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In this paper we first present the general propagation multiple-relaxation-time lattice Boltzmann (GPMRT-LB)
model and obtain the corresponding macroscopic finite-difference (GPMFD) scheme on conservative moments.
Then based on the Maxwell iteration method, we conduct the analysis on the truncation errors and modified
equations (MEs) of the GPMRT-LB model and GPMFD scheme at both diffusive and acoustic scalings. For
the nonlinear anisotropic convection-diffusion equation (NACDE) and Navier-Stokes equations (NSEs), we also
derive the first- and second-order MEs of the GPMRT-LB model and GPMFD scheme. In particular, for the
one-dimensional convection-diffusion equation (CDE) with the constant velocity and diffusion coefficient, we
can develop a fourth-order GPMRT-LB (F-GPMRT-LB) model and the corresponding fourth-order GPMFD
(F-GPMFD) scheme at the diffusive scaling. Finally, three benchmark problems, the Gauss hill problem, the
CDE with nonlinear convection and diffusion terms, and the Taylor-Green vortex flow in two-dimensional space,
are used to test the GPMRT-LB model and GPMFD scheme, and it is found that the numerical results not only
are in good agreement with corresponding analytical solutions, but also have a second-order convergence rate in
space. Additionally, a numerical study on one-dimensional CDE also demonstrates that the F-GPMRT-LB model
and F-GPMFD scheme can achieve a fourth-order accuracy in space, which is consistent with our theoretical
analysis.
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I. INTRODUCTION

The kinetic-theory-based lattice Boltzmann (LB) method,
as a highly efficient numerical approach at the mesoscopic
level, has been widely used to study the fluid flow problems
(e.g., the multiphase flows [1,2], fluid flows in porous media
[3]) governed by the Navier-Stokes equations (NSEs) [4] for
its a second-order accuracy in space [5,6] and advantages
in treating complex boundary conditions. On the other hand,
the LB method has also been extended to solve some special
kinds of partial differential equations (PDEs), including diffu-
sion equations [7–13], convection-diffusion equations (CDEs)
[14–23], Burgers’ equations [24–26], general real and
complex nonlinear convection-diffusion equations [27],
and nonlinear anisotropic convection-diffusion equations
(NACDEs) [28].

Usually, the LB method suffers from numerical instability
when the relaxation parameter is close to 2. To solve the
problem, two possible approaches can be adopted. The first
one is to introduce the multiple-relaxation-time (MRT) col-
lision operator [29–31] with some adjustable free relaxation
parameters [32–35], which is more general and more stable
than the single- and two-relaxation-time lattice Boltzmann
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(SRT-LB [36] and TRT-LB [14]) models. The second one is to
use the general propagation LB model within the framework
of the time-splitting method where two free parameters are
introduced into the propagation step for NSEs [37] or NCDE
[38] based on the Lax-Wendroff (LW) scheme [39,40] and
fractional propagation (FP) scheme [41]. This model is more
stable, and the popular standard LB model, LW and FP
schemes can be viewed as its special cases. Considering the
advantages of the MRT-LB model and general propagation LB
model in the numerical stability, in this work, we will consider
the more general propagation MRT-LB (GPMRT-LB) model.

