not constrained by the relaxation time. These results illustrate
that the scheme has the AP property. Also, the efficiency
comparison with the DOM confirms the multiscale nature of
the DUGKS (see Appendix B).

B. In-plane electron transport

In this section, as an example of quasi-2D transport, we
calculate the in-plane thermal and electrical transport proper-
ties in Au thin films. The system setup is shown in Fig. 3(a).
We use the diffusive boundaries for the top and bottom and
periodic boundaries for the left and right sides. Due to the
applied generalized forces (e.g., temperature or chemical po-
tential gradient), the distribution function deviates from the
equilibrium one and is written as f = f0 + f1, with f0 being
the equilibrium part and f1 being a small deviation. It can be
described by the Fuchs-Sondheimer theory [43,44]:

f1 =
⎧⎨
⎩

−vyτ
(

∂ f0

∂T
dT
dy + ∂ f0

∂μ

dμ

dy

)[
1 − exp

(
− x

τv>
x

)]
,

−vyτ
(

∂ f0

∂T
dT
dy + ∂ f0

∂μ

dμ

dy

)[
1 − exp

(
L−x
τv<

x

)]
,

(44)

where v>
x and v<

x denote the cases of vx > 0 and vx < 0,
respectively. The electrical and heat flux densities can be
calculated from f1.

We consider the temperature- and chemical-potential-
driven cases separately. The results for the temperature-driven
case with dT/dx = −0.1 K/nm are shown in Fig. 3(b). This
scheme again accurately captures the heat transfer process at
different Knudsen numbers. In contrast to MC, the DUGKS
results are free from random errors, and the mean free path
does not limit the mesh size. The heat flux density saturates
at L = 5 µm, corresponding to diffusive transport, following
Fourier’s law. The suppression of heat flux at the boundaries is
due to inelastic scattering occurring at the diffusive reflection
boundary. The heat flux density distribution becomes uniform
again in the ballistic regime. For the chemical-potential-driven
case, with dμ/dx = −e∇ϕ and −∇ϕ = 5 × 105 V/m, the
results are shown in Figs. 3(c)–(d). The agreement with an-
alytical solutions again demonstrates the accuracy of this
multiscale scheme.

C. dc and ac hydrodynamic transport

In this section, we calculate dc and ac electronic transport
in a 2D sheet using the parameters for graphene. Assum-
ing heavy n type doping, we consider only the contribution
from the upper band with the linear dispersion relation
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FIG. 4. dc and ac hydrodynamic transport in a 2D sheet of size 5 × 10 µm2. We use Nε = 80 and Nx × Ny = 80 × 160 for energy and real
space, respectively. For 2D angle space, we use Nϕ = 400. Potential distribution and current lines for {τN , τU } = (a) {0.2, 5} ps, (b) {0.2, 10}
ps, and (c) {0.2, 50} ps; the darker line in (c) is the result from Chandra et al. [17]. (d) The potential difference between the lower and upper
boundaries at y ∈ [5.7, 10] µm. We scaled the results for other cases by setting the maximum value from the parameter set {0.2, 5} ps to 1. The
inset shows the potential distribution at y ∈ [5.5, 7] µm, where the jump in value can be observed.

ε(k) = h̄vF k, where vF ≈ 106 m/s is the Fermi velocity.
Since hydrodynamic transport takes place at relatively low
temperatures, we set T0 = 10 K and μ0 = 10.8 meV. We
assume that dc driving and ac driving locate in the center
of the left and right boundaries, with a width of 1 µm. We
adopt the same boundary conditions as Ref. [17]. Specifically,
for dc calculations, we set an isothermal boundary for the
drift velocity uL

x0 = uR
x0 = 10−4vF distributed at the injections,

and for ac calculations, we set an isothermal boundary for
uL

x0 = uR
x0 = 10−4vF sin(2π f t ), where f = 10 GHz is the fre-

quency of the ac driving. For the other boundaries, we use
specular reflection. For such problems, one is often interested
in the voltage or potential of the system. In our framework,
we can obtain the potential with ϕ(r,t ) = −μ(r,t )/e + μ0/e.
We calculated the hydrodynamic transport dominated by the
normal processes for the three cases with {τN , τU } = {0.2, 5}
ps, {0.2, 10} ps, and {0.2, 50} ps. The results are shown in
Figs. 4(a)–4(c). Although all three sets of relaxation times are
dominated by normal processes, only results from the third
parameter set show vortices. The positions of the vortices are
consistent with the results of Mani et al. [17], and nonlocal
negative resistance is also observed [Fig. 4(d)].

