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modeling of space-charge dynamics using dynamic mode decomposition
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We present a data-driven reduced-order modeling of the space-charge dynamics for electromagnetic particle-
in-cell (EMPIC) plasma simulations based on dynamic mode decomposition (DMD). The dynamics of the
charged particles in kinetic plasma simulations such as EMPIC is manifested through the plasma current density
defined along the edges of the spatial mesh. We showcase the efficacy of DMD in modeling the time evolution of
current density through a low-dimensional feature space. Not only do such DMD-based predictive reduced-order
models help accelerate EMPIC simulations, they also have the potential to facilitate investigative analysis and
control applications. We demonstrate the proposed DMD-EMPIC scheme for reduced-order modeling of current
density and speedup in EMPIC simulations involving electron beam under the influence of magnetic field, virtual

cathode oscillations, and backward wave oscillator.
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I. INTRODUCTION

Kinetic plasma simulations enjoy a broad range of appli-
cations ranging from the modeling of high-power microwave
sources, directed energy devices, particle accelerators, ter-
ahertz devices, etc. They are also used to improve our
understanding of ionospheric phenomena, magnetosphere
regions, and astrophysical events [1-4]. Historically, electro-
magnetic particle-in-cell (EMPIC) algorithms have been a
popular choice for simulating collisionless kinetic plasmas.
Compared to magnetohydrodynamics (MHD) simulations,
particle-in-cell (PIC) algorithms can better capture intricate
wave-particle interactions including electron bunching, ki-
netic instabilities, Landau damping, microscopic turbulence,
space-charge effects, etc., [5—-10]. However, higher physical
accuracy of the PIC simulations comes at the cost of large
computational resources. A very large number of computa-
tional (super)particles are needed for an adequate sampling
of the phase space of the electrons and ions. This is one
of the primary challenges preventing speeding up of EMPIC
simulations [5]. In an EMPIC simulation, the position and
velocity of each superparticle must be updated individually
at each time step, covering the entire time-window of interest.

The high dimensionality and large computational cost
of EMPIC simulations serve as motivation for developing
reduced-order models capable of capturing the underly-
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ing plasma dynamics through a low-dimensional feature
space. Such small sets of coherent spatiotemporal features
have been shown to be effective in emulating the under-
lying physics in several plasma simulations [11-16]. The
projection-based reduced-order methodologies such as proper
orthogonal decomposition (POD) and dynamic mode decom-
position (DMD), in particular, have been recently employed
for modeling the field evolution in EMPIC simulations with
success [16-19]. However, these methods do not address the
primary computational bottleneck due to the large number
of particles. The authors in Ref. [20] presented a discrete
empirical interpolation (DEIM) method for reducing the com-
putational burden of particle to mesh projections in geometric
particle-in-cell (GEMPIC) [21] simulations. In Ref. [22],
the authors took a different approach based on sparse re-
gression (SR) to discover the underlying partial differential
equations (PDEs) from PIC simulation data. While Ref. [20]
showed the effectiveness of the DMD-DEIM method for
1D-1V Vlasov-Poisson problems in a parametric setting, it did
not address how to provide an explicit analytical time-update
scheme for particle-dependent quantities such as current den-
sity, which can be crucial for prediction and diagnostic
purposes. The SR approach in Ref. [22] strived to infer the
corresponding MHD equations in integral form from the PIC
time-series data, but was limited by the choice of PDE candi-
date terms and the cost of integration over a large volume. In
this paper, the computational bottleneck of a large number of
particles is addressed by time-domain reduced-order model-
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FIG. 1. Schematic illustration of the DMD algorithm for current density modeling of an electron beam. Since ¢,, are typically complex,
for illustration purposes, the plots corresponding to (¢,, + ¢,,) are shown as ¢,,,.

ing of the current density using dynamic mode decomposition
(DMD). In a typical EMPIC setting, the charged particle dy-
namics manifests through temporal variation of charge and
current densities defined on the spatial mesh. In the EMPIC
algorithm, current density is employed for the time update of
electromagnetic fields according to the Maxwell’s equations.
Updated fields, in turn, influence the motion of the charged
particles and dictate the time variation of current density.
These steps are executed in a cyclic fashion (bottom left of
Fig. 2) for each time step of EMPIC. In essence, if the time
evolution of current density can be modeled independently of
the particles, the EMPIC steps involving the particles could be
completely avoided, which would result in a drastic reduction
in computation time.

Initially proposed in Ref. [23], DMD is a data-driven
method for low-dimensional surrogate modeling of high-
dimensional complex dynamical systems. Since its inception,
DMD has been applied successfully to a vast array of prob-
lems, including fluid-based nonlinear plasma models and
magnetized plasma experiments [15,24,25]. The ability of
DMD to extract underlying dominant spatiotemporal features
from self-field data of EMPIC simulation, and the effect of
DMD extrapolated fields on the particle dynamics were re-
cently investigated in Ref. [16]. In Ref. [20], DMD was used
for approximating the electric field potential. However, DMD
modeling of space-charge dynamics, especially the time evo-
Iution of plasma current density in EMPIC simulations, have
not yet been explored. Since there is no analytical model avail-
able for the time evolution of current density in EMPIC simu-
lations, a data-driven approach becomes crucial. Data-driven
modeling of current density is particularly challenging due to
the associated nonlinearity, nonsmooth time variation pertain-

ing to particle noise, and high dimensionality (large number of
mesh elements). The effectiveness of DMD in modeling non-
linear dynamics can be attributed to its close relation to Koop-
man operator theory [26]. In particular, initial findings have
suggested that Koopman autoencoders have good potential for
reduced order modeling of currents as well [27,28]. However,
Koopman autoencoders display the usual limitations of neural
network models, namely, lack of interpretability (black-box
nature) and intricate training process. The use of interpretable
Koopman-based data-driven reduced-order models such as
DMD helps to overcome these challenges.