In the framework of LB method, several asymptotic analy-
sis approaches have been used to derive macroscopic PDEs,
including the Chapman-Enskog analysis [42], Maxwell it-
eration [43,44], direct Taylor expansion [30], recurrence
equations method [45,46], and equivalent equations method
[47–49], although these asymptotic analysis approaches can
be adopted to develop higher-order LB models [50–56],
while they cannot be applied to clarify the relation between
the LB model and the macroscopic PDE-based numerical
scheme (the so-called macroscopic numerical scheme). Over
recent years, some significant contributions have been made
to bridge the gap between the LB model and macroscopic
numerical scheme for a specified PDE, and these efforts aim to
provide clear and rigorous consistency, accuracy, and deriva-
tion of modified equation (ME). Most of the existing works,
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however, are limited to the LB models and the macroscopic
finite-difference schemes for diffusion equations and CDEs.
On the one hand, Ancona [7] first presented the SRT-LB
model with D1Q2 lattice structure for the one-dimensional
diffusion equation and found that it is consistent with a
macroscopic three-level second-order DuFort-Frankel scheme
[57]. Then Suga [10] demonstrated that the SRT-LB model
with D1Q3 lattice structure for the one-dimensional diffusion
equation is equivalent to a macroscopic four-level fourth-
order finite-difference scheme. Lin et al. [11] extended this
work to consider a more general MRT-LB model and de-
rived a macroscopic four-level sixth-order finite-difference
scheme. Silva [12] focused on the TRT-LB model for the
diffusion equation with a linear source term and obtained
a macroscopic fourth-order finite-difference scheme. How-
ever, all of the aforementioned works are limited to only
one-dimensional problems. In a recent work, Chen [13] con-
sidered the MRT-LB model with the D2Q5 lattice structure
for the two-dimensional diffusion equation and obtained a
five-level fourth-order finite-difference scheme. On the other
hand, Dellacherie [58] analyzed the SRT-LB model for the
one-dimensional CDE with D1Q2 lattice structure and il-
lustrated that this LB model is equivalent to a three-level
finite-difference scheme called LFCCDF (Leap-Frog differ-
ence for the temporal derivative, central difference for the
convective term, and DuFort-Frankel approximation for the
diffusive term) scheme [59]. Cui et al. [34] showed that for
the one-dimensional steady CDE, the MRT-LB model can
be written as a macroscopic second-order central-difference
scheme. Following a similar idea, Wu et al. [60] derived a
macroscopic finite-difference scheme of the MRT-LB model
composed of natural moments and further performed a more
general analysis on the discrete effects of some boundary
schemes for the CDE. Recently, Chen et al. [23] obtained a
macroscopic four-level fourth-order finite-difference scheme
from the MRT-LB model with D1Q3 lattice structure for the
CDE. In addition, Li et al. [24] demonstrated that for the
one-dimensional Burgers equation, the SRT-LB model with
the D1Q2 lattice structure can be expressed as a macroscopic
three-level second-order finite-difference scheme. Junk [61]
and Inamuro [62] found that the SRT-LB model is equivalent
to a macroscopic two-level finite-difference scheme if the re-
laxation parameter is equal to one, and at the diffusive scaling,
it has a second-order convergence rate for the incompress-
ible NSEs [61]. D’Humières and Ginzburg [46] conducted
a theoretical analysis on the TRT-LB model with recurrence
equations and illustrated that when the magic parameter is
fixed as �eo = 1/4, the model can be written as a macroscopic
three-level finite-difference scheme with a second-order accu-
racy in space. Chai et al. [30] further presented a more general
analysis on the TRT-LB model and also derived the three-level
finite-difference schemes for steady and unsteady problems.

It is worth noting that the works mentioned above are
limited to some specific problems and/or lattice structures.
To obtain the macroscopic finite-difference scheme from a
given LB model with the DdQq (q discrete velocities in
d-dimensional space) lattice structure, Fučík et al. [63] de-
veloped a general computational tool [64], while the origin
of this algorithm remains unclear. In contrast, Bellotti et al.
[65] conducted a precise algebraic characterization of the LB

model and investigated the relationship between the MRT-LB
model and macroscopic numerical scheme. They found that
the LB model can be exactly expressed as a macroscopic
multiple-level finite-difference scheme solely on the conser-
vative variables. Furthermore, they also carried out analysis
on the truncation errors and MEs at both diffusive and acoustic
scalings [66], which are consistent with the results based on
the asymptotic analysis methods [44,49]. However, it should
be noted that they considered only the MRT-LB model with
a diagonal relaxation matrix and the first-order ME at the
diffusive scaling [66]. In this work we will first extend the pre-
vious works [65,66] to consider the more general GPMRT-LB
models that are developed for NACDE and NSEs, and derive
the macroscopic finite-difference (GPMFD) schemes. Then
we will conduct detailed analysis on the truncation errors, the
first- and second-order MEs of the GPMRT-LB models and
GPMFD schemes at both diffusive and acoustic scalings.

