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In this paper we first present the general propagation multiple-relaxation-time lattice Boltzmann (GPMRT-LB)
model and obtain the corresponding macroscopic finite-difference (GPMFD) scheme on conservative moments.
Then based on the Maxwell iteration method, we conduct the analysis on the truncation errors and modified
equations (MEs) of the GPMRT-LB model and GPMFD scheme at both diffusive and acoustic scalings. For
the nonlinear anisotropic convection-diffusion equation (NACDE) and Navier-Stokes equations (NSEs), we also
derive the first- and second-order MEs of the GPMRT-LB model and GPMFD scheme. In particular, for the
one-dimensional convection-diffusion equation (CDE) with the constant velocity and diffusion coefficient, we
can develop a fourth-order GPMRT-LB (F-GPMRT-LB) model and the corresponding fourth-order GPMFD
(F-GPMFD) scheme at the diffusive scaling. Finally, three benchmark problems, the Gauss hill problem, the
CDE with nonlinear convection and diffusion terms, and the Taylor-Green vortex flow in two-dimensional space,
are used to test the GPMRT-LB model and GPMFD scheme, and it is found that the numerical results not only
are in good agreement with corresponding analytical solutions, but also have a second-order convergence rate in
space. Additionally, a numerical study on one-dimensional CDE also demonstrates that the F-GPMRT-LB model
and F-GPMFD scheme can achieve a fourth-order accuracy in space, which is consistent with our theoretical

analysis.
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I. INTRODUCTION

The kinetic-theory-based lattice Boltzmann (LB) method,
as a highly efficient numerical approach at the mesoscopic
level, has been widely used to study the fluid flow problems
(e.g., the multiphase flows [1,2], fluid flows in porous media
[3]) governed by the Navier-Stokes equations (NSEs) [4] for
its a second-order accuracy in space [5,6] and advantages
in treating complex boundary conditions. On the other hand,
the LB method has also been extended to solve some special
kinds of partial differential equations (PDEs), including diffu-
sion equations [7—13], convection-diffusion equations (CDEs)
[14-23], Burgers’ equations [24-26], general real and
complex nonlinear convection-diffusion equations [27],
and nonlinear anisotropic convection-diffusion equations
(NACDEs) [28].

Usually, the LB method suffers from numerical instability
when the relaxation parameter is close to 2. To solve the
problem, two possible approaches can be adopted. The first
one is to introduce the multiple-relaxation-time (MRT) col-
lision operator [29-31] with some adjustable free relaxation
parameters [32-35], which is more general and more stable
than the single- and two-relaxation-time lattice Boltzmann
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(SRT-LB [36] and TRT-LB [14]) models. The second one is to
use the general propagation LB model within the framework
of the time-splitting method where two free parameters are
introduced into the propagation step for NSEs [37] or NCDE
[38] based on the Lax-Wendroff (LW) scheme [39,40] and
fractional propagation (FP) scheme [41]. This model is more
stable, and the popular standard LB model, LW and FP
schemes can be viewed as its special cases. Considering the
advantages of the MRT-LB model and general propagation LB
model in the numerical stability, in this work, we will consider
the more general propagation MRT-LB (GPMRT-LB) model.

In the framework of LB method, several asymptotic analy-
sis approaches have been used to derive macroscopic PDEs,
including the Chapman-Enskog analysis [42], Maxwell it-
eration [43,44], direct Taylor expansion [30], recurrence
equations method [45,46], and equivalent equations method
[47-49], although these asymptotic analysis approaches can
be adopted to develop higher-order LB models [50-56],
while they cannot be applied to clarify the relation between
the LB model and the macroscopic PDE-based numerical
scheme (the so-called macroscopic numerical scheme). Over
recent years, some significant contributions have been made
to bridge the gap between the LB model and macroscopic
numerical scheme for a specified PDE, and these efforts aim to
provide clear and rigorous consistency, accuracy, and deriva-
tion of modified equation (ME). Most of the existing works,
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however, are limited to the LB models and the macroscopic
finite-difference schemes for diffusion equations and CDEs.
On the one hand, Ancona [7] first presented the SRT-LB
model with D1Q2 lattice structure for the one-dimensional
diffusion equation and found that it is consistent with a
macroscopic three-level second-order DuFort-Frankel scheme
[57]. Then Suga [10] demonstrated that the SRT-LB model
with D1Q3 lattice structure for the one-dimensional diffusion
equation is equivalent to a macroscopic four-level fourth-
order finite-difference scheme. Lin et al. [11] extended this
work to consider a more general MRT-LB model and de-
rived a macroscopic four-level sixth-order finite-difference
scheme. Silva [12] focused on the TRT-LB model for the
diffusion equation with a linear source term and obtained
a macroscopic fourth-order finite-difference scheme. How-
ever, all of the aforementioned works are limited to only
one-dimensional problems. In a recent work, Chen [13] con-
sidered the MRT-LB model with the D2Q5 lattice structure
for the two-dimensional diffusion equation and obtained a
five-level fourth-order finite-difference scheme. On the other
hand, Dellacherie [58] analyzed the SRT-LB model for the
one-dimensional CDE with D1Q2 lattice structure and il-
lustrated that this LB model is equivalent to a three-level
finite-difference scheme called LFCCDF (Leap-Frog differ-
ence for the temporal derivative, central difference for the
convective term, and DuFort-Frankel approximation for the
diffusive term) scheme [59]. Cui et al. [34] showed that for
the one-dimensional steady CDE, the MRT-LB model can
be written as a macroscopic second-order central-difference
scheme. Following a similar idea, Wu et al. [60] derived a
macroscopic finite-difference scheme of the MRT-LB model
composed of natural moments and further performed a more
general analysis on the discrete effects of some boundary
schemes for the CDE. Recently, Chen et al. [23] obtained a
macroscopic four-level fourth-order finite-difference scheme
from the MRT-LB model with D1Q3 lattice structure for the
CDE. In addition, Li er al. [24] demonstrated that for the
one-dimensional Burgers equation, the SRT-LB model with
the D1Q2 lattice structure can be expressed as a macroscopic
three-level second-order finite-difference scheme. Junk [61]
and Inamuro [62] found that the SRT-LB model is equivalent
to a macroscopic two-level finite-difference scheme if the re-
laxation parameter is equal to one, and at the diffusive scaling,
it has a second-order convergence rate for the incompress-
ible NSEs [61]. D’Humieres and Ginzburg [46] conducted
a theoretical analysis on the TRT-LB model with recurrence
equations and illustrated that when the magic parameter is
fixed as A°° = 1/4, the model can be written as a macroscopic
three-level finite-difference scheme with a second-order accu-
racy in space. Chai et al. [30] further presented a more general
analysis on the TRT-LB model and also derived the three-level
finite-difference schemes for steady and unsteady problems.
It is worth noting that the works mentioned above are
limited to some specific problems and/or lattice structures.
To obtain the macroscopic finite-difference scheme from a
given LB model with the DdQq (g discrete velocities in
d-dimensional space) lattice structure, Fucik et al. [63] de-
veloped a general computational tool [64], while the origin
of this algorithm remains unclear. In contrast, Bellotti ef al.
[65] conducted a precise algebraic characterization of the LB

model and investigated the relationship between the MRT-LB
model and macroscopic numerical scheme. They found that
the LB model can be exactly expressed as a macroscopic
multiple-level finite-difference scheme solely on the conser-
vative variables. Furthermore, they also carried out analysis
on the truncation errors and MEs at both diffusive and acoustic
scalings [66], which are consistent with the results based on
the asymptotic analysis methods [44,49]. However, it should
be noted that they considered only the MRT-LB model with
a diagonal relaxation matrix and the first-order ME at the
diffusive scaling [66]. In this work we will first extend the pre-
vious works [65,66] to consider the more general GPMRT-LB
models that are developed for NACDE and NSEs, and derive
the macroscopic finite-difference (GPMFD) schemes. Then
we will conduct detailed analysis on the truncation errors, the
first- and second-order MEs of the GPMRT-LB models and
GPMFD schemes at both diffusive and acoustic scalings.

The remainder of this paper is organized as follows. In
Sec. II we present details on how to derive the GPMFD
scheme on conservative moments from the GPMRT-LB
model. In Sec. III the truncation errors at both diffusive and
acoustic scalings are derived through the Maxwell iteration
method, followed by the first- and second-order MEs of the
GPMRT-LB model and GPMFD scheme. In Sec. IV we de-
velop a fourth-order GPMRT-LB (F-GPMRT-LB) model and
GPMFD (F-GPMFD) scheme at the diffusive scaling for the
one-dimensional CDE with the constant velocity and diffusion
coefficient. In Sec. V some simulations of the Gauss hill
problem, the CDE with nonlinear convection and diffusion
terms, the Taylor-Green vortex flow, and one-dimensional
CDE are carried out to test the proposed GPMRT-LB
model and GPMFD scheme. Finally, conclusions are given
in Sec. VL.

II. THE GPMFD SCHEME OF THE GPMRT-LB MODEL

A. Preparation

To begin our analysis, we first discretize the problems in
d (d =1, 2,3) dimensional space without considering the
boundary conditions. In the LB method [4], the space is
discretized by £ := AxZ? with a constant lattice spacing
Ax > 0 in all directions, and the more general rectangular
lattice structure [31] is not considered here. The time is uni-
formly discretized by 7 := At N with ¢, := nAt,n € N, and
At is the time step. Additionally, we introduce the so-called
lattice velocity, defined by A := Ax/At. It should be noted
that the discretizations of the spatial and temporal domains
are completely independent of the scaling between Ax and
At; this means that it does not have an influence on the
derivation of the macroscopic finite-difference schemes of the
LB models. However, the scaling has a significant effect on
the consistency analysis, i.e., the truncation errors and MEs
(see Sec. III for details).

It is known that in the LB method, the evolution process
can be split into the collision and propagation steps, and to
simplify the following analysis on the derivation of the macro-
scopic finite-difference scheme, it is necessary to introduce
the time and the space operators associated with the discrete
velocities.
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Definition 1. Let z € Z¢ and z € Z, the space shift oper- B. GPMRT-LB model

ator on the space lattice £ denoted by Ty, and the time shift In the LB method, some discrete procedures can be used to

opefrator on the time lattice 7~ represented by T, , are defined solve the discrete velocity Boltzmann equation [37,67],
as follows:

a—fl—l-ci'Vf,-zQi—i—F,-, 3)
[TZh](x, 1) = h(x +zAx, 1), x € Lt €T,  (la) ot
. where the function f; represents the particle distribution at
[TAth](X’ D =hxt+zAn),xe LiteT, (1b) position x and time ¢, {¢; = ce;,i = 1,2, ..., g} denotes the
set of discrete velocities in Dd Qg lattice structure, €2; is the
where h(x, 1) is a smooth function: R? x R — R. In partic- general collision operator, and F; is the discrete source or force

ular, the space and time shift operators of function h(X,7)  term. Based on [37,38], we can develop a GPMRT-LB model
in Eq. (1) can also be expressed in the following series for the NACDE and NSEs.

forms: With the time-splitting method, Eq. (3) can be separated
. into two steps:
Axk(z - V)
[TAth] = Z Th(x, 1), (2a) a_ﬁ =Q;+F, (4a)
k=0 ’ ot
+00 Kok dfi
(zAt)d —+¢-Vfi=0, 4b
[Tanox 0 =3 === o), (2b) a TV @0
k=0 ’

which are the collision and propagation steps, respectively.
Following the approach presented in Ref. [30], the collision
where the gradient operator V. = (0y,, dy,, - - ., Ox, ) step in Eq. (4a) can be reformulated as

J

At —
fix, 1) = fix, 1) = A fi“(x, 1) + At[Gi +F+ TDI‘Fi](X, 1, i=12..,4. (&)

Here f*(x,t) denotes the postcollision distribution function, A = (A);; is a g x g invertible collision matrix and can be
defined as A := M~'SM, where M and S are the invertible transform and relaxation matrices, respectively. f/"*(x, ) =
fi(x, 1) — f74(x, 1) represents the nonequilibrium distribution function, and G; is the auxiliary source distribution function and
can be used to remove additional terms. D; = 8, + y¢; - V with y € {0, 1} being a parameter to be determined [30], and in this
work, we consider y = 0 for the NACDE and y = 1 for the NSEs.

To discretize the propagation step (4b), we adopt the explicit two-level, three-point scheme [37,38]:

fix, 1+ A1) = pof* (X, 1) + p_i ff(x = LAL D) + pi ff(x+ MAL Y, i=1,2,...,q, (6)
where the free parameters pg, p—1, and p; should satisfy the following conditions:
a+b b—a
=1—- b, 1 = s = s 7
Po P-1 > 141 3 (7N
with
Ax |ci]
Ai=Ae;, A=—, a=—, c=ar, (O<a<l). (8)
At |2l

Substituting Egs. (7) and (8) into Eq. (6) yields

fix,t+ Ar) = fr(x, 1) — g[f,-*(x + LAt 1) — fR(X — AiAL )] + g[fi*(x + XA ) =2 (x, 1) + f(x— AL D] 9)

where a and b are considered as two free parameters. Here we would like to point out that Eq. (9) can reduce to the propagation
step of the standard LB model [4] when a = b = 1, and additionally, based on the stability structure analysis [68], the two
parameters a and b should satisfy the following condition:

a <bhb< 1. (10)

To simplify analysis and for the sake of brevity, the GPMRT-LB model composed of Egs. (5) and (9) can also be expressed
in a matrix form,

m*" = (I, — S)m" + Sm“’" + ArF", (11a)
m" " (x) = M(poM™'m*"(x) + p_iM~'m*"(x — L, A1) + pM™'m*" (x + X;A)), (11b)
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where I, € R7*? is the identify matrix and

~ Af —
{(m*";m"; m*""; F"} = M{f*;f; G +F+ ?DF}(X, ),

m*"(x £ ;A1) = M(fi(x £ M AL L), ..., f(X £ A AL ),

here w = (w, W, ..

., wq)T with @ representing {f*, f, £¢4, G, F} and D := diag(ﬁl ,D,, ..

(12a)

(12b)
..D,).

In the following, we assume that the matrices M and S are independent on the space and time [65]. Then according to
the space and time shift operators defined by Eqgs. (1a) and (1b), the GPMRT-LB model, i.e., Egs. (11a) and (11b), can be

rewritten as

[TA 1, — A]lm" = Bm*“" + AtWF”", (13)

where

A=W({,—S).B=WS, (14)

with

W =MTIM ',
To =1, Ty = diag(T.", T2, . ..