In this paper, we demonstrate the application of time-series
prediction in current density forecasting to accelerate EMPIC
simulations. The main contributions of the present paper can
be summarized as follows:

(1) This paper constructs an interpretable, reduced-order
model for the space-charge dynamics in EMPIC simulations.
This is achieved by DMD modeling of the current density,
which is essentially the manifestation of charged particle
dynamics in the EMPIC simulations. While our main goal
is to accelerate the EMPIC simulations, such reduced-order
modeling of space-charge dynamics also helps analyze and
diagnose the problem at hand. Note that using DMD-based
linear reduced-order models (ROMs) of the inherently non-
linear plasma dynamics also opens the door for leveraging
control of theoretic tools that already exist for linear systems.
The DMD modes and frequencies can help in analyzing the
efficiency loss due to harmonic generation in high-power
microwave devices. By analyzing the spatial patterns and
growth rates of the modes, DMD can help predict areas that
are prone to decay or damage due to high energy densities,
heating, or other factors. DMD can also identify unstable
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FIG. 2. DMD-EMPIC algorithm for accelerating EMPIC simulations. Note that for ¢ > #,, the stages are not exactly cyclic since fields no
longer have any effect on the DMD-predicted current density (illustrated by the broken line).

modes and flaws in device design or the numerical solver
itself. Furthermore, understanding the dominant modes and
their characteristics can help optimize the design parameters
of such devices.

(2) A DMD-EMPIC algorithm (Fig. 2) is presented to
accelerate the EMPIC simulations showing post-transient be-
havior, i.e., either steady-state, equilibrium, or any type of
periodic behavior. The time-domain DMD model of the cur-
rent density implements rapid prediction of the current density
at any time instant, and thus eliminates the need for EM-
PIC stages involving particles. The DMD-EMPIC strategy
utilizes the on-the-fly algorithm developed in Ref. [29] to
detect the end of transience in real time. It then replaces
the computationally expensive gather, pusher, and scatter
with DMD predicted current beyond that point in time. It is
important to highlight that the key distinction between this
paper and previous research, as outlined in Ref. [16], lies
in the application of the DMD model to current density for
replacing EMPIC stages involving particles. This approach
not only facilitates the prediction of future current density
but also enables fast and accurate forecasting of self-field val-
ues, adhering precisely to the discrete Maxwell’s equations.
Moreover, this study employs a more versatile on-the-fly algo-
rithm, distinguishing it from the method utilized in Ref. [16].
DMD-EMPIC has the potential to significantly expedite the
EMPIC simulations for plasma systems showing long oscilla-
tions (e.g., limit-cycle behavior).

This paper is organized as follows. Section II provides
a quick overview of the EMPIC algorithm used to gener-
ate the high-fidelity data and the DMD algorithm which
is trained on that high-fidelity data. Section III introduces
the DMD-EMPIC algorithm for accelerating EMPIC simu-
lations. Section IV provides a series of results showcasing
the effectiveness of DMD-EMPIC for accelerating EMPIC

simulations. An analysis of the computational gain for the
examples considered, and of the computational complexity in
general, is provided in Sec. V. Finally, Sec. VI summarizes
the main takeaways.

II. THEORETICAL BACKGROUND

A. EMPIC algorithm

The EMPIC algorithm [21,30-34] primarily consists of
four steps: (i) field-update, (ii) gather, (iii) pusher, and
(iv) scatter (bottom left of Fig. 2), which are executed
in a cyclic fashion at each time step. For completeness,
we will briefly discuss each step in the context of a fully
kinetic finite-element-based charge-conserving EMPIC algo-
rithm [30,31,35]. We will also discuss the computational
hurdle that a large number of particles poses in EMPIC simu-
lations.

B. Field update

The field-update stage deals with the time update of the
electric and magnetic fields by solving Maxwell’s equations.
Here, the field update is obtained on a finite element mesh
where the fields are represented as (discrete) differential forms
[36—41]. The electric field one-form £ (¢, r) and magnetic flux
density two-form B(z, r) are expanded as

N
Et,r) =) eityw(r),

i=1

(1a)

Ny
B(t.r) =Y bi(t)w(r), (1b)
i=1
where e;(t) and b;(¢) are their temporal degrees of freedom
(DoF), and wfl)(r) and w;?)(r) represent Whitney one-
forms (edge-based) and Whitney two-forms (facet based),
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respectively [30,35,42]. N; and N,, respectively, denote the
number of edges and elements (faces) in the mesh. From (1a)
and (1b) and using a Galerkin-type finite element discretiza-
tion, Maxwell’s curl equations in discrete form suitable for
time stepping can be written as [30,35]

b+ = =2 — AfC - 6™, (22)
e = ™ 4 At[x ] - CT - [x, 1] - BUFD)
— At[x ], (2b)

where At denotes the time stepe = [ej e; . .. eNl]T is defined
on integer time steps, and b = [b; b, ... bNZ]T and current
density j=1[j j2 - .- jN,]T are defined on half-integer time
steps. More details on j are provided in the description of
the scatter stage ahead. The incidence matrices C and CT
encode the exterior derivative (or, equivalently, the curl op-
erator distilled from the metric structure) on the primal and
dual meshes, respectively [35,42]. The elements of C are in
the set {—1, 0, 1} as they contain information about adjacency
and relative orientation among mesh elements. The Hodge
matrices [x.] and [%,-1] represent generalized constitutive
relations incorporating the metric information from the finite
element mesh. Further details on the discrete field update
equations can be found in Refs. [30,31,35].

C. Gather

In the gather step, the fields are calculated at the particle
position r,, using the interpolatory Whitney functions:
N
EmAt,ry) =EW =Y "e"uw(r,), (3a)

i=1

N’7
1 (n+1) — (n+1)
B<<n+§)m,r,,> =B =S b ). @)

i=1

D. Pusher

Once the fields are interpolated to each charged particle
location, the particle position and velocity are updated using
Newton’s laws of motion and Lorentz force equations. The
particle position r, and (nonrelativistic) velocity v, can be
obtained as follows [30]:

1 nt3
=1+ Ary, 2, (4a)
nt; T A )
Vy P=NT-N v, PN E, (4b)
mp
where
_ DA ) 9B i)
1 2[m,, BP z 2[m[, BP y
_ | 22t pm @A ()
N = 2pm[, BP,Z 1 21m,, BPqX ’ (5)
@At () 4p A p3(n)
me,, B Py zlmp B px 1

1 _1
B[()") = %(B;HZ) + B;,” 2)), and m,, e.md qp are, r.es.pectinlzly,
the mass and charge of the pth particle. Relativistic motion
can also be incorporated, if required.

E. Scatter

The scatter step is essentially a particle-to-mesh mapping
where the motion of each charged-particle during time step

At is mapped to the edges of the mesh to obtain each element
of the current density vector j

N, -

. q r

= f w{(r,) - dry, ©)
p=1

rpl

where the integration is performed along the straight line
trajectory of the pth particle during one time step, from r,; to
r,» [43]. The particular mapping ensures charge conservation
at the discrete level, as shown in Ref. [30]. Mathematically,
the above equation can be understood as a Galerkin projection
of the two-form J (resulting from the collective movement
of the charged particles) onto the Whitney one-form wfl)
associated to edge i of the mesh. The edge current density
vector j thus obtained is subsequently used to update the field
values in the next time step according to (2).