The remainder of this paper is organized as follows. In
Sec. II we present details on how to derive the GPMFD
scheme on conservative moments from the GPMRT-LB
model. In Sec. III the truncation errors at both diffusive and
acoustic scalings are derived through the Maxwell iteration
method, followed by the first- and second-order MEs of the
GPMRT-LB model and GPMFD scheme. In Sec. IV we de-
velop a fourth-order GPMRT-LB (F-GPMRT-LB) model and
GPMFD (F-GPMFD) scheme at the diffusive scaling for the
one-dimensional CDE with the constant velocity and diffusion
coefficient. In Sec. V some simulations of the Gauss hill
problem, the CDE with nonlinear convection and diffusion
terms, the Taylor-Green vortex flow, and one-dimensional
CDE are carried out to test the proposed GPMRT-LB
model and GPMFD scheme. Finally, conclusions are given
in Sec. VI.

II. THE GPMFD SCHEME OF THE GPMRT-LB MODEL

A. Preparation

To begin our analysis, we first discretize the problems in
d (d = 1, 2, 3) dimensional space without considering the
boundary conditions. In the LB method [4], the space is
discretized by L := �xZd with a constant lattice spacing
�x > 0 in all directions, and the more general rectangular
lattice structure [31] is not considered here. The time is uni-
formly discretized by T := �tN with tn := n�t, n ∈ N , and
�t is the time step. Additionally, we introduce the so-called
lattice velocity, defined by λ := �x/�t . It should be noted
that the discretizations of the spatial and temporal domains
are completely independent of the scaling between �x and
�t ; this means that it does not have an influence on the
derivation of the macroscopic finite-difference schemes of the
LB models. However, the scaling has a significant effect on
the consistency analysis, i.e., the truncation errors and MEs
(see Sec. III for details).

It is known that in the LB method, the evolution process
can be split into the collision and propagation steps, and to
simplify the following analysis on the derivation of the macro-
scopic finite-difference scheme, it is necessary to introduce
the time and the space operators associated with the discrete
velocities.
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Definition 1. Let z ∈ Zd and z ∈ Z, the space shift oper-
ator on the space lattice L denoted by T z

�x and the time shift
operator on the time lattice T represented by T z

�t , are defined
as follows:[

T z
�xh
]
(x, t ) = h(x + z�x, t ), x ∈ L, t ∈ T , (1a)[

T z
�t h
]
(x, t ) = h(x, t + z�t ), x ∈ L, t ∈ T , (1b)

where h(x, t ) is a smooth function: Rd × R→ R. In partic-
ular, the space and time shift operators of function h(x, t )
in Eq. (1) can also be expressed in the following series
forms:

[
T z

�xh
] =

+∞∑
k=0

�xk (z · ∇)k

k!
h(x, t ), (2a)

[
T z

�t h
]
(x, t ) =

+∞∑
k=0

(z�t )k∂k
t

k!
h(x, t ), (2b)

where the gradient operator ∇ = (∂x1 , ∂x2 , . . . , ∂xd ).

B. GPMRT-LB model

In the LB method, some discrete procedures can be used to
solve the discrete velocity Boltzmann equation [37,67],

∂ fi

∂t
+ ci · ∇ fi = �i + Fi, (3)

where the function fi represents the particle distribution at
position x and time t , {ci = cei, i = 1, 2, . . . , q} denotes the
set of discrete velocities in DdQq lattice structure, �i is the
general collision operator, and Fi is the discrete source or force
term. Based on [37,38], we can develop a GPMRT-LB model
for the NACDE and NSEs.