T = (poTo + p—1T_1 + p1T1),

Now we present a remar_k on the GPMRT-LB model, i.e., Eq. (13).
Remark 1. The term D;F; in the collision step (5) with y = 1 can be discretized by an implicit difference scheme [28],

D:F; =

F(x+ MAt t 4+ Ar) — Fi(x, 1)

At

If we substitute Eq. (16) into the GPMRT-LB model (13), one can obtain

[T41, — Alm" = B[me%” -

which can be considered as a modified GPMRT-LB model with m” = m”

(15a)
T, Ty =diag(ThL T, ... TyY). (15b)
i=1,2,....4q. (16)

At —n
7MF"] + AtWF, (17)

— SMF" and F' = M(G" + F").

C. Derivation of the GPMFD scheme

In this part, we will provide some details on how to derive the corresponding GPMFD scheme from the GPMRT-LB model
(13). Without loss of generality, we assume that the first N rows in M correspond to the N conservative moments, and denote
i=1,2,...,Jasie{l ~J} for brevity. Now we focus on two cases with N = 1 and N > 1, which are corresponding to the

NACDE and NSEs considered in this work.

Proposition 1. For the case of N = 1, the GPMRT-LB model (13) can be written as a multiple-level finite-difference scheme

on the conservative moment m;,

q q k
. ndk— _ 0 — ~n—k+1
mit == ym 4y :[2 Variri—cAT Bm T 4 ArWE )] (18)
1

k=1 k=1 LI=1

or
det (73,1, — A)m} = [adj(T,, I, — A)(Bm*" + ArWEF")] |,
(19)

where (y )Z: are the coefficients of the monic characteris-
tic polynomial pa(x) = ZZ:; yex*=1 of matrix A, and adj(-)
represents the adjugate matrix. The proof is similar to that of
Proposition 4 in Ref. [65] and Proposition 2.7 in Ref. [66],
and the details are not presented here.

We note that for N > 1 conservative moments, it is unclear

whether the first N rows of the equation

det (Tp,I, — A)m" = [adj(TA,1, — A) (Bm*”" + AtWF")]
(20)

(

can be considered as the finite-difference schemes of the
GPMRT-LB model on the N conservative moments. To this
end we first present a corollary of Proposition 1.

Corollary 1. Assuming that the relaxation matrix S of the
GPMRT-LB model with N > 1 conservative moments is a
diagonal one with diagonal elements s1, 52, ..., s;, ..., s, lo-
cated in the range (0, 2), then the jth (j € {1 ~ N}) row
of Eq. (20) on the jth conservative moment does not de-
pend on the relaxation parameter s;. The proof is similar to
Proposition 2.12 in Ref. [66], and for brevity, it is not shown
here.

Regarding the conclusion of Corollary 1, we give a remark.

Remark 2. 1t is clear that the jth (j € {l ~ N}) row of
Eq. (19) can only be independent of s;, but one cannot show
that it is independent on the relaxation parameters associated
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with other conservative moments. Therefore, for N > 1 con-
servative moments, the first N rows of Eq. (20) cannot be
viewed as the finite-difference schemes of the GPMRT-LB
model on the N conservative moments. In the following, we
will do some treatments on the matrix A as in the previous
work [65] to derive the macroscopic finite-difference scheme
of the GPMRT-LB model with N > 1 conservative moments,
as outlined in Proposition 2. Additionally, we also consider a
more general block-lower-triangular relaxation matrix S in the
following Corollary 2.

Proposition 2. For N > 1 conservative moments, the
GPMRT-LB model (13) corresponds to a multiple-level finite-
difference scheme on the jth conservative moment m; (j €
{1~ N},

q+1-N
n+1 n+N+k 1—q
§ : Vjkm

g+H1=N [ &k
+ Z ZVJquZ N+1— kA A " k+l:|
k=1 j

LI=1

g+1=N [ &k

Al-1
E Vj,q+27N+lkaj
k=1 Lli=1

x (Bmen 1 4 A W' "“)} Q1)
J
or
det (7,1, — Aj)m’
= [adi(T4,1, — A;)A;m"],
+ [adj(T, I, — A;)(Bm*" + AtWF”)]j, (22)
where
Aj=AP,P;:= > I, (23a)
I=j,N+1,...q
A =A-Aj (23b)

and (yj,k)Zj_N are the coefficients of the monic characteristic
polynomial pg (x) = Z‘”’z Ny 12 of matrix A;. We
would like to point out that the proof is similar to that of
Proposition 6 in Ref. [65] and Proposition 2.10 in Ref. [66],
and the details are not given here. In addition, we would also
like to point out that the finite-difference scheme (22) has the
following Corollary 2.

Corollary 2. If the relaxation matrix S of the GPMRT-LB
model with N > 1 conservative moments is a block-lower-
triangular form with the diagonal elements located in range
(0,2) [see Eq. (24)], then for any j € {1 ~ N}, the finite-
difference scheme (22) on the jth conservative moment is
independent on the lower triangular relaxation parameters s;

(le{l ~N}ie{l~q}),
S11 0 0 .. . 0
S21 S22 0 0 A 0
8531 832 8§33 0 .. . 0
' ' ) (24)
SN1 SN2 SN3 e SNN N 0
Sq1 Sq2 Sq3 SgN Sr

where S, € RU=N>*@=N) g a block-lower-triangular relax-
ation matrix.

Proof. Following the idea of proving Proposition 2.12 in
Ref. [66], for any fixed j € {1 ~ N}, the matrix B can be
decomposed as

B = Bl,,,—04>; + B/ (25)

7 ] ’
then with the help of the relations
: 1 T . eq.n
[adi(T5, 1, — Aj)B;If m"].

= I]Tad.] (TAI;Iq - A])B,m en 5 m’; = mgq,;17 (26)

J J

the finite-difference scheme (22) can be rewritten as

[det (T3 1, — A;) — 1] adj(TL, 1, — A;)B;]m]
= [adi(T,1, — A;)A;m"],
+ [adi(T Ty = A))B| oo m] QD)

In the following, the proof is divided into four steps.
Step I1: Regarding the term on the left-hand side of Eq. (27),
the definition of A ; (23a) gives

[Ajls =[Alie {1 ~g)hl={jJU{N+1)~q}, (28a)
[Ajla =0,i€{l~q}le{l~N}/{j} (28b)

from which one can find that A ; and B; are independent
on s;(I € {1 ~N}/{j};i €{l ~ q}), this also means that the
term on the left-hand side of Eq. (27) does not depend on the
Ith (I € {1 ~ N}/{j}) column of matrix S.

Step 2: For the terms on the right-hand side of Eq. (27), the
definitions of A (23b) and lekv_o k> show that [A;],, and
[B|sk_,=0,k>j]pr (p € {1 ~ 6]},’” € {N +1~ q})’ are lndepen'
dent of s;(I € {1 ~N}/{j};i € {l ~ g}). Due to m} = m;""
for I € {1 ~ N}/{j}. [Kj],-l and [B|, _os>;lu can be consid-
ered together fori € {1 ~ g} and! € {1 ~ N}/{j},

(A1 + [Bly, 04>,
= [Kj + B|5kj=0,k;j]il =[A+B]; =[W]
= [A|Sk/:(),k>]]il = [Kj|sk1=0,k>]][lv (29)

thus the terms on the right-hand side of Eq. (27) are indepen-
dent of the /th (I € {1 ~ N}/{j}) column of S.

Step 3: Now we consider whether Eq. (27) de-
pends on the jth column of matrix S or not. Af-
ter some algebraic manipulations, Eq. (27) can also be
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reformulated as

[det (Tady — (A; +BjL) ] = [adi(Ta L, — Aj)Am"]; + [adi(T31, — A))B|

J sk =0,k=>j

eq,n
m ]j. (30)
From the terms on the the right-hand side of Eq. (30), one can see that the jth column of A j depends on only the jth column of
matrix S. Therefore, the jth row of adj(7\,I, — A ;) does not depend on the jth column of matrix S.

Step 4: From the term on the left-hand side of Eq. (30), for any i € {1 ~ g}, one can obtain

[Ali, le{(N+1)~ g},
[A;+B;I]], =10 e {l~N}/{j} 31)
[A+Bly = [Wly = [Ajly—ouss], 1=

thus the term on the left-hand side of Eq. (30) does depend on the jth column of matrix S. Due to the equivalence of finite-
difference scheme (22), Egs. (27) and (30), one can prove Corollary 2.

We now discuss Corollary 2.

Remark 3. According to the Remark 1 and Proposition 2, if the parameter y in D is equal to one, the macroscopic finite-
difference scheme on the jth (j € {1 ~ N}) conservative moment of the GPMRT-LB model (17) is given by

~ . T —n . ~ ean At n . ~ —n
det (T, 1, — A))i} = [adj(Tx 1, — A)A;m"] + |:ad](TA1tIq - Aj)B(m "~ —-MF >] + At[adj(Tx 1, — A;)WF ]
J
(32)
while it is unclear whether the finite-difference scheme (32) has Corollary 2 or not. We will pay attention to this problem in the
following part. It is clear that the last term on the right-hand side of Eq. (32) does not depend on the relaxation matrix S, thus we
need to consider only the following scheme:

- " ~ At
det (T, 1, — A} = [adj(75 1, — Aj)A;m"] + |:adj(TAlqu -A j)B<mW - 7MF")] : (33)
J
If we write the matrix B as
B =Bl;,=04>; + B,/IJ-T, (34)

and according to the relation m; = m®! — At /2MF, one can obtain

A : A —n . A \A = : A n At n
[det (141, = &)1 adi (741, = R,y ;= [a(41, — )R] + [ai (741, — ), Ly, (me = Svare) |
J
(35)

which is similar to Eq. (27), and the detailed proof is not presented here. From above discussion, it can be concluded that the
finite-difference scheme (32) also has Corollary 2, like the finite-difference scheme (22).

Remark 4. Based on Corollary 2, the finite-difference scheme (22) on the jth (j € {1 ~ N}) conservative moment is consistent
with the GPMRT-LB model, while Eq. (20) is not. It should also be noted that the lower triangular elements s;; (I € {1 ~ N};i €
{l ~ q}) in the relaxation matrix S (24) do not affect the forms of difference schemes (21) and (22). To simplify following
analysis on the truncation errors and MEs in Sec. III, we assume that the diagonal relaxation parameters corresponding to the
conservative moments in the relaxation matrix S (24) are equal to one, and the nondiagonal relaxation parameters associated
with the conservative moments are equal to zero (here we note that the matrix S must be invertible and this choice is crucial in
order to use the Maxwell iteration [44] as we will do in the following), in this case, the finite-difference schemes (21) and (22)
can be further simplified; see the following Proposition 3 for details.

Proposition 3. For a given GPMRT-LB model (M, S) with N > 1 conservative moments, let S =diag(Iy, S,) with S, €
R=N)x(a=N) representing the matrix consisting of the (N + 1)th to gth rows and columns of matrix S, then the finite-difference
schemes (21) and (22) of the GPMRT-LB model (13) on the jth (j € {I ~ N}) conservative moment can be simplified as

q q k
it = =Yy Y [Z Vorisi kAN Bmean N Arwi"—k”)} (36)
k=N k=N Li=~ ;
and
det (T, 1, — A)m] = [adj(T5, 1, — A)Bm" + ArTWE")] | (37)
where A = W(, — S), B = WS. In addition, Eq. (37) has the same form as the jth row of Eq. (20).
Proof. Based on the form of relaxation S and the definition of matrix P ; (23a), one can obtain
A, =AP; =W(, - S) = A, (38)
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which means Kj =A—-A ; = 0, thus the finite-difference schemes (21) and (22) can be simplified by

g+1-N GH1-N [ &
N+k—1— — —_ ~h—
mit == 3 NS {E Vigra-n1-Al T BmeH LA WE "“)} (39)
k=1 k=1 Li=1 j

and

det (L1, — Ay = [adi(TL1, — A) Bmt" + AWE")] “0)

i
Then one can obtain the finite-difference schemes (36) and (37) through rearranging Eqgs. (39) and (40) and with the aid of the
following results:

v=0,ke{l~W\N—-DLvi=vji+1-n.k € {N ~ (g + 1)}, (41)
where the relation py (x) = x~' Y911 yxt = Pz, () = N2 3N, 4k has been used.

Now we further discuss the issue of the equivalence between two GPMRT-LB models. On one hand, the two GPMRT-LB
models (M, S) and (M, S;) can be considered equivalently if the relaxation parameters associated with nonconservative moments
in the relaxation matrices S and S; are identical regardless of whether the relaxation parameters associated with conservative
moments are the same or not, and the finite-difference scheme (22) also has this feature (see Corollary 2). On the other hand, the
two GPMRT-LB models (M, S) and (M, S;) are also equivalent if the following relations hold:

M; =NM, S, = NSN, (42a)
M ]y =Ml i€ {1 ~N}le{l~gqgl, (42b)

where N is an invertible block-lower-triangular matrix. This means that the finite-difference scheme of the GPMRT-LB model
(M, Sy) should be the same as that of the GPMRT-LB model (M, S). In the following, we first show that the first N rows of
Eq. (20) corresponding to the two equivalent GPMRT-LB models (M, S) and (M, S;) are identical, and then present another
form of the finite-difference scheme from the GPMRT-LB model (M, S;), which is identical to schemes (21) and (22).
Theorem 1. The first N rows of Eq. (20) corresponding to the two equivalent GPMRT-LB models (M, S) and (M{, S)
satisfying Eq. (42) are totally identical.
Proof. According to the relation (42a), the matrices A and A satisfy

Al = NAN!, (43)
where A! = W!(I — S;) with W! = M;TM; ' Due to the invertible block-lower-triangular matrix N, one can obtain
det [Th,1; — A] = det [T}, I, — A']. (44)
Based on the relation (42b), we have
[A'B'M,]; = [ABM];;  [A'W'M, ], = [AWM];, (45)

where B! = W'S;. Thus, from the algebraic expression of adjugate matrix adj(7,,I, — A),

q q—k+1
adj(75, 1, — A) = T}, Z Vi AT | T, (46)
k=1 \ I=1
and for any j € {1 ~ N}, it is easy to prove
[adj(Ty, L, — A")B'M, "] = [adj(T5 1, — A)BMET"] (47a)

: 1 1 1 n n At n : 1 n n At n
adj(T 1, — A)W'M, (F' + G" + —-DF" ) | = |adi(Tp1, — A)WM(F" +G" + —-DF" ) | . (47b)

J

J

According to the relations (44) and (47), one can prove Theorem 1.

Based on Theorem 1, we can also conclude that the analysis on the truncation errors and MEs shown below will remain
identical whether the transform matrix M is independent of the parameter ¢ [see Eq. (8)] or not. The reason is provided in the
following Remark 5.