The gather, pusher, and scatter steps need to be performed
individually for each superparticle in the solution domain.
As mentioned earlier, to accurately capture the phase-space
evolution, a large number of particles is often necessary, a
typical number being on the order of 10° or so.

F. DMD algorithm

Let us consider a discrete-time dynamical system con-
sisting of the state x € M, where M is an N-dimensional
manifold and F is a sequential flow map F' : M +— M such
that

xD = F(x™). @)

The superscript n represents the discrete time index. In prac-
tical scenarios, M is typically represented by RY, N being
the number of mesh elements (nodes, edges, faces, etc.) over
which x is defined. It is important to note that in our context,
x™ may represent e, j"*2), or any other relevant dynamic
variable as introduced in the previous section. DMD collects
time snapshots of the state x and generates a set of spa-
tial DMD modes ¢;(r), where r is the position vector, with
corresponding DMD frequencies w; (in general, complex val-
ued) and modal amplitudes ¥; (i = 1, 2, .. .). These extracted
DMD features are used to (approximately) reconstruct the
spatiotemporal behavior of the original dynamics [23,44,45].
The first stage of the DMD process is snapshot collection,
i.e., sampling the state x at different time instants to build the
training data set. The snapshots are typically collected with
a uniform sampling interval from either high-fidelity simula-
tions (i.e., EMPIC) or experimental data. The corresponding
time window is referred to as the training window (region), or
DMD harvesting window (region) or simply DMD window.
Let the DMD harvesting window consist of ( 4 1) snapshots,
spanning from fy = nyAt to t; = (ng +1A,)At, A,, and At
being the number of time steps between two consecutive snap-
shots, and the time step interval, respectively. The snapshot

matrix X and the shifted snapshot matrix X’ are formed as
X = [X(no) X(nU+A”) o X(no+(l—l)An)]’ (8a)

X' = [X(no+An) x(0+280) .X(no+1An)]' (8b)

Assuming a linear predictive relationship X’ ~ A - X, DMD
proceeds to extract the eigenvalues and eigenvectors of A in
an efficient fashion. Singular value decomposition (SVD) of
the snapshot matrix X, results in the U, X, and V matrices
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such that
X =UXV*, 9

where the superscript ‘x denotes complex conjugate trans-
pose. The columns of U are essentially the POD modes [46]
which capture the dominant spatial pattern. The columns of V
represent the corresponding temporal pattern whereas the sin-
gular values (elements of the diagonal matrix X) indicate the
weight (importance) of corresponding modes. Typically, the
singular values show an exponentially decay pattern hinting
at the underlying low-dimensional structure. We only retain
the first » (< /) singular values corresponding to the first r
columns of U, V, leading to reduced SVD matrices U,, Z,,
and V, such that X ~ U, X, V. The value of r can be chosen
based on a hard energy threshold or optimal hard thresholding
[47,48]. Consequently, A can be approximated as

A= X'V, U (10)
Next, A is projected onto the columns of U,, leading to
A=UrAU, =U*X'V, 5. (11

The lower dimensionality of A makes the eigendecomposition
operation AW = W A computationally efficient, where the di-
agonal matrix A contains the eigenvalues A;, i =1,2,...,r
that approximate the eigenvalues of A. The extracted spatial
DMD modes ¢,(r) are given by the columns of the matrix
® = X'V, Z'W [44], resulting in the DMD reconstruction X
of the dynamic state for r > 1y, i.e.,

x(r, 1) ~ X(r, 1) = Z Digp (1)e® 1) (12)
i=1

where w; = In(A;)/A;, A; being the time interval between
two consecutive DMD snapshots i.e., A; = A, At. The modal
amplitudes ©%; can be calculated by solving an optimization
problem as described in Ref. [49]. Further details can be found
in Refs. [23,44,45,50]. The width of the DMD data harvesting
window is generally taken such that it can capture the entire
dynamics. For systems showing periodic behavior, the DMD
window should ideally cover multiple periods. The basis for
selection of A, is the Nyquist criterion and noise frequency.
In practice, since we generally deal with real data, the DMD
modes (¢;), frequencies (w;), and modal amplitudes () as in
(12) appear in complex-conjugate pairs. Equation (12) can be
written in terms of M complex-conjugate (overbar) pairs as

M
R, 1) =) (O, e + 9, e™ ). (13)

m=1

For purely real modes [direct current (dc) modes], two terms
in (13) can be combined into a single term with 2M > r.
From this point onward, by the mth DMD mode or frequency,
we will refer to the mth complex-conjugate pair. Also, for
conciseness, we will address both w,, and f,, as the mth DMD
frequency where f,, = |%| (Im{-} represents the imagi-
nary part). A schematic representation of the DMD process
for current density modeling is provided in Fig. 1.

DMD’s efficacy in modeling nonlinear dynamics can be
attributed to its close relation to the Koopman operator [26].
The Koopman operator theory tells us that with a suitable
transformation g(-), with g : M > C residing in the infinite-

dimensional Hilbert space, a dynamical system, nonlinear in

the original state space x, can be represented by a linear dy-
namical system in the transformed feature or observable space
g(x) [51]. If we can find a finite (p)-dimensional subspace in-
variant under the Koopman operator, the infinite-dimensional
Koopman operator can be represented by a p x p matrix K,
such that the time evolution of a vector-valued observable
g(x) = [g1(x); £2(x); ... ; gp(x)] belonging to that subspace is
given by g(x"*1) = K - g(x), where [;] denotes the verti-
cal stacking. DMD assumes an identity transformation, i.e.,
g(x) = x, which works well for variety of high-dimensional
nonlinear dynamical systems [25,26,44,45,52,53]. However,
the assumption of g(x) = x might not be sufficient for highly
nonlinear systems, including kinetic plasmas. To adequately
capture nonlinearities, the Hankel variant of DMD makes use
of the time-delay coordinates where the vector valued observ-
able at the nth time step is given by

g(X(n)) - [X("); XA, ;X(n—(d—l)A,,)]’ (14)

[T

where “;” indicates vertical stacking, d is the number of
Hankel stacks [29,50,54,55], and A,, is the DMD sampling in-
terval in terms of timesteps. The success of delay embeddings
in forming a suitable vector-valued Koopman observable is
rooted in Takens’ embedding theorem [55,56], which states
that under certain conditions, the attractor of a dynamical
system in delayed coordinates is diffeomorphic to the attrac-
tor of original system. Broadly speaking, incorporation of
time-delayed embeddings helps better model the nonlinear-
ities through a linear model such as DMD. Here, we apply
the Hankel DMD which follows the same steps as the regular
DMD, but with two notable exceptions. First, instead of x, we
use g(x) (14) to form the snapshot matrices (8) and, second,
we retain the first N elements of the DMD modes (¢) to
reconstruct the state as in (12).