With the time-splitting method, Eq. (3) can be separated
into two steps:

∂ fi

∂t
= �i + Fi, (4a)

∂ fi

∂t
+ ci · ∇ fi = 0, (4b)

which are the collision and propagation steps, respectively.
Following the approach presented in Ref. [30], the collision

step in Eq. (4a) can be reformulated as

f �
i (x, t ) = fi(x, t ) − �ik f ne

k (x, t ) + �t

[
Gi + Fi + �t

2
DiFi

]
(x, t ), i = 1, 2, . . . , q. (5)

Here f �(x, t ) denotes the postcollision distribution function, � = (�)ik is a q × q invertible collision matrix and can be
defined as � := M−1SM, where M and S are the invertible transform and relaxation matrices, respectively. f ne

i (x, t ) =
fi(x, t ) − f eq

i (x, t ) represents the nonequilibrium distribution function, and Gi is the auxiliary source distribution function and
can be used to remove additional terms. Di = ∂t + γ ci · ∇ with γ ∈ {0, 1} being a parameter to be determined [30], and in this
work, we consider γ = 0 for the NACDE and γ = 1 for the NSEs.

To discretize the propagation step (4b), we adopt the explicit two-level, three-point scheme [37,38]:

fi(x, t + �t ) = p0 f �(x, t ) + p−1 f �
i (x − λi�t, t ) + p1 f �

i (x + λi�t, t ), i = 1, 2, . . . , q, (6)
where the free parameters p0, p−1, and p1 should satisfy the following conditions:

p0 = 1 − b, p−1 = a + b

2
, p1 = b − a

2
, (7)

with

λi = λei, λ = �x

�t
, a = |ci|

|λi| , c = aλ, (0 < a � 1). (8)

Substituting Eqs. (7) and (8) into Eq. (6) yields

fi(x, t + �t ) = f �
i (x, t ) − a

2
[ f �

i (x + λi�t, t ) − f �
i (x − λi�t, t )] + b

2
[ f �

i (x + λi�t, t ) − 2 f �(x, t ) + f �
i (x − λi�t, t )], (9)

where a and b are considered as two free parameters. Here we would like to point out that Eq. (9) can reduce to the propagation
step of the standard LB model [4] when a = b = 1, and additionally, based on the stability structure analysis [68], the two
parameters a and b should satisfy the following condition:

a2 � b � 1. (10)

To simplify analysis and for the sake of brevity, the GPMRT-LB model composed of Eqs. (5) and (9) can also be expressed
in a matrix form,

m�,n = (Iq − S)mn + Smeq,n + �t F̃n, (11a)

mn+1(x) = M(p0M−1m�,n(x) + p−1M−1m�,n(x − λi�t ) + p1M−1m�,n(x + λi�t )), (11b)
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where Iq ∈ Rq×q is the identify matrix and

{m�,n; mn; meq,n; F̃n} = M
{

f�; f ; feq; G + F + �t

2
DF
}

(x, tn), (12a)

m�,n(x ± λi�t ) = M( f1(x ± λ1�t, tn), . . . , fq(x ± λq�t, tn))T , (12b)

here � := (	1,	2, . . . ,	q )T with � representing {f�, f, feq, G, F} and D := diag(D1, D2, . . . , Dq).
In the following, we assume that the matrices M and S are independent on the space and time [65]. Then according to

the space and time shift operators defined by Eqs. (1a) and (1b), the GPMRT-LB model, i.e., Eqs. (11a) and (11b), can be
rewritten as [

T 1
�t Iq − A

]
mn = Bmeq,n + �tWF̃n, (13)

where

A = W(Iq − S), B = WS, (14)

with

W = MTM−1, T = (p0T0 + p−1T−1 + p1T1), (15a)

T0 = Iq, T−1 = diag
(
T −e1

�x , T −e2
�x , . . . , T

−eq

�x

)
, T1 = diag

(
T e1

�x, T e2
�x, . . . , T

eq

�x

)
. (15b)

Now we present a remark on the GPMRT-LB model, i.e., Eq. (13).
Remark 1. The term DiFi in the collision step (5) with γ = 1 can be discretized by an implicit difference scheme [28],

DiFi = Fi(x + λi�t, t + �t ) − Fi(x, t )

�t
, i = 1, 2, . . . , q. (16)

If we substitute Eq. (16) into the GPMRT-LB model (13), one can obtain[
T 1

�t Iq − A
]
mn = B

[
meq,n − �t

2
MFn

]
+ �tWF

n
, (17)

which can be considered as a modified GPMRT-LB model with mn = mn − �t
2 MFn and F

n = M(Gn + Fn).