Remark 5. Considering the following relation between the two GPMRT-LB models (M€, S¢) and (M?, S°):

M‘ = C,M?, §¢ = C,S°C. ", (482)
My = [CylalM]y, i € {1 ~ N}l € {1 ~gq}, (48b)
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where C; is an invertible diagonal matrix associated with the parameter ¢. Similar to the proof in Theorem 1, one can
obtain

det [Ty, I, — A°]Mt" = Cdet [T, 1, — A]Mt" (49)
and
[adi(T 1, — A°)BMCE!"] = Cyfadj(Tx, 1, — A)BME"] (50a)
- N . At - At
adj(T 1, — AYWM( F" + G" + —DF" | | = Cy|adj(T 1, — A)WM’( F" +G"+ —DF" ) | . (50b)
i i

It is obvious that the first N rows of Eq. (20) corresponding respectively to the two GPMRT-LB models (M€, S¢) and (M, S°)
satisfying Eq. (48) only differ in the constant matrix C,, which has no influence on the truncation errors and MEs analysis in

Sec. III.

Theorem 2. The finite-difference scheme (22) corresponding to the GPMRT-LB model (M, S) can be rewritten as

det (T, 1, — A)m " = [adj(74,1, — A)A;m" V] + [adj(TA, 1, — A)B'm ]+ Ar[adi(T, 1, - AjWED] (51

J J
where
A'=wW!1,-S)), B'=W!s, A_}. =A'P}, K} =A'P;, (52a)
m"Y =Mm", m“"Y=Mm<", FO=mMF, (52b)
with matrices M; and S; satisfying Eq. (42) and
W' :=M,T™M;', P} :=NP,N"', P;:=1,—P}. (53)

The proof is similar to Theorem 1, and the details are not shown here.
We now give some remarks on the conclusions in Theorems 1 and 2.
Remark 6. For two equivalent GPMRT-LB models (M, S) and (My, S;) in Theorem 1, if we further consider the GPMRT-LB

model (M, S;) with

& el (N1 0\(Iy © N
= (R0 ) (M

where matrix N; € RVN, N, e RGN and Nj e
R@~N)*(@=N) are the submatrices of the block-lower-triangular
matrix N, and the matrix S is defined as that in Proposion 3,
one can obtain

S=SP,+P;+d,—S),I]. (55)
Substituting Eq. (55) into Eq. (54) yields
§ =SB} + P, + 1, - SONLI'N", (56)

where matrices 13]1. and l_’; are those in Egs. (52) and
(53). It is evident that based on Corollary 2, Proposition
3, and Eq. (42), the four GPMRT-LB models (Mj, S)),
M, S), M, S), and (M, Sl) are equivalent. Moreover, ac-
cording to Proposition 3 and Theorems 1 and 2, the four
equivalent GPMRT-LB models (M1, S;), (M, S), (M, S), and
M, Sy) satisfy the relations presented in Fig. 1, where the
double-line arrow connecting the two boxes indicates that
the two GPMRT-LB models have the same finite-difference
scheme.

Remark 7. Regarding the finite-difference scheme (22)
with N > 1 conservative moments in Proposition 2, the
characteristics shown in Corollary 2 and Theorem 2 are
consistent with the GPMRT-LB model. Therefore, we refer
to it as the macroscopic finite-difference (GPMFD) scheme

(54)

0 Ly 0
N;') 7 \NoNTD = N3S,NSINGNT! NGSING )

(

of the GPMRT-LB model. Here it should be noted that for
simplicity, we do not consider the effect of the choice of
the initialization schemes for the GPMRT-LB model and
GPMFD scheme, and in the numerical simulations presented
in Sec. V, we initialize the distribution function f; with its
equilibrium state for the GPMRT-LB model, while for the
GPMFD scheme, we adopt some other numerical schemes to
obtain the values required for the initialization. Furthermore,
since the finite-difference schemes (22) and (37) have the
same form (see Proposition 3), we need to consider only
the latter in the following discussion, and this will simplify
the analysis on truncation errors and MEs.

III. TRUNCATION ERRORS AND MES OF THE GPMRT-LB
MODEL AND GPMFD SCHEME

In this section we will conduct some theoretical analysis on
the truncation errors and MEs of the GPMRT-LB model (13)
and GPMFD scheme (37). It is known that the GPMRT-LB
model (M€, S°) can be equivalent to a GPMRT-LB model
(Mg, S5,) [see Eq. (42)] where the transform matrix My,
is based on the natural moment and S}, is a block-lower-
triangular relaxation matrix. Then from the two purple boxes
shown in Fig. 1, one can find that the GPMFD schemes
corresponding to the equivalent GPMRT-LB models (M€, S¢)
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M, =NML[M,], =[M,], ic {1~ N}.le{i~q}.

S, =5, + B +(1, - )N I/N

Theorem 2 Proposition 3 A Th 1 A
M,.S, M,S P M,$ —— M,,S

S, =NSN"' S=SP +P +(1,-S)I 1] S, =NSN™'

FIG. 1. Relations between the finite-difference schemes of the four equivalent GPMRT-LB models (M, S;), (M, S), (M, S),
and (M, S)).

and (M5, S5) where the relaxation matrices S¢ and S, [see ~ does not decrease with the number of rows (columns) in the
Eq. (54)] are assumed to be independent on the parameter diagonal matrix C4. Therefore, for a given GPMRT-LB model
¢, are identical. According to Remark 5 and for convenience ~ (M, 8°), we focus on the GPMRT-LB model (My, Sy) with
of the analysis on the truncation errors and MEs, we need to the transform matrix My that is independent on the parameter
consider only the GPMRT-LB model (My, Sy) satisfying the ¢ and its GPMFD scheme (37). In addmon for the inverse of
relations My = C;le\, and SN — CJIS]CVC ;. Without loss of the collision matrix A := MNSNM , the following require-
generality, here we consider that the degree of parameter ¢ ments are needed:

J

q q
10 A 20 ¢ 21 2
Z ejo Ak = Sy ik + Sie €, Z eja€jpAji = Spik + Sype €ue, + Sape e, €k, €kt
= =

q
Z e]aej,ge“, Jjk = Sozﬁylk + Saﬁyg, €, + Sotﬂyflfaekfl €, + Saﬂyél&&ekgl Crt, Ckes (57

q

e 40 s 41 42 43 44
Z €ja€jpejyjnAjk = Sup,nlk + Supyng €t T Sapyne,e, s €kt T Supy e oot €htr Che: €hEs T Soipy e 266, €kt €k @hs €k, »
j=1

where i; indicates the kth element of vectori = (1,1,...,1) € RY, S¥ is a d' x d' matrix (I € {l ~2};i € {0 ~ (I — 1)} and
le{3~4);ie{0~1}),S'is an invertible d x d relaxation matrix associated with the diffusion coefficient matrix of the
NACDE, and 8? is a d? x d* relaxation matrix associated with the viscosity coefficient of the NSEs. Specifically, we take
S2! = 0 for the NACDE and S*? = 0 for the NSEs.

Due to the equivalence between the GPMRT-LB model (13) and GPMFD scheme (22) discussed in Sec. II and Remark 7, we
will focus on the GPMFD scheme (37) and present details to derive its truncation error and ME. First, we decompose the matrix
W in Eq. (15) as

W =pol, + p 1W_1 +p1Wy, (58)

where W_;| = MNT,lMIQ1 and W, = MNTIMX,I. Due to the space shift operator with a series form (2a), the matrices W_; and
W, can be rewritten as

+00 (—A}C)k
W_, = (Z - wg) = exp (—AxW)y), (59a)
k=0 '
+00 (Ax)k )
wi= () X WE | = exp (AxWy), (59b)
k=0 .
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where Wy = Myldiag(e; - V,e; -V, ... ¢, V)IM3', and the inverse of matrix W can be further expressed as
+00
~' =) "y — poly — po1 exp (—AxWo) — pr exp (Ax W)l (60)
k=0

which will be used below.
Based on the Maxwell iteration method [43,44] and the relation between adjugate matrix and determinant,

(Tady — A)adj(Txd, — A) = adj(Tx, I, — A)(Tx, 1, — A) = det (T, 1, — A)L, (61)
we set ¢ = ¢" with ¢ representing {m, m®?, F}, and substitute the matrices My and SN into the GPMFD scheme (37), one can
derive [66]

0 = det (75,1, — A)m — (adj(7x,I, — A)(Bm“ + AtWF))

m — (T 1, — W, = 8y)) " (WSym™" + WArF)]

(Ta
= det (TAL —A
=det (T, (

(

)
)
—A)[m — ($5'WH(TLL, — W, —8y))) " (m* + 8 ArF)]
= det (T Iq A)[m—(lq+§; (TLW —1,)) " (m + 83 ArF)]

Here m = Myf, m® = M f®4, f‘ My (F + G + At/2DF), and E is defined as

+00
- (Z rk) (mee + 8y ArF), (63)
k=0

where T' = —85'(T), W= —I)). With the help of T° = I,,, Eq. (60), and the series form of time operator 7)., in Eq. (2b), the
expression of E in Eq. (63) can be given as

+o0
E =m— (m* + ArSy'F) - Z AxXFE®), (64)

where E® = T®(m + §' ArF) (k > 1) is the coefficient before the kth-order term of the series expansion of & with I'®)
denoting that of the series expansion of I'.

Based on the fact that det (TAltIq — A) = det (SN) + O(Ax) [66], we will show that the analysis on the truncation error and
ME of scheme (62) is equivalent to the discussion on E (64). The reason is as follows.

According to Eq. (62), we have

0 =det (T, I, — A)E

+00
=det (SN)[m — (m* + ArS,'F) — Z Axk”(k):| [( — (m* + AfS,'F)) x O(Ax) — Z AxkH! E(")]. (65)

k=1

As mentioned previously, to perform the analysis on the truncation errors and the MEs, it is necessary to specify the scaling
relationship between Az and Ax. In particular, it should be noted that at the diffusive scaling (Ar ~ Ax?), E® is at least of
order O(1), which arises from the fact that m®, F and S;,' (54) are at least of order O(1) [ the main diagonal element of the

block-lower-triangular matrix SX, is of order O(1), while the lower triangular element of S]; is at least of order O(1)]. Due to

the conservation law, mjc(i~n} = m for any ith (i € {1 ~ N}) row of Eq. (65), we have
diffusive scaling (Af ~ Ax?) : det (Sy)[AxED]; = O(Ax?), (66a)
acoustic scaling (Af ~ Ax) : det (Sy)[AtSy'F + AxEV], = 0(AxY), (66b)

where det (SN) is of order O(1); this is because the main diagonal element of the block-lower-triangular matrix Sy is of order
O(1). Based on Eq. (66b), one can obtain the third-order ME at the acoustic scaling,

[ArS'F + AxED + AXEP], = 0(Ax). (67)

Then according to Eq. (67), one can further derive fourth- (and higher-) order truncation errors and MEs of the GPMRT-LB model
(13) and GPMFD scheme (37) at the acoustic scaling. In addition, it can also be observed that the analysis on the truncation
errors and MEs of GPMFD scheme (62) are actually equivalent to the discussion on E (64), which is also true at the diffusive
scaling.

065305-10



MACROSCOPIC FINITE-DIFFERENCE SCHEME ... PHYSICAL REVIEW E 109, 065305 (2024)

A. MEs at the diffusive scaling

Let us begin the analysis at the diffusive scaling, i.e., At = nsz, n € R. It should be noted that the lattice velocity A is of
order O(1/Ax), m®9, F, and S;,l are at least of order O(1). We would also like to point out that Ax~%m; (i € {1 ~ N})is of order
O(1) owing to the fact that the transform matrix M is of order O(1) and the form of the equilibrium distribution function for
some specific problems [see Eq. (91) for NACDE and Eq. (98) for NSEs; k; > 0 denotes the order of the ith conservative moment
m; in space]. Thus, a higher-order expansion of & (64) beyond E® is necessary for the kth-order ME of the GPMRT-LB model
(13) and GPMFD scheme (37). Here we expand E (64) up to =® and consider the first- to third-order MEs on conservative
moment m; (i € {1 ~ N}),

[ATF + AXSyED + APSNE® + APSYED + AX*SyED), = 0(AYY), (68)

where the ith row of matrix Sy (54) is identical to IiT, which is of order O(1) and has been used.
Moreover, it is also necessary to expand the inverse of matrix W (60) as

b 1 b
- 2 2 2 33 3
W1=Iq+Aano+Axa<l—ﬁ)’W0—l—Axa<@—a—2+l>’VVo
v 1 3b b
At =+ — — =+ 1 — —— | Wy + 0(AX). 69
+ ”(4a4+3a3 242 24a4) 0+ O(Axr) (69)
By adopting the series form (2b) of the time shift operator 7, and Eq. (59), one can obtain
—SNT =AxA; + A (Aiz + A2) + A (431 + A3) + Ax*(Ag + Aga + As) + O(AX), (70)
where
A1 = Cl(W(), (71a)
b
Ay =1ndl,, A= W(%(az — 5), (71b)
1
Ay = anWod,, Az = (6 — ab+a3>w3, (71c)
b o | b a 3a*b b
Ay = 22 VW2, Ap=n* A= (42— 4 Yt 71d
41 n(a 2) 00 4 =1 2 4 4+3 2+a 7 0 (714d)

In the following, the analysis are based on Eqgs. (68) and (71).