For ac transport, we considered two sets of parameters,
{0.2, 1} ps and {0.2, 5} ps. The DUGKS again accurately cap-
tures the voltage transients [Fig. 5(a)]. Figure 5(b) shows that,
for the Ohmic transport, the phase φ(y) = φ[Id , ϕ(y)] follows
the source current at any position, but for the hydrodynamic
transport it consistently delayed from the source current.

D. Thermoelectric transport

In this section, we consider thermoelectric transport in
model metals and semiconductors with L = 200 nm. The
left and right chemical potentials are set to μL = εF + 
μ/2

and μR = εF − 
μ/2, where 
μ is 10, 20, and 40 meV.
For semiconductors, we use the effective mass approximation
ε = h̄2k2/2m∗, with m∗ being the electron effective mass. We
assume that the semiconductor is isotropic and n doped with
a conduction band effective mass m∗ = 0.068m. The Fermi
energy level is located 
 = 0.05 eV below the conduction
band bottom. For both metals and semiconductors, the energy,
real, and angle space grids are set to Nε = 80, N = 80, Nθ =
100, respectively. We considered both umklapp (τU = 0.01
ps, τN = 1 s) and normal (τU = 1 s, τN = 0.01 ps) dominated
cases.

Although there is no analytical solution, we can interpret
the results qualitatively using a first-order approximation of
the eBTE. With the umklapp processes dominating, it is de-
scribed as (

J
Jq

)
=

(
eK0 − eK1/T

−K1 K2/T

)( ∇μ

−∇T

)
(45)

and

Kn = τ

3

∫∫
vvD(ε)(ε − μ)n

(
−∂ f0

∂ε

)
dεd�. (46)

In fact, Eq. (45) neglects the impact of boundary conditions,
making it valid only in regions far from the boundaries [45].
Thus, we describe the region of x ∈ [5, 195] nm by Eq. (45).

The results for the metal in the umklapp-process-
dominated case are shown in Figs. 6(a) and 6(b). The
temperature distribution takes the form of a quadratic func-
tion, with the peak occurring at L/2. This is expected when
Joule heating is dominant [46]. In this case, using Eq. (45),
we can obtain a formal solution for T (x):

T (x) = − T̄

K2

dμ

dx

(
J

e
x2 − J

e
x0x + K1x

)
+ T0 + 
TC, (47)

065310-8



DISCRETE UNIFIED GAS KINETIC SCHEME FOR THE … PHYSICAL REVIEW E 109, 065310 (2024)

FIG. 5. (a) Change in normalized potential at y = 9 µm from t = 200 ps to t = 300 ps. (b) Phase difference of the potential wave form at
y ∈ [5.7, 10] µm with respect to y = 5 µm (i.e., the source current).

where 
TC is the temperature jump due to the thermal resis-
tance of the interface and x0 is the zero point of the heat flux.
We neglect the spatial dependence of Kn in obtaining Eq. (47)
and assume that the chemical potential is linearly distributed.
For metals, this applies away from the boundary. The results
are shown in Fig. 6(a), which agree well with the numerical
results for low chemical potential differences. When 
μ =
40 meV, the large magnitude of the temperature change inval-
idates the above simple approximation. Now we consider the
heat flux density in Fig. 6(b). We note the small deviation of x0

at L/2 + eK1/J from L/2 due to the thermoelectric correction
term eK1/J . As the chemical potential difference increases,

the zero point shifts toward the center due to the increase in the
current density. For 
μ = 40 meV, the effect of the boundary
conditions on the results is enhanced, leading to a deviation of
the heat flux density close to the boundary.