C. Derivation of the GPMFD scheme

In this part, we will provide some details on how to derive the corresponding GPMFD scheme from the GPMRT-LB model
(13). Without loss of generality, we assume that the first N rows in M correspond to the N conservative moments, and denote
i = 1, 2, . . . , J as i ∈ {1 ∼ J} for brevity. Now we focus on two cases with N = 1 and N > 1, which are corresponding to the
NACDE and NSEs considered in this work.

Proposition 1. For the case of N = 1, the GPMRT-LB model (13) can be written as a multiple-level finite-difference scheme
on the conservative moment m1,

mn+1
1 = −

q∑
k=1

γkmn+k−q
1 +

q∑
k=1

[
k∑

l=1

γq+1+l−kAl−1(Bmeq,n−k+1 + �tWF̃
n−k+1

)

]
1

(18)

or

det
(
T 1

�t Iq − A
)
mn

1 = [
adj
(
T 1

�t Iq − A
)
(Bmeq,n + �tWF̃n)

]
1,

(19)

where (γk )
q+1
k=1 are the coefficients of the monic characteris-

tic polynomial pA(x) = ∑q+1
k=1 γkxk−1 of matrix A, and adj(·)

represents the adjugate matrix. The proof is similar to that of
Proposition 4 in Ref. [65] and Proposition 2.7 in Ref. [66],
and the details are not presented here.

We note that for N > 1 conservative moments, it is unclear
whether the first N rows of the equation

det
(
T 1

�t Iq − A
)
mn = [

adj
(
T 1

�t Iq − A
)(

Bmeq,n + �tWF̃n
)]

(20)

can be considered as the finite-difference schemes of the
GPMRT-LB model on the N conservative moments. To this
end we first present a corollary of Proposition 1.

Corollary 1. Assuming that the relaxation matrix S of the
GPMRT-LB model with N � 1 conservative moments is a
diagonal one with diagonal elements s1, s2, . . . , s j, . . . , sq lo-
cated in the range (0, 2), then the jth ( j ∈ {1 ∼ N}) row
of Eq. (20) on the jth conservative moment does not de-
pend on the relaxation parameter s j . The proof is similar to
Proposition 2.12 in Ref. [66], and for brevity, it is not shown
here.

Regarding the conclusion of Corollary 1, we give a remark.
Remark 2. It is clear that the jth ( j ∈ {1 ∼ N}) row of

Eq. (19) can only be independent of s j , but one cannot show
that it is independent on the relaxation parameters associated
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with other conservative moments. Therefore, for N > 1 con-
servative moments, the first N rows of Eq. (20) cannot be
viewed as the finite-difference schemes of the GPMRT-LB
model on the N conservative moments. In the following, we
will do some treatments on the matrix A as in the previous
work [65] to derive the macroscopic finite-difference scheme
of the GPMRT-LB model with N > 1 conservative moments,
as outlined in Proposition 2. Additionally, we also consider a
more general block-lower-triangular relaxation matrix S in the
following Corollary 2.