1. First-order ME of the GPMRT-LB model and GPMFD scheme on conservative moment m;

For any i € {1 ~ N}, to obtain the first-order ME of the GPMRT-LB model and GPMFD scheme on the moment m; at the
diffusive scaling, one needs to consider the following truncation equation of Eq. (68):

[ATF + AxSyED 4 A*SyED@], = 0(AxY). (72)
With the aid of Egs. (64) and (70), Eq. (72) can be written as
[AtF — [AxA| + Ax*Ap + AX (A2 — A1Sy' A1) Jm™), + O(Ax?), (73)

and multiplying this equation by 1/Az yields

[F — A + Ao | AMAL(A; — AIS,T,IAI)]meq} = O(Ax); (74)
)7 .

l

then substituting Eqgs. (71a) and (71b) into Eq. (73), we have

- 2 N b
(Om®™ 4 cWom*); = |:F + %(Wo |:S;T]] + <2_az - 1>Iq:|(Womeq] + O(Ax). (75)

1

2. Second-order ME of the GPMRT-LB model and GPMFD scheme on conservative moment m;
Similar to the discussion in the previous part, we consider the following truncation equation of Eq. (68):
[AF + AxSyED + Ay E® + AXSyED]; = 0(Ax*); (76)
for any i € {1 ~ N}, one can obtain
[AfF — AxAtASy'F — Ax[A1 + Ax(A1 + Ay) + Ax*(As; + A3)Im™
+ AX[AISy (A1 + A2) + (A1 + A2)Sy A1 — A1S'AIS A Im™ |, = O(AxY). (77)

065305-11



CHEN, LIU, CHAI, AND SHI PHYSICAL REVIEW E 109, 065305 (2024)

Substituting Eqs. (71a)—(71c) into Eq. (77) yields

. a A b A
[0 X+ cWp)m™ |; = [F + %’Wo (S];1 + <@ - 1>Iq>(W0meq — aAxd, (I, — Sy ) Wom®

N b
+ aA)c‘WOS;,1 [B,m -F- —Wo (S + (2a2 )Iq>’W0meq:|

3A b 3A 1 b
_4 : i <2_az - 1)(W2S 'Womed — u<@ -+ 1)w3 ﬂ +Oo(AxY). (78

3. Third-order ME of the GPMRT-LB model and GPMFD scheme on conservative moment m;
For any i € {1 ~ N}, after some manipulations by using Eqgs. (64) and (70), we can derive the third-order ME,
[AfF — [AxA;| + Ax*(A1p + Ad) + Ax*(A31 + A3) + Ax*(Agr + Ago + Ay)Im™

— [AxA; 4+ A (Agy + A)]AISy'F + A (85'A1) ArSy 'R
+ 8y (87 [AXA; + Ax2(Ay) + A2) + Ax3 (A3 + A3)]) me

— S (85 TAXAL + AP (Ax + A me + Ax*(85'41) 'med]. = 0(Axd). (79)
Substituting Egs. (71a)—(71d) into Eq. (79) gives

~ 2 b 3A
|:F - [cfwo ol + < <1 )w2 +ahxWod, + =5 (1 - 2>(W28,
n n

2a2

Ax aAx (1 b a*Ax* [ b? 1 3b b
oL+ 22 2 w2 (2 T W |me
* 2% + n <6a2 a? ) ot n (4612 + 3a> 242 * 24a4) O]m

2 b AX 4 AX
- (cwo+at1q+“—<1 s >w2>—xs F (—wos ‘wo)—xs I
n a

A
[ L WSy Wo + aax WSy o1, x(l—ﬁ)wos w3
n

28 247 Q1 &1 AX e a2 b a2 TAX _ b 281
+ a” Ax* WSy Wod: + ad 1,5y Wo + : Sy 1,01, +a”Ax~| 1 5 I, Sy Wy + 1 3 WSy Wo
a n a

202 b 28—1 atAx? b 2&—Tley2 2.2 G—1 eq
+a“Ax l_ﬁ WoSy 8,Iq+T 1-— o WS Wy + a” Ax"Wyo1,Sy Wo (m

A A A A A A
- [“ S WoST WoS5 ! Wo + AP WoSy WoSy 8,1, + a® Ax>* W3 1,85 85 W
n

a*Ax?

N b
4427 (1——){%5 WoSy W2 +

b 1 1
, o (1 5 )wos WIS Wy

A A 4 Ax?
+ @AY WoSy W, + L=

(1 22>W2 '(WOS,T,I(WO:|meq

a*Ax?
+

WOSNIWOSNIWOSNIWOm"‘q] = O(AX®). (80)
Now we give a remark on these MEs at the diffusive scaling.

Remark 8. According to the results shown in Secs. III A 1-IIT A 3, we now consider a specific problem, the d-dimensional
NSEs with d + 1 conservative moments. In this case the moment mz; is O(1), while m; (i € {2 ~ (d + 1)}) is of order O(Ax").
Thus, Egs. (75), (78), and (80) correspond to the first- to third-order MEs of the GPMRT-LB model and GPMFD scheme on
conservative moment p, but the zeroth- to second-order MEs of the GPMRT-LB model and GPMFD scheme on conservative
moment pu.
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B. ME:s at the acoustic scaling

At the acoustic scaling, all the A, m®, F, and S;,l
are of order O(l), and only a kth-order expansion of =
is needed for the derivation of the kth-order MEs of the
GPMRT-LB model (13) and GPMFD scheme (37). We
now expand E (64) up to E?® and consider the first- and
second-order MEs on conservative moments m; for any
ie{l~N}

[ATF 4+ AXSyED + ASNEP] = 0(AX), (81)
subsequently, the second-order expansion of W~! (60) can be
given by

b
W =1, + AxaW, + Ax2<1 — —>a2wg + 0(AXY).
242

(82)
Similar to the analysis at diffusive scaling, one can obtain the
expansion of —SyT based on Eq. (82),

—SNT = Ax(By1 + B1) + Ax*(Bay + By + By) + O(AxY),

(33)
where
)
By = 21, By =aW,, (84a)
c
azat, a2(W08t 2 2 b
le = 2—621q, BZZ = - s Bz =a (Wo(l - z_az>
(84b)

1. First-order ME of the GPMRT-LB model and GPMFD scheme
on conservative moment m;

Considering the first-order truncation equation of Eq. (81),
for any i € {1 ~ N}, one can obtain

[AfF — Ax(By1 + B)m™]; = O(Ax?), (85)

and substituting Eq. (84a) into Eq. (85) gives rise to the first-
order ME:

[9,;m* + cWom®]; = [F]; + O(Ax). (86)

2. Second-order ME of the GPMRT-LB model and GPMFD
scheme on conservative moment m;

Considering the second-order equation of Eq. (81), for any
i € {l ~ N}, we have

[AtF — Ax(By1 + Bp)(m* + 85! ArF)
+ Ax*(Sv[Sy' (B + 31)]2 — (Ba1 + By + By))m®].
= O(AxY), (87)

and substituting Egs. (84a) and (84b) into Eq. (87) yields the
following second-order ME:

AtF — At (3,1, + cWo)m® A 1 b 2Wem®
1y — l( t1q +c O)m — T — ; C om
A e &1 a-1
+ 7[(251\, — Iq)azz + ZC(SN Wy + (W()SN — (Wo)at
+ A Wo (285" — Iq)(wo]mﬂ = O(AX). (88)

From above results, one can see that Eqgs. (86) and (88) would
reduce to the~resu1ts presented in Ref. [66] when a =b =1
and the term F is neglected.

C. NACDE: MEs of the GPMRT-LB model and GPMFD scheme

The d-dimensional NACDE with a source term can be
expressed as

04¢p+V-B=V. [k -(V-D)]+R, (89)

where ¢ is a scalar variable related to both time ¢
and space X, R denotes the source term. B = (B,) is a
vector function, k = (kqp) and D = (D,g) are symmet-
ric tensors (matrices), and they can be functions of ¢, X,
and t.

In order to recover the NACDE (89) correctly, some
requirements or moment conditions on the equilibrium, auxil-
iary, and source distribution functions, denoted by fieq, G;,and
F;, should be satisfied. For a general Dd(Qgq lattice structure,
the moment conditions are given by

q q q q
Dh=)f"=¢, DY E=R Y Gi=0, (%)
i=1 i=1 i=1 i=1

q
Y ¢iGi =Mz, (90b)

i=1

q q
Yest=n Yen=o
i=1 i=1

q
Z C,'C,'fieq = XC%D + C,
i=1

(90c)

where ¢, is a model parameter related to the lattice velocity
A. The parameter y is used to adjust the relaxation matrix
[see Eq. (94)], C is an auxiliary moment [30], and Mg =
Iy — (SH™1/2)9,B + (I; — b(S')™!/(2a*))V - C is the first-
order moment of G;. From Eq. (90) one can determine
the expressions of fi!, G; and F, while for sim-
plicity, we consider only the following commonly used
forms [30]:

- 2 2 2
e ¢i-B  (xc2D+C—c2¢ly) : (cic; — 2Ly)
fit=w _¢ + 2 + 2¢¢ ’
(91a)
[¢; - Mg
Gl' = wW; 5 i|, Fl = wiR. (91b)
CS

According to the results shown in the Secs. III A 1 and IITA 2,
it is easy to obtain the first- and second-order MEs of the
GPMRT-LB model (13) and GPMFD scheme (37) on the
conservative moment ¢ = O(1) (see the Appendix A1 for
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details) at the diffusive scaling,

8¢ + 9yBy — Ati[x <S' + (i - 1)3 >02 aD”’} — R = 0O(Ax) (92a)
e dxg By 2a? Pr ) s 9xp ’

96 + B — Ati[x (sl + (i - 1)5 )c2 8Dy9} ~R=0(A) (92b)
8Xﬂ By 242 By |Cs %, s

and additionally, from Secs. IIIB 1 and III B 2, one can derive the first- and second-order MEs at the acoustic scaling (see
Appendix B 1 for details),

at¢ + aaBoz —R= O(Ax)a (938.)
a b 0D.,q
) d4By — At—| x [ S! — —1)8g, |2—2 | =R = 0(AX?). 93b
A duxp [X< ‘”+<2a2 )’”)Cé 3)69] (B O30
It is clear that Eqs. (92b) and (93b) are consistent with the NACDE (89) with
b
K= xcIAt [Sl + (—2 - 1>1d]. (94)
2a

When the MRT-LB model with the orthogonal moments and D2Q9 lattice structure is considered, it is easy to show that the
second-order modified equation (92b) is consistent with the result in Ref. [69].

D. NSEs: MEs of the GPMRT-LB model and GPMFD scheme

We now consider the following d-dimensional NSEs with a force term:

ap+V-(pu)=0, (95a)
% (pu) + V- (puu) = ~Vp+V .o +F, (95b)

where p = ¢2p is the pressure, F= (F, )Z;r; is the force term, and o is the shear stress defined by

2 2
o = pu[Vu+ (V)] + (ub - %)(V ‘)l = u|:Vu +(Vu)! — i -u)Id] + (V- Wy, (96)

here © and u,;, are the dynamic and bulk viscosity, respectively.
To recover the macroscopic NSEs (95) from the GPMRT-LB model (13), the equilibrium, auxiliary, and source distribution
functions, i.e., fieq, F;, and G;, should satisfy the following moment conditions:

q q q
Y L= =p Yoafi=) af=pu, (97a)
i=1 i=1 i=1

i=1

q q
Y eeift = puut ol Y eeef =cpA -, (97b)
i=1 i=1
q q q
Gi = O, ZC,’G,’ = 0, ZC,’C,’G,’ = 0, (970)
i=1 i=1 i=1
q q . q . .
D=0, Y aF=pF ) ccl=plFu+ EFEw)) (97d)
i=1 i=1 i=1

for the Dd Qq lattice structure, the explicit expressions of fl.eq, G;, and F; can be given by [30]

2

e ¢-u uu:(cc —cl

fl.q:w,-,OI:l—i- =+ (264 'd)}, (98a)
B Fu+ (Fu)’) : (cie — AT

G; =0, E’=wip|:ccz +( ( )2)c4( Sd)]' (98b)

It should be noted that at the diffusive scaling, the terms w;p¢; - u/c? and w;p[uu : (¢;¢; — c?1;)1/(2¢?) in the expression of f;*
are of order O(Ax) and O(Ax?), respectively.

065305-14



MACROSCOPIC FINITE-DIFFERENCE SCHEME ... PHYSICAL REVIEW E 109, 065305 (2024)

For the continuity equation (95a), the derivation process is similar to that of NACDE (see Appendixes A 2 and B 2 for details),
and the first- to second-order MEs at the diffusive and acoustic scalings are given by

A A P aﬁt(pua) C (A;C)7 (99)
t ~ X
8116 éa(p“a) C (Ax )7

9 p + 9a(pua) = O(Ax),

9o + o (pite) + At(3 — 32)3p09 (pupug + pcdpe) = O(AX?).

We would like to point out that the term At[1/2 — b/(2a*)1d53(pugus + pc8ge) in Eq. (100) is of order O(AtMa?) with

Ma := u/c, being the Mach number, which can be eliminated when a®> = b. However, this term does not appear in Eq. (99) at

the diffusive scaling; this is because Ma is of order O(Ax), and in this case, it can be rearranged into the truncation error O(Ax?).

This also indicates that the LB method is suitable for nearly incompressible flows at both the diffusive and acoustic scalings.
With respect to the momentum equation (95b), the first- and second-order MEs at the diffusive and acoustic scalings are given

by (see Appendixes A 2 and B 2 for details)

O (pua) + 0p (puap + pcdap) + At (1 — 32)dp(pc?dupdap) — pF,
—At3p[ 82 e, — (1 = 32)8ci08,8 | (0C2 05,1z, + P20, ue,) = O(AX),

0;(pug) + 9g (puauﬂ + pc?&x,g) + At(l )8,3 (pc 39”98a5) /)an
_Ataﬂ[siﬂéléz - (1 — 2%)851055525]( c 851u52 + pc; Bgzu&) = O(AXZ),

At ~ Ax: { (100)

At ~ Ax?: (101)

and
3 (puq) + g (puaup + pcidup) — pF} = O(Ax),
At ~ Ax i 1 3 (pua) + dp(puatis + pc8ap) + 5 (1 — %) (0c2dpusdap) — ok, (102)
—At0p[S2 e, — (1 — z—zz)aglaagzﬂ](pcs 3¢, ug, + pc2dgug ) = O(Ax* + AxMa?),
where
O (pug,ug,) = Fy, ug, + Fy_ ug, — ¢ (ug, 06,0 + ug, 0, p) + O(Ax + Ma), (103a)
d9 (pcanﬂggu;) = 0y (,ocfugéaﬂ) + O (pcfu,g) + dg (pcf,ua). (103b)

o;(puuu) = O(Ma?), u = O(Ma) and Vo= O(Ma?) are used at the acoustic scaling. From Egs. (101) and (102), one can
see that the viscous terms are different at the diffusive and acoustic scalings. This is because the terms AtZ),,n%ZCLI and
At[Wod, ], (o € {1 ~ d}), where 1 := m®/Ax* = O(1) with k = 1 at the diffusive scaling while k = 0 at the acoustic
scaling, are of order O(Ax?) at the diffusive scaling while they are of order O(Ax) term at the acoustic scaling.

For the term S wBEiEs shown in Egs. (101) and (102), we consider the following commonly used form [30]:
Lil(l-4), s=6=a=8,

S2s $2b S2s

S2/SSS _ ‘li(i_sl;)a azﬂvélzéz’él;éay (104)
R fi=a.h=pa#p,
0, others.