The results for the metal when the normal process domi-
nates are shown in Figs. 6(c) and 6(d). The presence of drift
velocity u further complicates the results. Since the momen-
tum conservation of the normal process does not generate
thermal resistance, the temperature distribution should be ho-
mogeneous. However, the presence of boundary scattering
makes the temperature nonuniform [see Fig. 6(c)]. The elec-
trons carry heat in from the left boundary and do not dissipate

FIG. 6. Numerical results for metal. (a) Temperature distribution due to the chemical potential difference for the umklapp-process-
dominated case. (b) The corresponding heat flux density distribution for the situation in (a). (c) Temperature distribution due to the chemical
potential difference in the normal-process-dominated case. (d) The corresponding heat flux density distribution for the situation in (c). The
inset shows the corresponding chemical potential distribution.
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FIG. 7. Numerical results for the semiconductor. (a) Temperature distribution due to the chemical potential difference when the umklapp
processes dominate. (b) The corresponding current density distribution for the situation in (a). (c) Temperature distribution in semiconductors
due to the chemical potential difference when the normal processes dominate. (d) The corresponding current density distribution for the
situation in (c).

heat in the middle. Eventually, the electrons are scattered and
release heat at the right boundary, resulting in higher temper-
atures on the right side than on the left. This nonuniformity
becomes evident with the increase of the chemical potential
difference. In addition, the temperature increase produced by
the normal process is much lower than that of the umklapp
process for the same chemical potential difference. The results
of the heat flux are shown in Fig. 6(d). They can be understood
from the first-order approximation:(

J
Jq

)
= 1

3

∫∫
D(ε)

( −e
ε − μ

)
v · ∂ f N

0

∂u

∣∣∣∣
u=0

dεd�u

+
(

eK0 −eK1/T
−K1 K2/T

)( ∇μ

−∇T

)
, (48)

where the first term on the right side is the effect of drift ve-
locity. Since the temperature and chemical potential gradient
are small, the contributions to the current and heat flux in the
normal process come mainly from u. The heat flux generated
by the drift velocity term is nearly 2 orders of magnitude
higher than the contributions from the temperature and the
chemical potential. As in the previous analysis, momentum
conservation makes the heat flux gradient zero in the region
away from the boundary. The heat flux can also be written
as Jq = Jε − μJ, which satisfies ∇Jε = 0 and ∇J = 0 at
the steady state. This implies that the deviation of the heat
flux from the first-order approximation arises mainly from the

effect of boundary scattering on the chemical potential [see
the inset of Fig. 6(d)].

Results for the semiconductor model are depicted in Fig. 7.
The temperature distribution when umklapp processes domi-
nate is shown in Fig. 7(a). Unlike metals, cooling takes place
at the left boundary and becomes more apparent as the chem-
ical potential difference increases. This is characteristic of
the Peltier effect. The Peltier coefficient is defined as Π =
K1/(eK0). From the numerical data, we get an average value
of Π = 0.1 V. Figure 7(b) shows the corresponding current
densities, which are consistent with Eq. (45). For the case
in which normal processes dominate [Figs. 7(c) and 7(d)],
the conservation of momentum during the collision leads to a
uniform decrease of temperature in the region away from the
boundary. This cooling phenomenon is more pronounced than
the umklapp process [Fig. 7(c)]. The corresponding average
Peltier coefficient is Π = 0.09 V, similar to the umklapp-
dominated case. However, the temperature decreases much
more since the current density |J| is 2 orders of magnitude
larger than the case where the umklapp processes dominate
[see Figs. 7(b) and 7(d)]. The first-order approximation no
longer holds as 
μ increases to 40 meV.

V. CONCLUSION

In summary, we developed a discrete unified gas kinetic
scheme for the solution of electron Boltzmann transport
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TABLE I. Comparison of the computational efficiency of the
DUGKS and DOM, where t is the computational time and Nsteps is
the number of computational steps.

DUGKS DOM

L (nm) t (s) Nsteps t (s) Nsteps

10000 101.2 20423 4127.2 128749
5000 53.6 11310 390.1 26619
2000 24.7 5209 41.3 8210
700 10.6 2232 6.9 2184
70 3.1 662 2.3 652
7 6.4 1364 4.7 1360