Proposition 2. For N � 1 conservative moments, the
GPMRT-LB model (13) corresponds to a multiple-level finite-
difference scheme on the jth conservative moment mj ( j ∈
{1 ∼ N}),

mn+1
j = −

q+1−N∑
k=1

γ j,kmn+N+k−1−q
j

+
q+1−N∑

k=1

[
k∑

l=1

γ j,q+2−N+l−kÃl−1
j A jmn−k+1

]
j

+
q+1−N∑

k=1

[
k∑

l=1

γ j,q+2−N+l−kÃl−1
j

× (Bmeq|n−k+1 + �tWF̃
n−k+1

)

]
j

(21)

or

det
(
T 1

�t Iq − Ã j
)
mn

j

= [
adj
(
T 1

�t Iq − Ã j
)
A jmn

]
j

+ [
adj
(
T 1

�t Iq − Ã j
)
(Bmeq,n + �tWF̃n)

]
j, (22)

where

Ã j = AP j, P j :=
∑

l= j,N+1,...,q

Il I
T
l , (23a)

A j = A − Ã j, (23b)

and (γ j,k )
q+2−N
k=1 are the coefficients of the monic characteristic

polynomial pÃ j
(x) = ∑q+2−N

k=1 γ j,kxk+N−2 of matrix Ã j . We
would like to point out that the proof is similar to that of
Proposition 6 in Ref. [65] and Proposition 2.10 in Ref. [66],
and the details are not given here. In addition, we would also
like to point out that the finite-difference scheme (22) has the
following Corollary 2.

Corollary 2. If the relaxation matrix S of the GPMRT-LB
model with N � 1 conservative moments is a block-lower-
triangular form with the diagonal elements located in range
(0,2) [see Eq. (24)], then for any j ∈ {1 ∼ N}, the finite-
difference scheme (22) on the jth conservative moment is
independent on the lower triangular relaxation parameters sil

(l ∈ {1 ∼ N}; i ∈ {l ∼ q}),⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s11 0 . . . 0 . . . . . . 0
s21 s22 0 0 . . . . . . 0
s31 s32 s33 0 . . . . . . 0
...

. . .
...

. . .
...

. . .
...

sN1 sN2 sN3 . . . sNN . . . 0
...

. . .
...

. . .
...

sq1 sq2 sq3 . . . sqN Sr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (24)

where Sr ∈ R(q−N )×(q−N ) is a block-lower-triangular relax-
ation matrix.

Proof. Following the idea of proving Proposition 2.12 in
Ref. [66], for any fixed j ∈ {1 ∼ N}, the matrix B can be
decomposed as

B = B|sk j=0,k� j + B j I
T
j , (25)

then with the help of the relations[
adj
(
T 1

�t Iq − Ã j
)
B j I

T
j meq,n

]
j

= IT
j adj

(
T 1

�t Iq − Ã j
)
B jm

eq,n
j ; mn

j = meq,n
j , (26)

the finite-difference scheme (22) can be rewritten as[
det
(
T 1

�t Iq − Ã j
)− IT

j adj
(
T 1

�t Iq − Ã j
)
B j
]
mn

j

= [
adj
(
T 1

�t Iq − Ã j
)
A jmn

]
j

+ [
adj
(
T 1

�t Iq − Ã j
)
B
∣∣
sk j=0,k� jm

eq,n
]

j . (27)

In the following, the proof is divided into four steps.
Step 1: Regarding the term on the left-hand side of Eq. (27),

the definition of Ã j (23a) gives

[Ã j]il = [A]il , i ∈ {1 ∼ q}; l = { j} ∪ {(N + 1) ∼ q}, (28a)

[Ã j]il = 0, i ∈ {1 ∼ q}; l ∈ {1 ∼ N}/{ j}, (28b)

from which one can find that Ã j and B j are independent
on sil (l ∈ {1 ∼ N}/{ j}; i ∈ {l ∼ q}), this also means that the
term on the left-hand side of Eq. (27) does not depend on the
lth (l ∈ {1 ∼ N}/{ j}) column of matrix S.