Then the second-order ME (101) at the diffusive scaling is the same as the momentum euqation (95b) with

1 b 2 2/ 1 b b )
v = +ﬁ—1 c;At, = 7 S_Zb—i_ﬁ_] + ﬁ_l C;AL, U= pU, Uy = PUp, (105)

while the second-order ME (102) at the acoustic scaling would reduce to the momentum euqation (95b) under the following

condition:
1 b 2/ 1 b b 1
= — —1)c2At, = — -1 — — = )|At,  w=pv, up = pu. 106
v = ( uEy )cé Up [d<s tos ) + <2a2 2)]@ W= pU, by = PUp (106)
[
IV. FOURTH-ORDER GPMRT-LB MODEL AND GPMFD one can further conduct the accuracy and stability analysis
SCHEME FOR ONE-DIMENSIONAL CDE with the help of the traditional tools adopted in the finite-

difference method. Similar to our previous work [23], we

Based on the above results, the GPMFD scheme of a given will present the fourth-order GPMRT-LB model and GPMFD

GPMRT-LB model can be directly derived from Eq. (37), then
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scheme at the diffusive scaling for the one-dimensional CDE,

9o ¢ 9%¢
— tu— =k——,
ot ox dx2
where ¢ is a scalar function of the position x and time
t, u and « are two constants. For CDE (107), the evolu-

tion equation of the GPMRT-LB model can be written as
[23,38]

(107)

ety = fie, t) = MTSM)u[ fi — £ (1), (108)
filc,t + At) =pof(x,t)+ p_1 f7(x — XAt 1)
+ piff(e+ AAL ), i =—1,0,1, (109)

where the D1Q3 lattice structure, the orthogonal transform
matrix M, the diagonal relaxation matrix S =diag(so, s1, 52),
and the moment conditions required for the equilibrium dis-
tribution function are the same as those in Ref. [23]. Here the
equilibrium distribution function is given by

. au i)
f; Zwi¢1+c—2+l72—c4, (110)

where
1—w
2 2 0,
c; = —wp)c, Wy =wog =

w; is the weight coefficient, ¢ = ¢& with ¢ = 2(1 — wyp)/wo,
and & = (1/s; — 1/2)/[1/s; + b/(2a*) — 1]. We would like
to point out that the equilibrium distribution function (110)
is different from that in Ref. [23].

With the help of the scheme (18), one can easily obtain the
GPMEFD scheme on the variable ¢,

O =i + aag] | + sl + Fid] T + g
+ B3l + Badi T, + Bsdl
+ 118+ T+ v b + s,
(112)

(111)

where ¢ represents ¢(jAX, 1,), j € Zandn € N, the param-
eters o;(i € {1 ~ 3}), Brand yx(k € {1 ~ 5}) can be found in
Appendix C.

Due to the fact that the accuracy analysis on the above
scheme (112) is similar to our previous work [23], here we
only present some results and do not show more details. Ac-
tually, the second-order ME of the GPMFD scheme (112) can
be given by

n 2 2 n 3 n
i) -] el

ar "% At | 92 6 ox
t x| tLox*]; S1 X ]
TRy(1 — wo) Ax* [ 9% 7"
TRU = wo) S99 4 oary,
245,5> At | ox* i

(113)

where &€ = kK At/Ax?. To derive a fourth-order GPMRT-LB
model (108) and (112), the following conditions need to be
satisfied:

e=ad 1+ b — 1) —wp)
- 2a2 0)s

51

(114a)

TR; = s75:(1 — 3b) + 12a%s,(s; — 1)
+ 3w0[2a2(s1 + 250 + s%(sz -1 - 3s1sz)
+bsi(s1(1 — 52) +52)] =0,

TRy = 6a'sy(6s1 — 4 — 257) + bs;so(1 — 3b)
+ 8a*s2sy(1 — s1)(1 — 3b)
—|—6a4w0[4(s1 + 57 + s? + ZS%(SZ — 1))
— 10s15, — ZS?SQ] + 3b2s?w0(2 —52)
+12a%bsiwol251(1 — 1) + s2((s1 — 2)s1 + D] =0,

(114c)

(114b)

where u/c = O(Ax) has been used, while it has not been take
into account in the previous work [23]. In addition, for the
special case with a = b = 1, the solution of the fourth-order
conditions (114) can be derived:

12¢

T 6e+1
2

T 6e+1

wy=1-— 1262,

§1

52 (115)

which is different from that in Ref. [23].

It should be noted that the F-GPMRT-LB model and F-
GPMFD scheme can be obtained once the weight coefficient
wo and relaxation parameters s; and s, satisfy the fourth-
order conditions (114) for the given parameters &, a, and b.
However, owing to existence of nonlinearity and coupling,
it is difficult to derive analytical solution of the fourth-order
conditions (114), thus here we only plot the relation between
the parameters sy, 52, wp, and ¢ through selecting four cases
of parameters a and b in Fig. 2. Furthermore, based on the
solution of Eq. (114) and Corollary 10 in Ref. [65], the F-
GPMRT-LB model is stable if and only if the corresponding
F-GPMEFD scheme is stable in the von Neumann sense, thus
we can also consider the numerical stability of the F-GPMRT-
LB model and F-GPMFD scheme through judging whether
the modulus of the roots of the characteristic polynomial of
the amplification matrix G [see Eq. (D1) in Appendix D] is no
larger than the unit. As shown in Fig. 3, one can observe that
stability regions of the F-GPMRT-LB model and F-GPMFD
scheme can be larger than that of the MRT-LB model through
adjusting parameters a and b properly.

V. NUMERICAL RESULTS AND DISCUSSION

In this section we conduct numerical simulations of the
Gauss hill problem, the CDE with nonlinear convection and
diffusion terms, and the Taylor-Green vortex flow, since they
have the analytical solutions, which can also be used to test
the convergence rates (CRs) of the GPMRT-LB model (13)
and GPMFD scheme (37) for NACDE and NSEs. To measure
the difference between the numerical result and analyti-
cal solution, we adopt the following root-mean-square error
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FIG. 2. Weight coefficient wy and relaxation parameters s; and s, as a function of the parameter ¢ under different values of a and b.

(RMSE) [1]:

RMSE = Zi[‘ﬁ(xi, tn) - W*(Xz‘, tn)]z ’

d
HJ:l ij
where N, is the number of gird points in the j direction,
x; denotes the grid point, and ¥ and ¢* are the numerical

and analytical solutions, respectively. Based on the defini-
tion of RMSE, one can estimate the CR with the following

(116)

1 1 1 1

0 c 0 —c
0 0 0

—4c¢r —¢? —c? —c?
M€ = 0 c? —c? c?
0 0 0 0

4t =2¢* =20 =204

0 —23 0 203

0 0 -23 0

formula:

log(RMSE A /RMSE,/2)

CR =
log?2

(117)

Here we consider the popular D2Q9 lattice structure with ¢; =
c/ /3 for two-dimensional problems. For the MRT-LB model,
we adopt the orthogonal transform matrix [32],

1 1 1 1 1
0 —c —c c
—c c c —c —c
—c2 2 2F 2 232
—c? 0 0 0 0 1, (118)
0 2 = 2 —c?
—2c* c* ct c*
0 3 =3 =3
203 A A3 -3 =
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FIG. 3. Stability regions of F-GPMRT-LB model and F-GPMFD scheme for CDE (107) under different values of a and b.

and the relaxation matrix

S¢ =diag(1,SH7L,1,1,1,1,1, 1) (119)

is used for the Gauss hill problem and the CDE with non-
linear convection and diffusion terms [see S' in Eq. (57)],
while

SC = dlag(lv 1’ 19 8255 $255 255 1’ 19 1) (120)

is applied for the Taylor-Green vortex flow. To satisfy the
stability condition [68], the parameter b is located in the range
[a%, min{1, 6v + 4?}]. In addition, we also consider the one-
dimensional CDE (107) with the periodic boundary condition
to test the F-GPMRT-LB model (108) and F-GPMFD scheme
(112), where the parameter ¢, weight coefficient wy, and re-
laxation parameters s; and s, are determined by Eq. (114) and
the stability region shown in Fig. 3.

Before performing the numerical simulations, we give a
remark on the CRs at the acoustic and diffusive scalings.

Remark 9. From the theoretical results in Secs. III C and
III D, the GPMRT-LB model and GPMFD scheme have a
second-order accuracy at both the acoustic and diffusive
scalings for the NACDE and NSEs, and these results are con-
sistent with the asymptotic analysis approaches [30,42-49].
However, it should be noted that when we estimate the CRs
of the GPMRT-LB model and GPMFD scheme, for the given
physical parameters, e.g., the diffusion or viscosity coeffi-
cient, the usually used method is to change the lattice spacing
and time step with a fixed Ax/Atr (the acoustic scaling) or

Ax?/At (the diffusive scaling) while maintaining the other
parameters [e.g., the general propagation parameters a and b,
the relaxation parameters S' (or 8?) related to the diffusion
(or viscosity) coefficient, and the weight coefficients, etc.]
unchanged, which means that in the LB framework, we can-
not estimate the CRs of the GPMRT-LB model and GPMFD
scheme at the acoustic scaling in numerical simulations; this
also explains why all the works associated with the LB method
consider only the CR at the diffusive scaling. In the following
simulations, we will consider only the CR at the diffusive
scaling.

Example 1. We first consider Gauss hill problem. With the
following initial condition:

e [(53)]
2072 P\ 722 ) |

one can obtain the analytical solution of this problem under
the constant velocity u = (u,, uy)T and diffusion coefficient
matrix «,

¢(x,0) = (121)

_ $o
T 27| det (Y)[?

{ YT [(x—ur)(x —ur)]
X exp | — 3

where x = (x,y)7, Y ="3I+2t, and Y~ ! det(Y)
represent the inverse matrix and determinant value of
Y, respectively. In our simulations, the computational

¢(x, 1)

}, (122)
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FIG. 4. Contour lines of the scalar variable ¢ at the time t = 2 and u = (0.01, 0.01)”: (a), (b) isotropic diffusion problem, (c), (d) diagonal
anisotropic diffusion problem, and (e), (f) full anisotropic diffusion problem.

domain is [—1, 1] x [—1,1] and the total concentration

is set as ¢¢ = 2¢(Yy)> with Yo =0.01, which should

be small enough when applying the periodic boundary

condition.

We first conduct some tests with u, = u, = 0.01, Ax =
At = 1/200 and the following three types of diffusion coeffi-

cient matrices:

|11 _3 |11 0 3
/c_|:1 2:|x10, /<_|:O 2}XIO,

|1 0 _3
K—|:O 1i|><10 ,
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TABLE I. RMSEs and CRs of GPMRT-LB model for five cases of parameters a and b (125) at the diffusive scaling (r = 2).

Ax At (a,b) RMSE,, RMSEa,)» RMSEa, /4 RMSEa, CR

& % (1,1) 9.5641 x 107 2.3468 x 107 1.0396 x 106 5.8420 x 1077 ~2.0108
= % (0.4,0.2) 2.8713 x107° 6.7951 x 1076 2.9940 x 107 1.6794 x 1076 ~2.0368
= % (0.4,0.45) 25173 x107° 6.0406 x 107 2.6671 x107° 1.4971 x 1076 ~2.0274
= i (0.6,0.36) 1.4732 107 3.5532 106 1.5702 x 1076 8.8162 107 ~2.0240
= i (0.5,0.5) 1.7176 x 1073 4.1824 x 107 1.8512 107 1.0400 x 10~ ~2.0175

which represent the isotropic diffusion, diagonal anisotropic
diffusion, and full anisotropic diffusion problems, and present
the results of the LW scheme (b = ¢?) at the time ¢t = 2 in
Fig. 4, where a = 0.5. As shown in this figure, the numer-
ical results obtained from both the GPMRT-LB model and
GPMFD scheme are in good agreement with the analytical
solutions.

In addition, we also conduct some simulations at the dif-
fusive scaling under u, = u, = 0.01 and the full anisotropic
diffusion coefficient matrix,

i 5
K_[l 2}xlo : (124)

and consider the following five cases with different values of
parameters a and b:

Case l:a =b =1, the MRT — LB model, (125a)
Case2:a’ <b<a, a=04, b=0.2, (125b)
Case3:a<b<1, a=04, b=045, (125¢)
|

Case 4: b = d°, a = 0.6, the LW scheme,  (125d)
Case 5: b = a = 0.5, the FP scheme. (125¢)

As seen from Tables I and II, both the GPMRT-LB model
and GPMFD scheme can achieve a second-order CR at the
diffusive scaling, which is consistent with the theoretical
analysis.

Example 2. We would like to point out that in the above
example, the anisotropic diffusion of the CDE is considered,
while it is only a linear problem. In this example, we will
focus on the following more general CDE with the nonlinear
convection and diffusion terms [28]:

¢+ V- (") =V [k(V-D(@)]+R, (126)

where m is a constant, and « is the diffusion coefficient. D(¢)
is a nonlinear diffusion term, which is given by

oo
D(qb):("’O ¢> (127

where n, and n, are two constants. R is the source term and is
defined as

R = exp(—Ar){A cos(2mx)cos(2ry) — 4nx7t2/<¢>”‘_2[(nx — D) exp(—At) sin2(2nx) cosz(Zny) 4+ ¢ cos(2mx) cos(2my)]

— 4™ *[(ny — 1) exp(—At) sin*(27y) cos? (2 x) + ¢ cos(2mx) cos(2y)]

+ 2wm@™ u, sin(2mx) cos(2my) + uy, cos(2mx) sin(2my)l}, (128)

here A is a constant. Under the periodic condition and the
initial condition,

¢(x,y,0) =a — cos(2mx) cos(my), (129)
one can derive the analytical solution of Eq. (126),
O(x,y,t) = a —exp(—At) cos(2mwx) cos(2my), (130)

where « is a constant.

(

We consider the characteristic velocity u, = u, = 0.1, =
1.1,A=1.0,m =2.0, n, =2.0, n, = 3.0 with the diffusion
coefficient x = 10™* and perform some simulations under
different lattice spacings Ax = 1/40, 1/80, 1/160, 1/320 and
the fixed Ax?/At = 1/160. From the results shown in Ta-
bles III and IV, one can find that both the GPMRT-LB model
and GPMFD scheme for this problem have a second-order

TABLE II. RMSEs and CRs of GPMFD scheme for five cases of parameters a and b (125) at the diffusive scaling (r = 2).

Ax At (a, b) RMSE , RMSE > RMSE,, 4 RMSE CR

% + (1,1) 6.1121 x10° 1.5280 x 10 6.7934 x 107 3.8222 x 1077 ~1.9993
% i (0.4,0.2) 2.7548 x10° 6.8421 x 10 3.0392 x 10~ 1.7095 x 10 ~2.0036
% i (0.4,0.45) 1.0589 x 105 2.6788 x10~° 1.1932 x1076 6.7179 x10~7 ~1.9041
i i (0.6,0.36) 7.6951 x 10 1.9097 x 10 8.4799 x 1077 4.7691 x 10~ ~2.0045
& & (0.5,0.5) 9.2178 x10° 2.3532 x107° 1.0501 x10~6 59156 x 1077 ~1.9849
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TABLE III. RMSEs and CRs of GPMRT-LB model for five cases of parameters a and b at the diffusive scaling (r = 1).