III. DMD-EMPIC ALGORITHM

As described in Sec. I A, the primary computational bot-
tleneck comes from the gather, pusher, and scatter stages as
they involve each and every particle in the solution domain.
However, these steps are necessary as they dictate the time
evolution of the current density, which subsequently helps
update the electromagnetic fields. We try to address this issue
by directly modeling the time evolution of current density j
using DMD. An analytical equation of the type (13) for time
variation of current density in EMPIC serves the following
purpose:

(1) DMD helps in rapid prediction of j with negligible
computation cost compared to the particle operations. Also,
a linear time-evolution model for current density can facilitate
control theory applications.

(2) The gather, pusher, and scatter stages can be replaced
by the DMD-predicted j, which is then used to update the elec-
tric and magnetic fields in the field-update stage (Sec. 11 B)
within the finite-element time-domain (FETD) setting. This
can drastically reduce the computation cost of EMPIC.

The DMD-EMPIC algorithm is illustrated in Fig. 2. It
consists of two main phases, the transient (# < #7) and post-
transient phase (¢t > ;).

(1) Transient phase (¢ < ty): The high-fidelity EMPIC
simulation is run until the transient phase ends, denoted by
the final time #¢. The on-the-fly DMD algorithm [29] is run
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simultaneously with the ongoing EMPIC simulation to iden-
tify #; on the fly. The electric field data (e) is fed to the
Hankel DMD algorithm and provides feedback in real time
regarding whether to stop the EMPIC simulation or not. To
maximize computational gains, it is desirable to terminate
the time-consuming EMPIC simulation at the earliest op-
portunity. At the same time, if the simulation is terminated
too early (i.e., before the transient ends), DMD will not be
able to make accurate time extrapolation due to the lack of
quality training data [16]. Thus, a real-time algorithm for
timely termination of high-fidelity EMPIC simulation is nec-
essary. In the DMD-EMPIC algorithm, this is achieved by
the sliding-window on-the-fly DMD algorithm developed in
Ref. [29] which analyzes the time evolution of e to detect
end of transience at ¢ = f;. However, to handle the repetitive
execution of DMD for large data sets, we make modifications
to the algorithm described in Ref. [29]. Instead of using the
standard version of DMD, we perform randomized DMD to
reduce the computational load. The on-the-fly algorithm is
described in the Appendix.

(2) Post-transient phase (¢t > #7): Following the detection
of end-of-transience (¢y), Hankel DMD is performed in offline
or a posteriori fashion on the snapshots of j collected inside
the final DMD window. The purpose of the offline DMD is to
predict the current density beyond 77, denoted by j. Typically,
the gather, pusher, and scatter steps are required for the time
update of j. Here, since an analytical expression [similar to
(12)] for the time evolution of j is available from the offline
DMD, we avoid these steps by using the DMD-predicted
j. The predicted current j is then used in consecutive time
steps to update the self-electric and magnetic fields in the
field-update stage (Sec. I1B). Note that for ¢ > ¢;, the rela-
tion between the self-fields and current density is not exactly
cyclic. Beyond t = ty, the fields do not have any effect on the
time evolution of the current density j.

As shown in Fig. 2, before the end of transience is de-
tected (# < t7), the computation cost for each time step of

the simulation is the same as the cost of typical EMPIC
[O(N + N,)] with the added cost of on-the-fly DMD, where
N is aggregate mesh dimension and N, is the total number
of charged particles. However, beyond #; the computation
cost per time step reduces to O(N), which is a significant
reduction in computation time given that N, > N in typical
EMPIC settings [57]. The computational gain of the proposed
DMD-EMPIC is discussed in detail in Sec. V.

IV. RESULTS

A. Oscillating electron beam

A 2D electron beam propagating along the positive y di-
rection and oscillating under the influence of an external
transverse magnetic flux is shown in Fig. 3(a). The solution
domain (xy plane) is a square cavity of dimension 1cm X
1 cm, which is discretized via an unstructured mesh com-
posed of triangular elements. The mesh consists of Ny = 844
nodes, Ny = 2447 edges, and N, = 1604 elements (triangles).
Superparticles [blue dots in Fig. 3(a)], are injected at the
bottom of the cavity in the +ve y direction with a velocity
of 5 x 10° m/s. The superparticles are injected at the rate of
50 per time step in a random fashion uniformly in the range
[0.45cm, 0.55cm]. The superparticles discretize the phase
space of the electrons assuming a delta distribution in both
position and velocity space. Superparticles are treated as point
charges with mass mg, = ry,m, and charge gy, = rspq., where
m, and g, are, respectively, the mass and charge of an electron,
and rg, = 5000 is the number of actual electrons represented
by each superparticle (superparticle ratio). An external oscil-
lating magnetic flux Bey = By sin(27 /Ty ) Z is applied in the
z direction, where By = 2.5 x 1072 T, and T,s. = 0.8 ns. The
simulation is run until » = 320000 time steps or t = 64 ns
with the time-step interval At = 0.2 ps.

The post-transient snapshot of the current density j is
shown in Fig. 3(b) at r = 16 ns (n = 80000). The goal is to
model the time evolution of such snapshots inside the cavity
using DMD. Unlike electromagnetic fields, j is restricted to

A/m
1 2] 1 10°
120
0.8 0.8
100 10"
E
—0.6 | — =
£ =06 0 3
(&) (o] — 0
&2 25 0 & 10
0.4 - >0.4 En
40 @
0.2 ] 0.2 107
20
0 ‘ 0 0 ,
0 02 04 06 08 1 0 1 107 200 400 600 800 1000
X [em] Index

(a) Electron beam snapshot at ¢t = 64
ns.

(b) Current density snapshot at t = 64 ns.

(c) Singular values for oscillating electron
beam.