Step 2: For the terms on the right-hand side of Eq. (27), the
definitions of A j (23b) and B|sk j=0,k� j show that [A j]pr and

[B|sk j=0,k� j]pr (p ∈ {1 ∼ q}; r ∈ {N + 1 ∼ q}), are indepen-

dent of sil (l ∈ {1 ∼ N}/{ j}; i ∈ {l ∼ q}). Due to mn
l = meq,n

l

for l ∈ {1 ∼ N}/{ j}, [A j]il and [B|sk j=0,k� j]il can be consid-
ered together for i ∈ {1 ∼ q} and l ∈ {1 ∼ N}/{ j},

[A j]il + [
B|sk j=0,k� j

]
il

= [
A j + B|sk j=0,k� j

]
il = [A + B]il = [W]il

= [
A|skl =0,k�l

]
il = [

A j |skl =0,k�l
]

il , (29)

thus the terms on the right-hand side of Eq. (27) are indepen-
dent of the lth (l ∈ {1 ∼ N}/{ j}) column of S.

Step 3: Now we consider whether Eq. (27) de-
pends on the jth column of matrix S or not. Af-
ter some algebraic manipulations, Eq. (27) can also be
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reformulated as[
det
(
T 1

�t Iq − (
Ã j + BT

j I j
))]

mn
j = [

adj
(
T 1

�t Iq − Ã j
)
A jmn

]
j + [

adj
(
T 1

�t Iq − Ã j
)
B
∣∣
sk j=0,k� jm

eq,n
]

j . (30)

From the terms on the the right-hand side of Eq. (30), one can see that the jth column of Ã j depends on only the jth column of
matrix S. Therefore, the jth row of adj(T 1

�t Iq − Ã j ) does not depend on the jth column of matrix S.
Step 4: From the term on the left-hand side of Eq. (30), for any i ∈ {1 ∼ q}, one can obtain

[
Ã j + B j I

T
j

]
il

=

⎧⎪⎪⎨
⎪⎪⎩

[A]il , l ∈ {(N + 1) ∼ q},
0, l ∈ {1 ∼ N}/{ j},
[A + B]il = [W]il = [

Ã j |sk j=0,k� j
]

il , l = j,

(31)

thus the term on the left-hand side of Eq. (30) does depend on the jth column of matrix S. Due to the equivalence of finite-
difference scheme (22), Eqs. (27) and (30), one can prove Corollary 2.

We now discuss Corollary 2.
Remark 3. According to the Remark 1 and Proposition 2, if the parameter γ in D is equal to one, the macroscopic finite-

difference scheme on the jth ( j ∈ {1 ∼ N}) conservative moment of the GPMRT-LB model (17) is given by

det
(
T 1

�t Iq − Ã j
)
mn

j = [
adj
(
T 1

�t Iq − Ã
)
A jmn]

j +
[

adj
(
T 1

�t Iq − Ã j
)
B
(

meq,n − �t

2
MFn

)]
j

+ �t
[
adj
(
T 1

�t Iq − Ã j
)
WF

n]
j,

(32)

while it is unclear whether the finite-difference scheme (32) has Corollary 2 or not. We will pay attention to this problem in the
following part. It is clear that the last term on the right-hand side of Eq. (32) does not depend on the relaxation matrix S, thus we
need to consider only the following scheme:

det
(
T 1

�t Iq − Ã j
)
mn

j = [
adj
(
T 1

�t Iq − Ã j
)
A jmn]

j
+
[

adj
(
T 1

�t Iq − Ã j
)
B
(

meq,n − �t

2
MFn

)]
j

. (33)

If we write the matrix B as

B = B|sk j=0,k� j + B j I
T
j , (34)

and according to the relation m j = meq − �t/2MF, one can obtain

[
det
(
T 1

�t Iq − Ã j
)−IT

j adj
(
T 1

�t Iq − Ã j
)
B j
]
mn

j = [
adj
(
T 1

�t Iq − Ã j
)
A jmn]

j +
[

adj
(
T 1

�t Iq − Ã j
)
B
∣∣
sk j=0,k� j

(
meq,n − �t

2
MFn

)]
j

,

(35)

which is similar to Eq. (27), and the detailed proof is not presented here. From above discussion, it can be concluded that the
finite-difference scheme (32) also has Corollary 2, like the finite-difference scheme (22).