Ax At (a,b) RMSE, RMSE,, /2 RMSE,, /4 RMSE,, /g CR

47'0 % (L,1) 2.4101 x1073 4.6829 x10~* 1.1172 x10~* 2.8655 x107° ~2.1314
47'0 % (0.4,0.2) 3.9736 x 1073 1.0548 x 1073 2.6514 x10~* 6.5618 x 1073 ~1.9734
47'0 % (0.4,0.6) 2.9547 x1073 7.2457 x10~* 1.8701 x10~* 4.7613 x107° ~1.9852
4710 % (0.6,0.36) 4.3929 x1073 1.1640 x 1073 2.6713 x107* 6.1312 x1073 ~2.0543
47‘0 % (0.4,0.4) 3.8619 x107* 1.1461 x1072 2.6591 x10~* 7.4452 x107° ~1.8990

TABLE IV. RMSEs and CRs of GPMFD scheme for five cases of parameters a and b at the diffusive scaling (r =

Ax At (a, b) RMSEx, RMSE /2 RMSE /4 RMSE Ay/8 CR

= = (1,1) 1.1210 x 1073 3.0132 x107* 7.8017 x107° 2.1595 x107° ~1.9036
leo % (0.4,0.2) 1.9264 x1073 5.1008 x10~* 1.2081 x 10~ 2.9965 x107° ~2.0021
= = (0.4,0.6) 2.5461 x107* 6.1005 x10~* 1.3577 x107* 3.0083 x10° ~2.1344
47'0 % (0.6,0.36) 2.1193 x1073 5.0988 x10~* 1.3102 x10~* 3.2012 x107° ~2.0128
i 1170 (0.4,0.4) 3.2162 1073 8.8190 x10~* 2.5154 1073 6.1414 x107° ~1.9035

TABLE V. Errors and CRs of GPMRT-LB model for five cases of parameters a and b at the diffusive scaling (r =

Ax At (a, b) Err’}, Err'y, Err'y, 4 Err'y, g CR™

% ﬁ (1,1) 7.5590 x 1073 1.8941 x 1073 4.7375 x10~* 1.1811 x10~* ~2.0000
% ﬁ (0.5,0.5) 9.7341 x107* 2.5072 x1072 6.3126 x10~* 1.5655 x10~* ~1.9861
% ﬁ (0.5,0.25) 1.9696 x 1073 4.9446 x10~* 1.2378 x10~* 3.0824 x107° ~1.9996
i ﬁ (0.5,0.75) 7.0541 x1073 1.7666 x 1073 4.4183 x107* 1.1032 x10~* ~1.9996
& ﬁ (0.5,0.375) 1.7801 x 1073 4.3067 x10~* 1.0679 x10~* 2.6795 x1073 ~2.0180

TABLE VI. Errors and CRs of GPMFD model for five cases of parameters a and b at the diffusive scaling (t = 2).

Ax At (a, b) Err'y, Errly Errly, 4 Erry CR™

= 5 (L1 5.1430 x107? 1.3662 x 10 3.1500 x10~* 8.8603 x107° ~1.9530
Tle ﬁ (0.5,0.5) 6.1180 x 1072 1.5801 x 102 4.0917 x10~* 9.7914 x 1073 ~1.9885
& ﬁ (0.5,0.25) 8.8766 x10~* 2.2957 x10~* 6.1279 x1073 1.5009 x 1073 ~1.9620
% ﬁ (0.5,0.75) 4.9980 x1073 1.2165 x1073 3.0613 x10~* 7.8871 x107° ~1.9953
Tlé ﬁ (0.5,0.375) 9.7244 x10~* 2.4097 x10~* 6.4010 x107° 1.6419 x1073 ~1.9627
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TABLE VII. RMSEs and CRs of F-GPMRT-LB model for different value of a and b at the diffusive scaling.

Ax At (a,b) RMSEj, RMSE .2 RMSE4,/4 RMSE .5 CR

= = (1,1) 6.1216 x 107 3.7760 x 10~ 2.3466 x107° 1.4628 x 1077 ~4.0103
= = (0.6,0.9) 1.6485 x 1073 1.0545 x 10~ 6.6188 x107° 4.1442 x1077 ~3.9859
= % (0.9,0.8) 5.8918 x10~* 3.6349 x 1077 1.1590 x10~° 1.4082 x 1077 ~4.0110
= % (0.6,0.6) 5.4684 x10~* 33716 x107° 2.0952 x10° 1.3062 x 10~ ~4.0105

CR at the diffusive scaling, which is in agreement with the
theoretical analysis in Sec. III C.

Example 3. We now consider the Taylor-Green vortex flow,
which is unsteady and fully periodic in a domain of size
[0, L] x [0, L], and can obtain the analytical solution of the
NSE [1],

ky . t
u(x,y,t) = —ug, | — cos(kyx) sin(k,y) exp (——), (131a)
ky ’ ty
kx . 1t
uy(x,y,1) = u k—sm(kxx)cos(kyy)exp - (131b)
y d

ul | k
plx,y,t)=1-— é k_y cos(2k,x)

X

ky 2t
+ — cos(2kvy)] exp (——),
ky ’ ty

where uy is the initial characteristic velocity, k, = k, = 27 /L,
and the vortex decay time #; is defined by

|
fa = v(k2 +k2)

(131c)

(132)

The initial state is determined by u(x, 0) and p(x, 0), which
are given by Eq. (131). To evaluate the difference between
the numerical and analytical solutions, the L? norm error is
adopted,

v [T ) — (s, 1)?
Zi(w*)z(xi3tn)

where Y = p, u, or u,, and the corresponding CR is defined
as

Err

, (133)

log(Err'/’x/Errwx )

R = S (134)
log?2

it should be noted that the errors of velocity, Err*s and Err*,

are of the same order. In our simulations, v = 1/6, yy = 0.02

and the characteristic length L = 2. We consider the following
five cases of parameters a and b [37]:

Case l:a=1, b=1, the MRT — LB model, (135a)
Case2:a=0.5, b= a2, the LW scheme, (135b)
Case 3:a = 0.5, b = a, the FP scheme, (135¢)
Case4:a =05, b=a—a), (a<b<]l), (1354d)
Case5:a=0.5, b=a*2 —a), (@* <b<a), (135¢)

and present the results at time r = 2 in Tables V and VI,
where the lattice spacing Ax = 1/16,1/32,1/64, 1/128 and
the time step is determined by the fixed constant Ax?/At =
25/16. We would like to point out that the magnitude of Err”
is less than 10~'3, and thus the CR of the density is not consid-
ered here. As shown in Tables V and VI, a second-order CR in
space at the diffusive scaling can be observed for the velocity
in the x direction, which is consistent with the theoretical
analysis in Sec. III D.

Example 4. We further consider the CDE (107) problem
with the periodic boundary condition and following initial
condition:

¢(x,0) =sin(rx), —1<x<1, (136)
and obtain the analytical solution of this problem as
¢(x,t) = sin[m (x — ut)] exp (—ant). (137)

In this test the initialization processes for the F-GPMRT-
LB model and F-GPMFD scheme are the same as
those in our previous work [23]; now we consider
the diffusion coefficient « = 0.08, velocity u =1, lat-
tice spacing Ax = 1/10, 1/20, 1/40, 1/80, time step At =
1/50, 1/200, 1/800, 1/3200, and measure the RMSEs be-
tween the numerical and analytical solutions at the time ¢ = 2.
As seen from Tables VII and VIII, both the GPMRT-LB model
and GPMFD scheme at the diffusive scaling have a fourth-
order CR in space.

TABLE VIII. RMSEs and CRs of F-GPMFD model for different values of a and b at the diffusive scaling.

Ax At (d, b) RMSEA,C RMSEAX/Z RMSEAXM RMSEAx/S CR

Tlo % (1,1) 5.2505 x10~* 3.7716 x107° 25180 x10°¢ 1.6268 x1077 ~3.8774
Tlo 5170 (0.6,0.9) 7.2309 x10~* 5.1108 x1073 3.3636 x1076 2.1540 x1077 ~3.9043
Tlo 5170 (0.9,0.8) 2.0699 x10~* 1.4997 x 1073 1.0076 x10~° 6.5284 x1078 ~3.8768
Tlo % (0.6,0.6) 1.8924 x10~* 1.3172 x107° 9.2169 x 1077 5.9723 x1073 ~3.8766
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VI. CONCLUSIONS

In this paper we first derived the multiple-level GPMFD
scheme of the GPMRT-LB model on conservative moments,
and then conducted the accuracy analysis for the GPMRT-LB
model and GPMFD scheme through the Maxwell iteration
method at the diffusive and acoustic scalings. Furthermore,
for the NACDE and NSEs, we presented the first- and
second-order modified equations of the GPMRT-LB model
and GPMFD scheme at both diffusive and acoustic scalings.
In particular, based on our previous work [23], we also de-
veloped the F-GPMRT-LB model and F-GPMFD scheme at
the diffusive scaling for the one-dimensional CDE, which can
be more stable than the MRT-LB model and the correspond-
ing macroscopic finite-difference scheme through adjusting
parameters a and b properly (see Fig. 3). Finally, some nu-
merical simulations of the Gauss hill problem, the CDE with
nonlinear convection and diffusion terms, and Taylor-Green
vortex flow were conducted to test the GPMRT-LB model and
GPMFD scheme, and the results show that both of them have

J

second-order convergence rates in space. We also performed
a numerical test on the F-GPMRT-LB model and F-GPMFD
scheme for the one-dimensional CDE, and we found that they
are of fourth-order accuracy in space, which is consistent
with our theoretical analysis. We would also like to point
out that for high-dimensional problems, it is more difficult
to develop the high-order GPMRT-LB models and GPMFD
schemes.
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APPENDIX A: DERIVATION OF EQS. (92b), (99), AND (101)

For the first-order ME (75), one can obtain

q
[Bm™] =9, Y f9, [cWom)y =cd, ) _ewfd, T Z<F+G + = F)

" b
2, —1
|:Atc (WO<SN + (ﬁ —

1)1q)(w0meq}
1

b
= Atc28ﬂ Zzem[ jk + (— — 1>5jki|398k0fkeq

k=1 j=1

b 1 !
= AlC 3,3 Z Sﬁl}O + Sﬁyeky)agekgfk + Al(z 7~ z)aﬂag chﬂckgf:q. (A1)
k=1 =

For the second-order ME (78), however, apart from above equalities, we also need the following results:

[CW()S lF] = COy Z €1 (Fk + Gy + 7Dka> = ¢0,

k=1

¢ 4 Ar
Z > e <Fk + Gr + TDka>
k=1 j=1

q
At —
— § : 10 1
= 0y CS + Saﬁck,g) (Fk + G + TDka>’

q

q q
[cWoSy'am®], = cd, Z D €At it =0u ) (eSL + Saperp) Sl
k=1

=1 j=1
. q
[ca Sy Wom*], = s°,0, chafk . (eWodm®), =3, a,Zcmfk : (A2)
= k=1
and
[APEWime], = Ar*o,950, ) citipes £,

i

q q
[AZ‘ZCS(W(%S;,](WOmeq]l = C3At23a3/3 Z Zejaej,gAjk Byekyf,fq

k=1 \ j=I

q
= At23a8lgz S + S por ko Cic )y Ciy fi
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q
[APSWS Wim™] = AP Y | D ejahj | dperpdy e, £ = APy Y (cS3° + ko) Dpeipdy iy £,

k=1 \ j=I k=1

q
[AZ‘ZCS(W()S (W()S (W()m ] —c%AtZB Z Z Z €jq jk BﬂekﬂAk, ayeiyﬁeq

a T a
= Atzaa Z |:Z (CSCIYO + Ségckg)aﬂckﬂxki} 3yC,‘yfl-eq

i=1 Lk=1
q
= A0, Y [eS3095(S5" + Sp,cin) + S0 (S35 + SohyCin + SapeuCic €in) |0y iy £
i=1

q

= A0, Y [(cS3005S5 + Sae0pSah) + (S 0pSh, + Sag0pSapy)Cin + Sag0pSape, CicCin |0y Ciy £,

i=1

1. NACDE: Derivation of Eq. (92b)
Substituting the moment conditions (90) for NACDE into Eq. (A1), one can derive

[cWom™]| = 3,B,, [dm™]; =09,¢, F =R
AP Wy S5 b 1)1, ) Wom
C ol Oy + 2—a2 — q om
1
ar L esi09Be fg (2 )]s 9Dys + O(AXY)
= —AC _ R X
dxg | P oxg by 2a? pres dxg

At 9 s+ b 1), |2 o
= — = C
X dxg By 2a? Br |%s

then the first-order ME of the GPMRT-LB model and GPMFD scheme for the NACDE can be given by

3¢ + 0oB At 2| st b 1)s,, |22 | _ g O(Ax)
By — At—1 xc —| = - —R= X).
' dxg e 242 7 | ox,

re } + O(Ax);
6

Similarly, substituting the moment conditions (90) for NACDE (89) into Eqs. (A2) and (A3) yields
[cWoSy'F], = 0. [cS) R + (Sep — 8ap/2) 3B + O(AX) = cd,S,°R + O(1),
[cWoSy'8m®], = cdu S 8¢ + O(1), (cd,Sy' Wom®), = O(1),

(cWoom®™); = O(1),

q
[Aﬂéwgmeﬂl = 04,050, Ze,-ae,-,geiy

i=1

:w‘ |:¢ + [C'%(Dns — $dne) + Cﬂé](cincig —c

2c¢
[AZA WIS Wom™], = Ar?0,05(c?S259, By + Sapg, 0y AogyeBecl) = O(AX?),
[AP2SWS Wim™], = A28, (S, 59, (x2Dp, + Cpy) + Sagdpdy, NopyeBecy)
= Aty 3, (S ctdpd,Dg, ) + O(AXP),
[AZ WS, WoSy Wom® ]| = A9, [(cS)00pS ) + S140555%) By
(cSloaﬁSﬁn + 5;93/359,317) (C?XD'IV + Cm/) + Séoaﬁsgﬂ;ucgayAiwéBB]

= A1 x04[cS) 058, c; 0y Dyy | + O(AX?);
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thus one can derive the following second-order ME of the GPMRT-LB model and GPMFD scheme for NACDE (89):

3¢ + 0B a2yl s b 1)s,, |22 _ g
oo — - c - ~ 5 -
' dxg X 28y 2a? 7 o

a d¢p 0By d b oD
Ated — | SP| — + — — — | x2At| S} — —1)8 " —R
+ c{axﬂ[ p <8t + dxg  0xp |:XC,; on Tt 2a? on ox,
O(Ax?)

= 0(AX?), (A7)
where the first-order ME (A5) has been used.