equation under the Callaway approximation. The coupled
treatment of electron drift and scattering makes the cell size
and time step independent of the mean free path and relaxation
time, which is an advantage in the study of problems with
small Knudsen numbers. Numerical results demonstrated that
the scheme accurately captures electron transport behaviors
across ballistic, hydrodynamic, and diffusive regimes while
also exhibiting asymptotic preservation properties. Due to
the consideration of the electronic energy band structure and
the use of the Newtonian method to solve the energy and
particle number conservation equations at the cell interfaces
and centers, we were able to simulate different materials
across a wide range of parameter regimes. Meanwhile, more
complex device shapes and more realistic energy band struc-
tures could also be incorporated into our framework in the
future. Studying coupled transport including more than one
type of quasiparticle, i.e., including a photon-electron-phonon
coupled system, is also possible under this generic scheme.
However, the dynamics of electrons in k space needs to be
included to study transport under strong electric and magnetic
fields. This issue will be discussed in the future.
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APPENDIX A: WEAK ELECTRIC FIELD
APPROXIMATION

Under an external electric field, the electron follows the
following equation of motion:

h̄k̇ = −e(−∇φ), (A1)

where −e is the electron charge and φ is the electric potential.
Substituting (A1) into Eq. (1), we obtain

∂ f

∂t
+ v · ∇r f + v · (e∇φ)

∂ f

∂ε
=

(
∂ f

∂t

)
coll

. (A2)

The spatial dependence of the distribution can be split into
that of the chemical potential and that of the temperature,

∇r f = ∂ f

∂T
∇rT − ∂ f

∂ε
∇rμ. (A3)

TABLE II. The minimal cell size 
x and time step 
t used
in Table I, where the mean free path λ̄ = 38.6 nm and the mean
relaxation time τ̄ = 0.028 ps.

DUGKS DOM

L (nm) 
x (nm) 
t (ps) 
x (nm) 
t (ps)

10000 500 2.1 × 10−1 56 2.3 × 10−2

5000 250 1.0 × 10−1 60 2.5 × 10−2

2000 100 4.2 × 10−2 58 2.5 × 10−2

700 35 1.5 × 10−2 35 1.5 × 10−2

70 3.5 1.5 × 10−3 3.5 1.5 × 10−3

7 0.35 1.5 × 10−4 0.35 1.5 × 10−4

The electric field term in Eq. (A2) suggests that it can be
absorbed into the spatial dependence of the chemical potential
μ by defining the electrochemical potential

μ̂ = μ − eφ. (A4)

Then, Eq. (A2) reduces to

∂ f

∂t
+ v · ∇r f =

(
∂ f

∂t

)
coll

, (A5)

in agreement with Eq. (3) after we apply the Callaway approx-
imation for the collision term.

APPENDIX B: COMPARISON OF EFFICIENCY BETWEEN
DUGKS AND EXPLICIT DOM

The explicit DOM scheme is currently widely used to solve
the Boltzmann transport equation, and it is relatively simple
to implement. Here, we compare the computational efficiency
between the DUGKS and explicit DOM.

We consider the 1D case to introduce the DOM to solve
Eq. (10), where Eq. (10) has the following discrete form:

f n+1
α,ε,i − f n

α,ε,i


t
+ vα,εη

f n
α,ε,i+1/2 − f n

α,ε,i−1/2


x

= − f n
α,ε,i − f n

0,ε,i

τε

, (B1)

where η is the cosine of the angle between the velocity and
the x axis. In order to improve the spatial accuracy, the cell
interface is processed as follows:

fα,ε,i+1/2 =
{

fα,ε,i + σi
x/2 η > 0,

fα,ε,i+1 − σi+1
x/2 otherwise. (B2)

To ensure numerical stability, σi is calculated using the van
Leer limiter. After calculating the macroscopic quantities for
each cell using Newtonian iteration, the distribution function
f n+1 for the next time step is obtained. We set the calculation
to converge when the criterion ε < 10−10. ε is defined as

ε =
√√√√ N∑

i=1

(
T n

i − T n−1
i

)2
/N. (B3)

For the case in Fig. 2(a), the results are shown in
Tables I and II. It can be seen that in the ballistic region,
the computation time of the DOM will be shorter due to the
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simpler computational realization of each time step than in
the DUGKS. Since the time step of the DOM needs to be
smaller than the relaxation time, as the diffusion region is
approached, the DOM requires a smaller cell size and time
step to ensure convergence of the program, which leads to

more computational steps and increased computational time.
However, for the DUGKS, the cell size and time step are not
limited by the mean free path and relaxation time, resulting in
excellent numerical efficiency from the ballistic to diffusive
regimes.
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