FIG. 3. (a) Snapshot of the electron beam at r = 64 ns. The beam is propagating along the +ve y direction, and oscillating under the
influence of a z-directed transverse magnetic flux. The blue dots represent superparticles and grey lines show the finite element mesh edges.
(b) Snapshot of the current density at # = 64 ns. The magnitude is shown by a color map [59], whereas the direction is denoted by the blue
arrows. Note that in all the current density plots, the magnitude color map is smoothed for visualization purpose. (c) Singular values after

performing SVD on the snapshots of current density.
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TABLE I. DMD parameters for modeling current density.

Parameters Oscillating beam Vircator BWO
ta 15.60 ns 22.40 ns 91.20 ns
ten 23.60 ns 30.40 ns 107.20 ns

At 8 ns 8 ns 16 ns
A, 8 ps 40 ps 2 ps
d 80 50 20
r 302 42 1999
M 152 22 1006

only the mesh elements interacting with the particles. In other
words, the number of active edges Nj, over which j is nonzero
(within the DMD window span) is less than total number of
mesh edges N;. We only consider those active edges for DMD
modeling with x = j,, where j, is the current density vector
with active edges. After performing the DMD, we revert back
to the original state space with zero padding.

1. On-the-fly DMD on fields

The on-the-fly DMD is carried out on the electric field data
to detect the end of transience or onset of the periodic be-
havior as described in the Appendix [29]. Approximate prior
knowledge about the timescale is required to choose the DMD
window width At,, accordingly, ensuring that it covers multi-
ple oscillation cycles. We select At,, = 8 ns. Once the EMPIC
simulation reaches t = At,,, fast Fourier transform (FFT) is

performed on a randomly chosen set of 20 points in space.
Averaged FFT allows us to select the DMD sampling interval
A, = 8 ps. We select the target rank r = 200 and number of
Hankel stacks d = 10. The shift in consecutive sliding DMD
windows is ét,, = 0.4 ns. The on-the-fly DMD parameters are
mentioned in detail in Table IV. The onset of equilibrium (end
of transience) is detected at t = 7y = 23.06 ns.

2. Offline DMD on current density

The primary contribution of this paper is to accelerate
EMPIC simulations by DMD modeling of the plasma current
density. EMPIC stops at t =t (detected end of transience),
and offline DMD on current density j is performed in the
window t € [ty — At,, t7] for time extrapolation. We first
identify the active edges to construct j,, perform DMD on
the snapshots of j, to get the predictions j,, and then revert
back to j. The DMD parameters are summarized in Table 1.
The ¢y, t.,, i.€., the location of the DMD window for current
density, is already determined from the on-the-fly DMD with
ty =ty — At, and t,, = t;. FFT is performed in [t, f.,] to
decide the DMD sampling interval A,. As a rule of thumb, we
choose DMD sampling frequency to be four times the Nyquist
frequency.

The sharp decay in the singular values [Fig. 3(c)] indicates
the existence of a low-dimensional structure in the plasma
current dynamics. Figure 4 shows the first four most ener-
getic DMD modes and corresponding DMD eigenvalues, as
well as the spatial cross-correlation matrix. The DMD modes

Mode 1 A/m A/m A/m
1 1 50
40
0.8 0.8 40 40
0.6 30 0.6 30 30
g g
& 2
>0.4 20 504 20 20
0.2 10 0.2 10 10
0 ' 0 0 ’ 0 0 0
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
X [em] X [em] X [em]
(a) DMD mode 1 with f; = 0 (dc). (b) DMD Mode 2 with f» = 1.25 GHz. (¢) DMD Mode 3 with f3 = 2.50 GHz.
Mode 4 A/m Normalized Enerey
1 T 7T !
B 140
0.8 0.8 120 0.8
E0'6 r § 100 o
S, f, 80
>0.4 0.4 -28 60 0.4
0.2 02 40 o3
” 20
0

X [em] ' Re{A}

(d) DMD mode 4 with fy = 3.75 GHz.

(e) DMD eigenvalues.

20 40 60 80 100 120 140
Mode index

(f) Spatial correlation among DMD modes.

FIG. 4. Extracted DMD features for oscillating electron beam. (a)-(d) The DMD modes (¢,, + ¢,,) and their corresponding frequencies
(fm) for the current density modeling. (¢) The DMD eigenvalues on the complex plane with respect to the unit circle. The DMD eigenvalues
are color mapped according to their normalized energy. (f) Spatial correlation (p) among different DMD modes.

065307-7



INDRANIL NAYAK et al.

PHYSICAL REVIEW E 109, 065307 (2024)

, A/m i DMD A/m 10° ; :
120 120 ‘ :
0.8 0.8
100 100 i |
10 ; i
—0.6 —0.6 ]
g 80 g 80 = : :
—_— = w l

>0.4 60 >0.4 60 , :\W
40 40 107 == :
0.2 0.2 ; :

- 20 i DMD; Extrapolation region
3 V. & g g b window
0 02 0.4 0.6 0.8 1 0 1 10 10 20 30 40 50 60 70

X [cm]

(a) EMPIC simulation of current density
at t = 64 ns.

b) DMD prediction of current densit
y
at ¢ = 64 ns.

Time (¢, ns)

(c¢) Relative error between EMPIC and DMD
predicted current density according to (?7).

FIG. 5. Comparison between EMPIC and DMD-predicted current density. The shaded green region in (c) denotes the DMD training
window. Note that the gap at the end of DMD window is due to the time-delayed stacking.

are indexed according to their energy [60], with mode 1
[Fig. 4(a)] being the most energetic one which is essentially
a dc mode. Mode 2 [Fig. 4(b)] captures the oscillation fre-
quency of the external magnetic flux with DMD frequency of
f> = 1.25GHz (f,, = |"™21|). Mode 3 [Fig. 5(c)] indicates
the first harmonic. Together these two modes capture >90%
of the total energy [Fig. 4(e)]. As the mode index increases,
the spatial pattern becomes less structured due to the effect
of numerical noise. The frequencies associated with mode 3
[Fig. 5(c)] and mode 4 [Fig. 4(d)] indicate that those are essen-
tially the harmonics of mode 2, generated due to the nonlinear
wave-particle interaction. The correlation p between differ-
ent spatial patterns of DMD modes indicates their extent of
orthogonality. We use the absolute value of modal assurance
criterion (MAC) [16,61] to compute the spatial correlation
among DMD modes:

|'PiT$j|2

Wi ¥) = IMAC(Y;, ¥ )| = | —=— L
et Ve = )

. (15)

We reiterate that by the mth DMD mode, we refer to the
{#,,. #,,) pair in (13). While plotting the modes in Fig. 4
and throughout this paper, as well as calculating p, we use
v, =, + $m) = 2Re{¢,,}, where Re{-} represents the real

part. The spatial correlation matrix shows that the dominant
DMD modes are orthogonal to each other with off-diagonal
elements close to zero. However, it is important to note that
unlike POD, DMD does not ensure orthogonality in space,
but guarantee orthogonality in time.