2. NSEs: Derivation of Egs. (99) and (101)
Substituting the moment conditions (97) for NSEs (95) into Eq. (A1), we have

[am*]; = 8,0, [cWom™] = du(puy), F; =0,

& b
|:Atc2(Wo (s;‘ + (F - 1>Iq)womﬂ
a 1

9 d(pup) b 3(puyup + pctdyg)
= At— | S0 sl — —1)s s , A8
dxp (C B ox, + |: prt 2a? Py 0xg (A8)

and for any o € {1 ~ d},
[eWom o i1 = 3 (puaits + pcidap)/c,  (Flay1 = O(AX),

& b
|:A1c2(W0 (s;‘ + (—2 — 1>Iq>(womeq}
2a at]

1 b
= Atdg [655%%(0%) + S«i;ls*é] 9y (p”&”y + PCES&V) + - (Sgﬁéléz + <2_az - 1)301&1 5/352)3}/ (IOC?ASI&}’{M{)}

= Atdp[Sape 9y (pcidey)] + O(AX) = O(Ax). (A9)

From Egs. (A8) and (A9), the first-order MEs of the GPMRT-LB model and GPMFD scheme on conservative moments m; = p
and my1; = (pu,)/c can be expressed as

[cWom®], = dg(pug) = O(Ax), (A10a)
[cWom™]ysy = %aﬂ (p280p) + O(Ax) = O(Ax), (A10b)

and this illustrates that at the diffusive scaling, Vo = O(Ax?), which will be used below. Subsequently, substituting the moment
conditions (97) for NSEs (95) into Egs. (A2) and (A3) yields

[AteWodm®™]| = Atdyd,(puq) = O(AX?),
[AtcWoSy ' 8m ]| = At[cdq (S)°9:p] + 0a[Ses0: (pup)]] = cdu(Sy' 0 0] + O(AXP),
[Atcd, Sy Wom®], = 8,5004 (pua) = O(AX?),
ol At R
[AteW,Sy'F], = Atd, [csg,‘)?ay(pry) + Sap(pKy,) + O(Ax)] = O(Ax?),

q
[AIZC3W3meq]1 = At2c380,8ﬂ8y Zeiaeiﬂeiy(wip + O(Ax)) = O(sz),
i=1

[AﬂéWgS;‘(WomeQ]l = Aﬂaaa,g [czSé%ay(puy) + 085/13&1 0y (pugl uy, + 03/055,;/)
2 2 )
+ Saﬂélézay ('OCX AEI&VC”C)] = O(Ax7),

_

[Al263(WQS;/l(W(2)meq]] = Al‘zaa Z (CS;O + S(iél ckgl)aﬁckﬂayckyf:q
k=1

= A%, [cStiOBgay (puﬂuy + cf,oS,gy) + S;g, 0g 0y, (pcnglﬁ,,;ug)] = O(Ax?),
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[APA WS WoSy Wom™ ]| = A9, [ (cSy 0551 + Sie, 0pS2%) By (puy)
+ (CS;OaﬂSéfl + S‘LEI aﬁsgllﬁtl)ay ('OMCI Uy + CS,O(S{IV)
+ Sae, 0852 g,y Oy (0 Ariraycite) | = O(AX?). (Al1)

Additionally, one can also derive the following second-order ME of the GPMRT-LB model and GPMFD scheme for the
continuous equation (95a):

0 d 0
0 + dulputg) + Arc{—[Sé"(—p + M)“ = 0(Ax?), (A12)
oxg ot ox,
O(Ax?)

where the first-order ME (A10a) has been applied.
For the GPMRT-LB model and the GPMFD scheme for the momentum equation (95b), one can obtain

1 1
[=3m™ s = == 3(pua),  [=eWomlas = == (pitatts + peidup).

- L 1
(Flop =F,, [AtdWim™] | = — Aty (pciAapycitc),
. N _ 1
[AtcWoSy am®] = Atcd | D ejueipdpAi |0fF = Atdy [csgga,p + 82, 0 (pug,) + ESZ*'»“E' &0 (pC?(Sglgz)iI,
k=1 | j=0
[AZ‘CZ(W()S l(M/()Il'l AZ‘C2 Z Ze,ae,ﬁaﬂ jk | €ky ka
1
= Atdg [652%31/(/0”)/) + Sé,lss, dy (:0”51“)/ + pc?(sély) + Esiﬁéléza)/ (pc.gASléz)/fuf)}’ (A13)
and

[ — AteWo,m®] —At%aﬁa, (puqup + pctdup) = —At%aﬂa, (pcdap) + O(AXY),

a+1 =

At
[ A[C(W()S lF CAIZ ZelaeJﬂaﬂAjk (Fk + TDka>

q
At
= —cArY 0[S + Sape, i + Sapec.ne bic] (Fk * TDka)
k=1

= —A10p[Sape (0Fx,)] + O(AXY),

g-1 | g-1

[Atca,S]T,l’Womeq]aH = Atca, Z Zejank ekgaﬂf]fq
k=0 | j=0

_ 10 1 2 _ 10 3
= A19,S, dg(pug) + Atca,Sagl dp (,Ol/lgl ug + 1003851,5) = At0; [Sa Bﬂ(puﬁ)] + O(AX”),

q q
[At2c3(W(2)S;,1(W0meq]a+l = At2C3 Z Z €€ 8ﬁejy 8ijk €x; akgf:q
k=1 | j=1

= A?950,[c*S05, 0c (pug )] + O(AX)

q
[AI‘ZC%(W()S I’W m®4 = Alzc‘SZ Zejaejﬂaﬁxjk ekyekgayagf:q
| =1

1
= Ar?9p[cS20,0; x O(1) + Sape 3,0 (Pl Agyycyity) + ;sf,ﬁmaya;
x [p€; Mg erye + O/ AX)]] = AP0p[Sahe, 0y 0 (pC; Ayyeyity) ] + O(AX),
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q q

q
a+1=_2 Z Zejaejﬂaﬁf\jk ey 0y Ai | €igdy fTAALC

i=1 | k=1 | j=1
= —Ar0[S230, (c°S) 09 (pug)) + Sape, 0y (*S20, 0 (o)
+ 82 016,00 (0 Aytyomttn)) + S g, 0 (825, 06 (0us)) | + O(AXY), (Al4)

where o € {1 ~ d}. Together with Egs. (A13) and (A14), the second-order ME of GPMRT-LB model and GPMFD scheme on
conservative moment my 11 = (pu,)/c can be obtained,

[ — A[263(W()S&1(W()S;,1(Womeq]

~ A b A
[(ath + C"—M/O)n’leq]w_‘_1 = |:F + AtcW, (S;;l + (ﬁ - 1>Iq>c’W0meq + AIC(W()a,SX,Imeq]

a+1

- |:8t(pua) + dp(putatts + pC;8ap) — A1pSage e, 0 (0CT0zc, )

. b 1
— pE, — Atdg [sf,ﬂgla + (E - 1)5a§13ﬁgz}ay (pc?A;lgzﬂu{)}; = O(Ax?), (A15)

where the second-order ME of the GPMRT-LB model and GPMFD scheme for the continuous equation (A12) has been used.
Actually, at the diffusive scaling, c = O(1/Ax), and above ME of the GPMRT-LB model and GPMFD scheme for the momentum
equation (95b) is first-order accurate. This also explains why we further conduct the expansion of E up to E® in Eq. (68). To
obtain a second-order ME of the GPMRT-LB model and GPMFD scheme for the momentum equation (95b), it is necessary to
compute Eq. (80), and after some manipulations, one can derive

At 1 At
|:_78”meq:| = ———0(pUtg),
atl c 2
g—1 | g—1 q—1
[Ard, S5 ame] = A0, > | Y ejuhj |0 = Atd, Y [SL + Sk s, |0, £I=A10,[S)00,p]+O(AX),
k=0 | j=0 k=0

q

q
[Atzczwgsg,lalmeq]aﬂ = At2czz Zejaejﬁaﬁejyayxjk 8, k Atzczaﬁa S

apy % + O(AX),
k=1 | j=1

q q
[At202WOS I(WOB,m = Z Ze,aej,gE),g jk ekya B,fk

k=1
1
= At?dg [cszoa 3 x O(1) + Sop. 9,0 (pcide,y) + szm,a 3 x O(1/Ax )]

= AP 0p[Sepe 9,0 (pc) e,y )| + O(AX),

q q
[ A1262(W()S 1(M/()S a,m Z Z Zejaejﬂaﬂxjk ekyayxk,-atffq
i=1 | k=1 | j=1
= _Atzaﬂ [5208 (CZS}I/OBI'O) + Si}‘%la ( 2S§10V8"0) + Sﬁ}%]a [S??H/{l{zaf (,06‘%8;1;2)]
2 30 3
+S0l551§28 (C Sflfz)/a”o)] + O(Ax ), (A16)
1 q
(AP Wim] | = EAﬂaﬂaya; D CiaCipCiyCic[wip + indy + O(AX)] = O(AXY), (A17)
i=1
1 q
(APt Wim™] | = EMaﬂay 0:0y Y CiaCipCiy Cir Cinlwip + O(Ax)] = O(AXY), (A18)
i=1
1
[ - APEWiam™] | = —Atzzaﬂaya, (0c Aapycur) = O(AXY), (A19)

q q
A e — At
[— AtatSX,IF]aH = —At § § € Aji <Fk + TD"F") = O(AXY), (A20)

k=1 | j=1
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q q
. _ At
2.2 2Q— 2.2
[— Af°c ’WOSNIF]QH = —At?c E 50, E €jo€jgei, Aji (Fk + TDka)
k=1 j=1
! At
= —cAr ) 950, [Saf, + Sapye s + Sy e, ek&eks}](Fk + 7Dka) = 0(Ax),  (A2D)

k=1

q q q

A ALz — — At

[— AIZCZ(WQS];I(WQS];IF](XJ’_I = —At2C2 E E 8,3 E ejaej,gAjk ejyayAki (E + 7D,E>
i=1 | k=1 Jj=1

. . 1
_ 2 20 1 21 21 2
= — A0 |:S01/38VSV§1 (prq) + Saﬂél dy <S51)/C1 ('OFXQ) + ZS&VCI o X 0(1)>

L1
2 31 33 2 r 6 4
+ Sapaie Oy (Sslszm (pF:)) + FSeevane (PCsAuzchxq))] +0(Ax%) = O(AX),
(A22)

q q
[APWo ST Wome] | = AP D | D ejuejpdpdh Aji |y dy £
k=1 | j=I

1
= At*d50, [csj%ay x O(1) + Sope 9, x O(1) + ;Sgﬁ&&ay x O(I/sz)] = 0(AXY), (A23)

q | gq-1
A —1
[APOSy Wim] | = AP0, Y | D ejah i |expdper, dy £
k=1 | j=0

q
1
= A3, Y [S;Oaﬂay x O(1) + ZS;& dp0, x 0(1/Ax2)] = O(AxY), (A24)
k=1

g [ 4
[At3c4W§S;1W§meq]a+] = A3t Z Z €j0€jp€j, 950y A jik | Oy€ry0rers £
i1 | j=1

1 S33

" aﬂrélézsganatXo(l/Ax4)}=0(Ax3),

q
=APY [czsg‘gya,,a; x O(1) + ¢Syl ¢ 0,0 x O(1/Ax?) +
i=1
(A25)

q q q
[ = ACAWST WSy Wemed] | = —ArH Y | D 1D ejuejpdpAy |en, dy Ak |eicdceindy [0
i=1 | k=1 | j=1

— A3 [Sj%ay (c?8)°9,8, x O(1) + ¢S, 0: 9, x O(1/ Ax?))
+ 82, 3y (c*S20,0,8, x O(1) + ¢SZ' 8,0, x O(1/Ax?)

+ Sgl}’(l(za(aﬂ [pC?ACICZM + O(I/sz)]) + Siﬂc‘?lézal/ (0252?52},8;8,, x O(1)

1
31 g 3
+ CSEieiy 0600 X OUJAX) + = Siie 00,050 X 0<1/Ax4>)} = 0(AX)), (A26)
o g | g-1 q .
[ — AP Wa,Sy'Sy Wom™] | = —ACA Y | Y| D ejaeipdpdi A |Aui |eiydy £
i=1 [ k=0 | j=1

= —Ar*950, [sﬁ%csoay x O(1) + Si4e, (cSi00, x O(1) + S} 9, x O(1))

1
+ 82586, <c5§f’&ciyay + 82,9, x O(1) + ES;% L0y x 0(1 /Ax2)>] = O(AX),
(A27)
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q q q-—1
4 Q- 2Q— 4 A A
[— AtsC (WQSNI(WOSNI(WOmeq]a+1 = —AISC Z Z ZejaejﬂaﬁAjk ek(;a;ek,,a,,Aki eigagfieq
i=1 | k=1 | j=0

= — A’ [si%agan(&sg‘;a@ x O(1) + ¢*S3y, 00 x O(1) + ¢S7,,, 1,0 X O(1/Ax?))
+ S, 00, (c782%, 30 x O(1) + ¢S5, 35 x O(1)
+ S8 000 [pCt Mg + O/ AD)]) + 82, . B0, (c-*sggﬂ,,a@ x O(1)
+ czsgllcncl

1
X (e} A0 + O/ Bx) + —SEi16,0,00 0<1/Ax4>)} =0(AY),  (A28)

B9 % O(1) + €Sgieyepe e, 90 X O/ AX) + S 0,0,

q q q
[— Atzcza,S,T,l‘WOS;,l‘Womeq]aH = —Atzcza, Z Z ZejaAjk ek,gaﬂAk,- eiyayf'l.eq
i=1 | k=1 ] j=1

= — A%, [S;Oaﬁ(cs;oay x O(1) + 8}, 9, x O(1)) + S, p <cS§?ﬁay x O(1)
1
+ 8215, 0, x 0(1) + ngﬂ;lﬁay x O(I/sz)):| = 0(AX), (A29)

q q q
[— AISC4(W(2)S;/1(W()S;/1(W()meq]a+I = —AI3C4 Z Z Ze_,-aej,gaﬁejyaijk ek;B;Aki e,-,,a,,ffq

i=1 | k=1 | j=1
= —Ad,9 [Sg%ya; (?S1°9, x O(1) + ¢*S}}, 9, x O(1))

+ Sohye 0 (2520, 0y x O(1) + 87 0y X O1) + €S2, 4,1, 0y X O(1/Ax?))

33 3 40 2 g4l
+ Saﬁ)'&éz&a{ <C S§1$2$3§8'7 x O() +¢ S$1$2$3§§1 8'7 x O(1)
42 2 43 4
+ CS§1§2§3§§1§2877 x O(1/Ax%) + Saﬂyél‘fz&{]{z{z dy < ['OCS Agitagsn + O(I/sz)]

1
+ ;Sg‘;,ygmgl ey x 01 /Ax“))} = 0(Ax?), (A30)

and

[At3c4"WoS§IKWOS?(WOS?(WOmeq]aH

q q q q
:A[3C4Z Z Zaﬂ Zejaej,gAjk ek},ayAki e,-;Z);Ail elnanffq
=1 | i=1 | k=1 j=1

= A9 [Si%ayS;(’a; (c8:°8, x O(1) + >S9, x O(1))

+ 8230, S}, 0: (7525, 0y x O(1) + *SFL 3y x O(1) 4 ¢SF, ), By x O(1/ Ax?))