The DMD predicted current density [Fig. 5(b)] deep into
the prediction (extrapolation) region is plotted against the cur-
rent density from high-fidelity EMPIC simulation [Fig. 5(a)]
for side-to-side comparison. The relative error given by (16)
is also plotted in Fig. 5(c),

SU)ZIUU{—JONh7 (16)

H3@!l2

where || - ||, indicates the two-norm. The average relative
error in the extrapolation region is 1.80%. The gather, pusher,
and scatter stages are replaced by the DMD prediction j for
t >ty (=n>ny) in the EMPIC simulation, as illustrated
in Fig. 2. The self-fields e and b generated beyond #; are
compared against the self-fields generated from EMPIC sim-
ulation. The relative error is calculated in a similar manner as
in (16). The electric field patterns from EMPIC and DMD-
EMPIC in the extrapolation region at ¢ = 64 ns are shown in
Figs. 6(a) and 6(b), showing good agreement. The relative
errors in the self-electric and magnetic fields are 0.94% and

EMPIC A/m DMD-EMPIC A/m 0
10 ' ‘ ‘ ‘
3500 3500 ——Eiror in.b
——Error in e
3000 3000 — o
-1
2500 2500 10
2000 2000 =
w
1500 1500 5
10
1000 1000
500 500 Extrapolation region
0 0 10°
30 40 50 60
Time (¢, ns)

(a) EMPIC simulation of electric field at
t = 64 ns.

(b) DMD-EMPIC simulation of electric
field at t = 64 ns.

(c) Relative errors between EMPIC and
DMD-EMPIC simulated self electric (e)
and magnetic (b) fields.

FIG. 6. Comparison between EMPIC and DMD-EMPIC simulated self-fields in the extrapolation region.
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(a) Virtual cathode snapshot at t = 64
ns.

(b) Current density snapshot at ¢ = 64 ns.

(c) Singular values for virtual cathode
oscillations.

FIG. 7. (a) Snapshot of the virtual cathode formation at # = 64 ns. (b) Snapshot of the current density at r = 64 ns. (c) The singular values

after performing SVD on the snapshots of current density.

2.60%, respectively [Fig. 6(c)]. The gain in run time is dis-
cussed in Sec. V.

B. Virtual cathode oscillations

Next we consider a more challenging example of virtual
cathode oscillation. We use the same setup as in Sec. IV A,
however, with the following modifications. We increase the
current injection by both increasing the superparticle ratio to
rsp = 75000 and the superparticle injection rate to 200 per
time step. The superparticles are injected at the bottom in
the region [0.4 cm, 0.6 cm]. Instead of a transverse oscillating
magnetic flux, we apply a strong confining magnetic field,
B = B,y along the y direction, with By = 100 T. The simu-
lation is run until » = 320000 time steps or ¢ = 64 ns with
time step Ar = 0.2 ps. The snapshot of the beam after virtual
cathode formation at = 16 ns, and the corresponding current
density plot are shown in Figs. 7(a) and 7(b), respectively.
Modeling the current density for virtual cathode oscillations
is particularly challenging because there are no external forces
dictating a clear oscillation pattern of the electrons. The ma-
jority of oscillations are limited to a small region (near the
bottom) causing possible rank deficiency, and the leakage

from the sides makes variation of j more prone to the particle
noise.

1. On-the-fly DMD on fields

Similar to the oscillating beam case, the on-the-fly DMD is
carried out to detect the end of transience indicating the onset
of virtual cathode oscillations. We select Af, = 8ns, A; =8
ps, ét, = 0.4ns, r = 200, and number of Hankel stacks d =
10. The onset of the virtual cathode oscillations is detected at
ty = 30.40ns. The on-the-fly DMD parameters are provided
in detail in Table IV.

2. Offline DMD on current density

The training parameters for the Offline DMD is summa-
rized in Table 1. Fast decay of the singular values in Fig. 7(c)
indicates that most of the energy is concentrated in a small
number of modes. The first two most energetic DMD modes
carry more than 95% of the total energy and are plotted in
Fig. 8. Mode 1 [Fig. 8(a)] represents the dc leakage cur-
rent from the sides of the virtual cathode, whereas mode
2 [Fig. 8(b)] captures the oscillations near the root of the

A/m Mode 2 A/m Normalized ]linergy

i 50 1 : 120 1t

0.8 40 08 100 o 0.8
—0.6 30 =0.6 B los
g g =
= = 60 F O
>0.4 20 >0.4 = o

40
0.5¢
02 LS 120 02
0 ! i 0 0 L 1o 1 .
0 02 04 06 0.8 1 0 02 04 06 0.8 1 1 05 o 03 "
X [em] X [em] RefA}

(a) DMD mode 1 with f; =0 (dc).

(b) DMD Mode 2 with f, = 1.66 GHz.

(c) DMD eigenvalues.

FIG. 8. Extracted DMD modes and eigenvalues for current density modeling in virtual cathode oscillations.
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(b) Relative errors in the DMD-EMPIC simulated self-fields.

FIG. 9. Relative errors for the virtual cathode oscillations.

beam, having a frequency of 1.65 GHz. The DMD eigenvalues
[Fig. 8(c)] also indicate the dominance of the dc mode in terms
of energy.

With the help of extracted DMD modes, frequencies, and
modal amplitudes, current density is extrapolated for ¢ > 1,
using DMD. The relative error in predicted current is shown in
Fig. 9(a). The average error in the extrapolation region around
6.65%, which is higher compared to the oscillating beam case
(1.80%). This is expected because the leakage from both sides
of the virtual cathode results in nonsmooth current variation
due to high-particle noise. Also, the localized nature of the
oscillation contributes to a possible rank-deficiency resulting
in higher error. The relative error in self-electric field e and
magnetic flux b is shown in Fig. 9(b). The average relative
error in e is around 1.81% whereas in b it is around 8.10%.
The rror in b is typically higher for both test cases since the
self-magnetic field is generally very low in magnitude, and
more susceptible to particle and numerical noise.

C. Backward wave oscillator

Now we consider a more challenging and practical 2.5 D
case of a backward wave oscillator (BWO) [62]. The finite
element discretization of the longitudinal cross section of a
sinusoidally corrugated slow-wave structure (SCSWS) is de-
picted Fig. 10(a). The SCSWS has boundary profile R(z) =
1(A+B) + $(A — B) cos(%z). Based on an eigenmode anal-
ysis, the SCSWS is designed to have A = 19.5mm, B =
10.5mm, C = 16.7mm, and N, = 8.5. Each superparticle in
the EMPIC model represents r,, = 1.25 x 108 electrons, with

an injection rate of 20 superparticles per time step (A; = 0.5
ps). The superparticles are injected in a random fashion with
uniform distribution within the region centered around y =
0.008 m with beam width 0.0018 m. Superparticles are in-
jected with a velocity of 2.5 x 10% m/s in the x direction. The
simulation is run for 440,001 time steps or ¢ = 220.005 ns.
The fundamental frequency of the BWO is 8.31 GHz.

The on-the-fly algorithm detects the end of transience
at ty = 107.20ns with Ar, =16ns, A, =2 ps, and 61, =
1.6 ns (see Table IV for details). The training parameters for
offline DMD on current density are provided in Table 1. The
average extrapolation error in the current density is 13.52%
(Fig. 11). The higher error can be attributed to particle noise,
which plays a significant role in the absence of a strong ex-
ternal force dictating the oscillations (oscillating beam). The
most energetic mode is the dc mode [Fig. 10(b)] followed
by the mode [Fig. 10(c)] oscillating with fundamental fre-
quency at f, = 8.32 GHz. As expected, the oscillations are
concentrated towards the end of BWO where the bunching of
electrons (superparticles) occurs. The error in the self-electric
field from the DMD-EMPIC framework is 5.58% (Fig. 11).

V. COMPUTATIONAL GAIN

A. Computational complexity

The time complexity of typical EMPIC algorithm for each
time-step with explicit field solver is given by O(N + N),),
where N is the aggregate mesh dimension and N,, is the total
number of (super)particles. In a traditional EMPIC setting
N, > N, thus the number of particles remains the primary
bottleneck for expediting EMPIC simulations. If the simu-
lation is run until n, time-steps, the total time complexity is
given by O(Nn, + Npn,).

The computation cost of repeated calculation of the DMD
features for the on-the-fly application also adds to the typical
EMPIC cost for n < ny (=t < ty) in the DMD-EMPIC algo-
rithm. The computation complexity of DMD is dominated by
the SVD step, resulting in a time complexity of 0(l§N d) [63],
where [; is the number of DMD snapshots after d number
of Hankel stacking. Time complexity for randomized DMD
with target rank r(< l;), is typically O(rl;Nd). Note that as
mentioned in Ref. [64], SVD need not be recalculated every
time we shift the DMD window. The resulting DMD features
can be calculated in an incremental manner. In the worst case
scenario, let us consider that the SVD is performed for each
sliding window. Also, in the worst case scenario, the DMD
window is shifted by only one snapshot, i.e., the amount
of shift in terms of time steps A,; = A,. With these con-
siderations, the cost of the sliding-window on-the-fly DMD
(randomized) is approximately O(Wzﬂ), where ny is the
time step at which EMPIC is stopped, and A, is the number
of time steps between two consecutive DMD snapshots.

The time complexity of the DMD-EMPIC algorithm for
n<ng(=t <tp)is ONny+ Npny + rldid"f ), whereas for
n>ng(=t>tr)is O(N(n, — ns) + [3Nd) considering one-
time cost of offline DMD with d Hankel stacks. Since there
are no particles involved in case of DMD-EMPIC for n > ny,
N, does not appear in the time complexity. For a simulation
run until n = n,, the time-complexity of the DMD-EMPIC is

n
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FIG. 10. Offline DMD on current density of a backward wave oscillator (BWO).

nificant gain in the run time. For late-time queries (n; > ny),
the ratio of run times for EMPIC (7},) and DMD-EMPIC (T‘q)
can be roughly given by T“q /T, =~ nys/ng, given the field solver
takes negligible time compared to the entire simulation. Note
that for large scale problems such as BWO, this approximation
does not necessarily hold, as evident from Table III.

The simulation run time depends on several factors, includ-
ing the specific computational platform and hardware, and
code optimization. In this work, the numerical experiments
were run on Intel Xeon E5-2680 v4 (Broadwell) compute
CPU with 2.4 GHz and 14 cores per processor. Each node
had 128 GB of memory. The interconnect used was Mellanox
EDR Infiniband Networking (100Gbps). Each simulation job
was allocated one node and five cores. The node run times for
all test cases are listed in Table III. Note that the CPU run time

O(Nny + Nyny + "84 4 2Nd). The time complexities for
EMPIC and DMD-EMPIC are summarized in Table II.

B. Runtime comparison

As mentioned earlier, in a typical EMPIC setting, N, > N.
As long as n, is moderately larger than ny, there will be sig-

8(t)

Error in j
Error in e

Extrapolation region

103 . | | | | | | | | |

TABLE II. EMPIC and DMD-EMPIC complexities with explicit
110 120 130 140 150 160 170 180 190 200 210

field solver.

Time (¢, ns)
FIG. 11. Relative two-norm error in current density j (DMD EMPIC OWNng + Nyny)
extrapolation) and self electric field e (DMD-EMPIC framework) for DMD-EMPIC O(Nn, + N,ns + Wzﬂ + le d)

the backward wave oscillator.
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TABLE III. Node run time in days.

EMPIC DMD-EMPIC
Oscillating beam 4.43 1.66
Vircator 5.96 2.93
BWO 7.04 4.08

is approximately 5 times the node run time, exhibiting good
shared-memory parallelization across cores.