21 20
+ S pe, 0y S,

20,00 (7879, x O(1) + ¢Sy, 9y x O(1)) + Sap 9, 82! . 0: (¢S, 0y x O(1) + 23/, 9y x O(1)

2 2 21 2 3 30 2 31
+ 87 0000 X O/ AX)) 4 Sqe 8y 0S¢ gy, 8¢ (€787, 8y X O(1) + 283 8y X O(1)

33
+ S§|C2CX1X2X3

2 31 3 @20 2 21 2 2
+ Sﬂﬂélfzays&fzyﬁ 85 (C S{lfa” x0(1) +e¢ SCllea’l x O(1) + CS{]{X]Xza” x O(1/Ax ))

9 [Pct Ao+ O/ D)) 4 21,0530, 06 (50, x O(1) + ¢S], x O(1)

2 33 3 40 2 o4l 42 2
+ Sﬁﬂélfza)’sflifzﬂl{zhaf (C SCICzC3CB” x 0(1) +c¢ SCICz{sCXla” x 0(1) + CSCICzQCXIXza” x O(I/Ax )

+ S43

§16838 X1 X2 X3

1
By X [P€S A xoxon + O/ A+ =SE oy oasOn X 0(1/Ax4)>} = 0(AxY). (A31)

065305-29



CHEN, LIU, CHAI, AND SHI PHYSICAL REVIEW E 109, 065305 (2024)

With Egs. (A17)-(A31), the second-order ME of GPMRT-LB model and GPMFD scheme (80) for the momentum equation (95b)
becomes

- b At A e
[F - <cw0 + 9,1, + Atc2(1 - ﬁ)«wg + AtWod, + 7anl,,>meq — AteW,S,'F
a
+| AW Wo + Al WS a1, + A2 (1 — 2 Y WSy w?
c oy 0 cWodSy oly c 2_612 oy 0
A_ A b A
+ Ated LSy Wo + A13,Sy'1,8,1, + Ar*c? (1 - 2—az>wgs,v'wo
b A .
+ A12c2<1 — ﬁ>’W§S;,'8,Iq + Azzcszos;lwoa,lq]meq
— [APE WS WSy W + Atzcz"WoSN—I’WOSNlatIq]meq] + 0(AxY), (A32)
a+1
then substituting Eqs. (A13)—(A16) into Eq. (A32), we have

b
0 (ptta) + g (puattp + pcidup) = Aty [[Si,sslgz - (1 - 2—02>5asl 5ﬂsz]3y (PCfAslszy:uc)]

+ Atdp[S2pe, e, (0C2852,) | + PF, = O(AX?), (A33)
where the first-order ME (A 15) has been used.

APPENDIX B: DERIVATION OF EQS. (93b), (100), AND (102)
1. NACDE: Derivation of Eq. (93b)
Due to the fact that

q
eq _ eq _ eq _
m =¢, cWom' = E Ciof; =B

i=1

F = [M(F +G+ ﬂDF)} s Xq:(at T eyd,)F =S+ 2la;s, (B1)
2 1 2 p 2
one can obtain the first-order ME:
%—qj +V.B =S5+ 0(Ax), (B2)
For the second-order ME, we also need to further consider the following equalities:
[—%aml = —%ars + O(A?),

q q
[ — AteWoSF'F], = —cAtdg Y Y lejpAju(Fi + Gl + O(Ar?)
k=1 j=1

q
8
= —Atdg Y (S + S}, € ) (Fic + Gi) + O(AF?) = —cAtdpS}0S — Aty <s},y - %)wy
k=1

b
= —Atdy [sgy - ( o 2>5ﬂy]agcyg + O(AX?),

q
A 1 1
W85 1), =5 3 S5+ Sk )t it = o500+ (5~ 50 )|
k=1
[ WoSy' Wom™], =3 i eS10 + 8L e )dpeio £ = —— 9 | 50280 1 d(Dyocix +¢Cyo)
0 0 ﬂkzl B By ky 0LCko k 8 ﬂ B 8x9 By ax9 s

9*(xc;Dgo + ¢Cpo)
axﬂx(, '

q
[CZ(WO(W()meq]l = 8ﬂ39 ZCjﬁCj(.)f;q = (B3)

Jj=1
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Substituting Eqs. (B1) and (B3) into Eq. (86), one can obtain

A b . A ol
(31, + cWo)m™]; + 7’(1 - a—z)[c’W%me ], = At[eWo(Sy' —1,/2) (3 +cWo)m*], — F, + Tta,F1 + At[cW,oSy'F],

0 1 b 8Dy9 10 aBQ 2
= 0,0+ 0,By — S — AlCSa— Sﬁy + ﬁ —1 5,3}, W + CAlaﬂSﬂ 0: ¢ + — — 85| = 0(Ax?), (B4)

0O(Ax?)

where the first-order ME (B2) has been used.

2. NSEs: Derivation of Eqgs. (100) and (102)

For the first conservative moment, i.e., the density p, one can obtain

- At At .
mTq = p, F] = |:M<F + 7DF>1| =04+ — Z(at + C,ya )F = 8),(,0Fy),
1

q
[cWom™]; =) € f = plta (BS)

i=1
and for the second to (d + 1)th conservative moments, i.e., the momentum pu,, we have

(it + p30p)

q
u 1
Cq _ p o e _ Cq _
my ., = o [cWom®],, = 28,3 E CnCipf; | = " ,

- At
[Flot1 = [M (F + —DF)] =
2 a+1

_ pE,

oF,

At <
+ 5o Z} Cip (3 + €1,0,)F;

+ 28R + 28, (oFpuy + pEyup), (B6)
2c 2c
then the corrseponding first-order MEs of the GPMRT-LB model and GPMFD scheme for the NSEs (95) are given by
90 + 9g(pug) = O(Ax), (B7a)
3 (pua) + 8,08 (putattp + ¢ pdap) — Py, = O(Ax). (B7b)
To obtain the second-order ME, the following equalities are needed:

q q
— At[cWoSy'F], = —Atdp Y Y ejpA kil + O(AL?) = —Atdg Y (Sp° + Sp ek ) Fie = —AtdpSpe pFi, + O(AX?),

q
k=1 j=1 k=1

At i .
I:_?atFi| =0, [cWodm™], = 09, E Cigf; 4= 050, (pug),
1 i=1

q q q
[eWoSy' ome ], =05 Y Y cipAudi fit =05 Y _ (cSE + She, €ue, )OS = 0p[eS5 00 + She, 0, (pus, )],

k=1 j=1 k=1
q9 9 q
[CZ(WOSITII(Womeq]l = 8/3 Z Z legAjkckg 8gflfq = 3/3 89 Z (CS}KO + S/13$1 Ckgl)ckgagf]:q
k=1 j=1 k=1

0
(pug] ug + pc; 5&1 )]

- cS'° (pu9>+s
3xﬁ Bé& dxg

q 2 2
. 0 (pupug + pcidpe
[CZ(WO(W()H‘I q]1 = 8ﬁ89 ch'ﬁcjpf;q = ( P P ); (BS)

= 8xﬂx9
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combining Eqgs. (B5) and (B8) yields
At b
(31, + cWo)m™]; + 7(1 - ;) [cWim®],

o Al s
— At[eWo(Sy' —1,/2) (3 + cWom™], — F; + TtatF1 + At[cWoSy'F],

+0pcSy [0 + 5 (ot)]

O(Ax?)

b 1\ 0*(pupuy + pc2dpe)
2a* 2

= 0,p + 3o (puty) — At( -
0xpxg

1 .
— 0p (5;351 - 5%) [0 (puz,) + 39 (oug o + pciden) — phi, | +0(AX)

O(Ax?)
b 1\ 0> (pugug + pc2é
= 0,0+ dupte) = At 55 — > (ot +065300) | oy 2) (BY)
2a 2 0xpxg

where the first-order MEs (B7a) and (B7b) have been used. In addition, for any « € {1 ~ d}, we can derive the following
equations:

— At ~0p Z (SZ + S2he, Ckey + SZhe, . €kt ke ) Fic + O(AL?)
1 . 3 3
= —At=dy [S2he, (0Fs) + Sage,e, (pFe ue, + pFeyug, )] + O(AL),

[eWodm™]yq = — chackﬂaﬁatfk = _3;Sat (pcidup + puqug),
¢ =

g—1
20
[cWoSy'ame], | 3/32 Sap T Sape Cker T Sape,,Cker €k, ) O S
k=0

1
= —0p(Sapdhp + Sape, 0 (0us)) + Sihere, 1 (PT85,6, + Pt s ),
q

A 1
[CZ(W()SNI(W()meq]a+1 = Z Z (S + Sotﬂél Ckg1 + Sﬁ;a&cka Ckgz)ckg 39f,?q
k=1

1
= - [S2%00 (oua) + Sepe, 0o (putous, + 0C386,0) + Sape, e, 9 (0C; Agiesocuc) -
2 eq 1 d €q 1 2
[C ’WQ‘WOm ]01+1 = ;858@ chacjﬁcjefj = zaﬂag(pcs Aaﬂggu;), (BIO)
j=1
considering Egs. (B6) and (B10) yields

At b A
[0 1y + cWoym™], 4y + 7(1 - a_>[ 2’W2 ]a+l - AI[C(WO(S;/I - Iq/z) (8; + Cwo)meq]a+1

- At . A= 1
—Fop + 73rFa+1 + Af[CWOSNlF]a+1 = ;8t(pua) + g (puatts + pcldap)

At b ok, 1. o
+ (152 3599 (pct Aapocity) — . —Az;aﬁsaﬂ(a,erag(pug))

O(Ax?)
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1 L
- AfzaﬂSi,lsgl (3 (pug,) + dp(pugug, + pc;dsp) — PFxsl)

O(Ax?)

—Atlaﬂ 2 — Lo (3 (pcids,e, + pug us,) + 0o (pct Mg gocuc) — phy, ug, — pEy, ug) = O(AX*),  (B11)
c afé & ) 5106, t 59616 &11& s 2615004 xg Y& Xg, Y d

where the results of first-order MEs (B7a) and (B7b) have been adopted.

APPENDIX C: THE PARAMETERS OF GPMFD SCHEME (112)
The parameters «;(i € {1 ~ 3}), B, vi(k € {1 ~ 5}) of the GPMFD scheme (112) are given by

1
2 (6azc2 4a*bc* — 8a*cts) — 2aPctsy — betst — 2b%ctsy + 2dPctst 4+ bPAPst
c

+ 3bczs1 — 2azbc2 — bc? S182 + 6a>bc? S|+ 2ad*c? S180 — 202bs2u2 + 202bczs2wo

o] = —F—

+ czzbslszu2 + b202s152w0 — 2a%bc slszwo),

oy = (4a2bc + 2025 — bArs? s7+ 2a*bcts? 1+ 2a s u — 6a°bc’sy + 2a’bsyu?

220

—2a CS%M — 2a2bczs2wo — a2bs1s2u2 — b2czs1s2w0 + abcs%u + 2a2bczs1s2w0),

o3 = — (bzczs% — 2b262S1 — 4a’bc? — 2a2bczs% + 2a3cs1u + abcs%u — 2a2bczslszw0

2c20

+ 6a2bc2s1 — 2azbszu2 — 2a3cs%u + 2a2bczszw0 + azbslszu2 + bzczslszwo),

Bl = - ﬁ(uazc +2a*c? — 16a’bc* — 20a*c? Sp — 8a>c? Sy — 4a*c? s] — 4bc*s?
— 8b%c?s) + 307 sy + 2atspu’ + 6a°bPc? 4 8aPcrst + 2a* st + 6bP st
— 3b3czs% + 6bc2s1 — 13a2bc2s% — 12a2b2c2s1 —4d’c s%sz + 6a’b’ szu
— 2b2C252S2 + a452szu2 — 4bc*sy sy + 6c12b2c252 + 29a*bc?sy + 8a”bcs,
+ 12d%cPssy — 4a’bsyu® + 2bc2sfsz + 4B P15y — 2a P sowy — 3ats sou?
+ 4a>bc? S wo + 6a* bslszu +4a*? S1S2wo + 2b%c? S1SHWo — 3b3c2s1szw0
— 6a*b’ P srwy — 2a2bs%szu2 — 9a*b’ s sou* — 2a4c2sfsQwo — 2bzczsfszw0
+ ?wzzbzszszu2 + Sazbczs%szwo + 12a2b202s132w0 — 6a2b202s%szw0,

— 9a*bc? S1S2wWo + 4a’bc?s? 152 — 12a*bc? $152 + 3b3cs? szwo)

(2b3c2s1 — 4b2C2S1 — 8a’bc? + 4a*b*? — 4aPb P s? 1S2Wo — 4a2bc25152w0

B =

2c26
+ 30225 — 2b°cPst — 6a°bAPs? — 8a*bPCPs) + 4atbP st — bPAPstsy

+ 4a2b2c25f + 14a2bczs1 + 4a2bczs2 — 2azbs2u2 + 2b262s1s2 + 2a3cs%u
+ 2a’bcsywg + 3a’bs spu’ — 2a3cs%S2u + B2Ps swg — 263 s sawy
— 4a2b2c2szwo — azbs%szu2 — 6a2b2slszu — bs? s1S2wo + 2b3 s> 57S2Wo
— 6a’bc’s sy + 2d°cs syu + 2a>brs? szu + 2a%bc?s? $1S2Wo

+ 8a*h*c? S1S2Wo — 243 csiu+ 2abc? slsz — abcs,u + abcs,szu),

_H2 _
B3 = — %[2{1%2(1 —51)+ azsz(Z — sl)(u2 — 2w0c2) + bc2s1(1 — srwo)],

_ (s1 — D(s2 — D)(—a? + b?)

7 (2a* + 66> — 8b + 4),

Bs =B, PBs=pa,

(51 = D(s2 = 1)(=a” +b%)
4 b

yr=01— D= D=0, ys=y,y= ¥s = Va. (Cl)
where 0 = 1/(bs; — 2a’s, + 24%).
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APPENDIX D: THE EXPRESSION OF THE AMPLIFICATION MATRIX OF THE F-GPMFD SCHEME (112)

For the F-GPMFD scheme (112), one can obtain the expression of the amplification matrix G,

o) + otze”p + Ol3€i0
G = 1 0
0 1

’31 +ﬂ267i0 +ﬂ3€i9 +ﬂ4672i9 +ﬂ562i0

i+ v2e™ +yse? + yuem + yse??
0 . (DD
0

where 0 € [—m, w]. However, it is difficult to discuss the von Neumann stability condition of the F-GPMFD scheme (112) from
the theoretical perspective, thus we consider the numerical stability for the F-GPMFD scheme (112) in Sec. IV.
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