C. Effect of parallelization

It is important to note that particle-in-cell (PIC) algorithms
are highly parallelizable and an appropriate parallel com-
puting architecture can be employed to accelerate EMPIC
simulations [65]. Single nodes with multiple CPUs (shared
memory) or multiple nodes (each with one or more CPUs and
distributed memory) can reduce the simulation time from days
to several hours. Fortunately, the DMD-EMPIC algorithm
should also achieve comparable acceleration from paralleliza-
tion for the following reason: let the computation time for
performing DMD (online + offline) be Tpymp. Let the run time
for the original EMPIC simulation up to the desired query
time be 7. Suppose the on-the-fly (online) DMD raises the
flag to stop the EMPIC simulation at T¢(< T;). The relative
gain in computation time Gy is

_ 1 ~ 1
Gr = A, )
Ty +Tomp +Trs Ty

where Tgg is the time taken by the field solver beyond
Ty. This approximation holds if Tpmp and 7gs are negligible
compared to Ty. Depending on the scale of the problem, type
of the field solver, and parallelization, 7rs can be negligible
compared to T¢. Tpump is usually much less than 7 even with
parallelization, because parallelization not only helps accel-
erate EMPIC but also the DMD computation. For example,
the authors in Ref. [66] utilized a parallel Tall and Skinny
QR (TSQR) algorithm for parallelizing the SVD computation.
The construction of the Koopman operator, eigendecompo-
sition, and the construction of DMD modes are also done
in an embarrassingly parallel fashion. Recently, the authors
in Ref. [67] used a communication-optimal parallel TSQR
algorithm for reduced-communication parallel DMD. These
parallel DMD methods are reported to scale well. A detailed
study of how parallel EMPIC scales compared to parallel
DMD in the presence of parallel computing architecture is
beyond the scope of this paper. Since both DMD and EMPIC
can benefit from parallel computation, the overall acceleration
by DMD-EMPIC depends on how early the system reaches
equilibrium or pseudoequilibrium, i.e., how small 7} is com-
pared to T,. Consequently, Eq. (17) is independent of the
hardware platform or the type of PIC algorithms used, as both
Tr and T, are similarly affected.

VI. CONCLUSION AND LOOK AHEAD

In this paper, we have demonstrated a reduced-order frame-
work for modeling space-charge dynamics from EMPIC
simulations by performing DMD on the current density. Ex-
tracted features such as DMD spatial modes and frequencies
help to discover and analyze the dominant physics. DMD-
EMPIC shows great promise in reducing overall run time
of EMPIC simulations via time extrapolation of the current
density data to future time. However, similar to any other
data-driven method, the extrapolation accuracy depends on
the quality of the training data. While our ultimate goal is
to extrapolate from very early (transient) time-series data,
current time-extrapolation methods like DMD and recurrent
neural networks require further development to realize this
fully. In the meantime, a more viable and effective approach
is to interpolate time-series data of current density across
various simulation parameters. This technique, rooted in
reduced-order modeling of current density, offers a promising
solution to the longstanding challenge of accelerating EM-
PIC plasma simulations. Another important aspect is ensuring
conservation laws in the extrapolated evolution. Currently, the
DMD-EMPIC algorithm does not enforce energy conserva-
tion explicitly but only approximately as the predicted current
density and fields are close to the original EMPIC quantities.
As a future work, physical constraints such as conservation
laws may be explicitly included in the training and extrapola-
tion process. Another possible venue of future work is to make
the DMD parameter selection fully automatic.

The code and data for the oscillating electron beam case
are available from GitHub [68].
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APPENDIX: ON-THE-FLY DMD ALGORITHM

The on-the-fly DMD algorithm [29] for identifying the end
of transient is based on the invariance of the DMD extracted
features irrespective of the location of the DMD window in
equilibrium, as long as the DMD window is wide enough
to capture the dynamics. Invariance in DMD extracted fea-
tures leads to invariance in the DMD predicted solution at
a fixed time window. However, when the system is in tran-
sience, no such claim regarding the invariance of extracted
DMD features can be made. It is important to note that the
on-the-fly DMD necessitates frequent recalculations of DMD
algorithm, which can become computationally intensive for
large data sets. To address this challenge, we employ the
randomized DMD algorithm as proposed in Ref. [69]. While
this approach offers greater efficiency, it does so at the cost
of some accuracy. However, this trade-off is acceptable in our
context, as the primary focus during the on-the-fly stage is
to capture the system’s overall behavior rather than precise
reconstruction.

The hyperparameters in Algorithm 1 include én,,, 1, ¢, and
80. The shift between consecutive DMD windows, denoted by
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ALGORITHM 1. On-the-fly sliding-window DMD algorithm
for detecting ¢, for real-time termination of EMPIC.

Input: (i) DMD window width At,, or, equivalently, An,,
based on the approximate idea of the timescale of the problem.
(ii) Electric field data from the ongoing EMPIC simulation.
QOutput: EMPIC termination flag.
1: After the EMPIC simulation reaches n = An,,, shift the
DMD window by dn,, time steps (represented by increasing
window index k) as the simulation progresses. Let us denote
the starting and end of the kth window by t x (= ny ) and
ten k(= Nen i), respectively.
2: for Current (kth) DMD window
3: Perform randomized DMD for the kth window and obtain the
DMD prediction from ny = (1., + nAny) to (n, + Any). Let
us denote this DMD prediction corresponding to the k<th DMD
window as X\".
4: Get the average relative two-norm error between the overlapping
region of X\ and X", denoted by (5),,

+ Any, —8ny, ~(n)
1 ke IXD =07 1]
My =— Tw  Twol2 (AD)
(ng — 8ny, + 1) ; 1K 112

50 0 (8 )+ ()it .4 (8“)_g41)/q < & then Raise the
EMPIC termination flag.

6: Raise the EMPIC termination flag.

7. return

8: else

9: Move to the next DMD window, w = w + 1.

10: enfif

11: end for

TABLE IV. On-the-fly DMD parameters.

Parameters Oscillating beam Vircator BWO
At 8 ns 8 ns 16 ns
8ty 0.4 ns 0.4 ns 1.6 ns
n 10 10 10
q 5 5 5
8o 0.05 0.05 0.05

200 200 200
A, 8 ps 8 ps 2 ps
d 10 10 5

dny, (equivalently, &8¢, = én, At), balances precision and
computational cost. Specifically, a smaller §n,, enhances the
accuracy in identifying ¢, but increases the number of re-
quired DMD computations. Conversely, a larger én,, reduces
computation at the expense of precision. For large-scale
problems, a larger dm,, is advisable. The factor n deter-
mines the extent of time for comparing DMD predictions,
reflecting our prediction goals for equilibrium behavior. The
decision to halt the EMPIC simulation is based on whether
the relative error between DMD predictions remains be-
low 8y across g consecutive windows, indicating the end
of the transient state. The choice of §p reflects the de-
sired precision in DMD extrapolation. Opting for a higher
value of g increases robustness against noise in data, but
may delay the detection of ;. The hyperparameters for
Algorithm 1, including parameters for randomized DMD [69]
(r, A, d), are provided in Table IV. Note that r for random-
ized DMD corresponds to the target rank of randomized SVD
operation.
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