Remark 4. Based on Corollary 2, the finite-difference scheme (22) on the jth ( j ∈ {1 ∼ N}) conservative moment is consistent
with the GPMRT-LB model, while Eq. (20) is not. It should also be noted that the lower triangular elements sil (l ∈ {1 ∼ N}; i ∈
{l ∼ q}) in the relaxation matrix S (24) do not affect the forms of difference schemes (21) and (22). To simplify following
analysis on the truncation errors and MEs in Sec. III, we assume that the diagonal relaxation parameters corresponding to the
conservative moments in the relaxation matrix S (24) are equal to one, and the nondiagonal relaxation parameters associated
with the conservative moments are equal to zero (here we note that the matrix S must be invertible and this choice is crucial in
order to use the Maxwell iteration [44] as we will do in the following), in this case, the finite-difference schemes (21) and (22)
can be further simplified; see the following Proposition 3 for details.

Proposition 3. For a given GPMRT-LB model (M, S) with N � 1 conservative moments, let Ŝ =diag(IN , Sr ) with Sr ∈
R(q−N )×(q−N ) representing the matrix consisting of the (N + 1)th to qth rows and columns of matrix S, then the finite-difference
schemes (21) and (22) of the GPMRT-LB model (13) on the jth ( j ∈ {1 ∼ N}) conservative moment can be simplified as

mn+1
j = −

q∑
k=N

γkmn+k−q
j +

q∑
k=N

[
k∑

l=N

γq+1+l−kAl−N (Bmeq|n−k+N + �tWF̃n−k+N )

]
j

(36)

and

det
(
T 1

�t Iq − A
)
mn

j = [
adj
(
T 1

�t Iq − A
)
(Bmeq,n + �tWF̃n)

]
j
, (37)

where A = W(Iq − Ŝ), B = WŜ. In addition, Eq. (37) has the same form as the jth row of Eq. (20).
Proof. Based on the form of relaxation Ŝ and the definition of matrix P j (23a), one can obtain

Ã j = AP j = W(Iq − Ŝ) = A, (38)
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which means A j = A − Ã j = 0, thus the finite-difference schemes (21) and (22) can be simplified by

mn+1
j = −

q+1−N∑
k=1

γ j,kmn+N+k−1−q
j +

q+1−N∑
k=1

[
k∑

l=1

γ j,q+2−N+l−kAl−1(Bmeq|n−k+1 + �tWF̃n−k+1)

]
j

(39)

and

det
(
T 1

�t Iq − A
)
mn

j = [
adj
(
T 1

�t Iq − A
)
(Bmeq,n + �tWF̃n)

]
j . (40)

Then one can obtain the finite-difference schemes (36) and (37) through rearranging Eqs. (39) and (40) and with the aid of the
following results:

γk = 0, k ∈ {1 ∼ (N − 1)}; γk = γ j,k+1−N , k ∈ {N ∼ (q + 1)}, (41)

where the relation pA(x) = x−1∑q+1
k=1 γkxk = pÃ j

(x) = xN−2∑q+2−N
k=1 γ j,kxk has been used.

Now we further discuss the issue of the equivalence between two GPMRT-LB models. On one hand, the two GPMRT-LB
models (M, S) and (M, S1) can be considered equivalently if the relaxation parameters associated with nonconservative moments
in the relaxation matrices S and S1 are identical regardless of whether the relaxation parameters associated with conservative
moments are the same or not, and the finite-difference scheme (22) also has this feature (see Corollary 2). On the other hand, the
two GPMRT-LB models (M, S) and (M1, S1) are also equivalent if the following relations hold:

M1 = NM, S1 = NSN−1, (42a)

[M1]il = [M]il , i ∈ {1 ∼ N}; l ∈ {1 ∼ q}, (42b)

where N is an invertible block-lower-triangular matrix. This means that the finite-difference scheme of the GPMRT-LB model
(M1, S1) should be the same as that of the GPMRT-LB model (M, S). In the following, we first show that the first N rows of
Eq. (20) corresponding to the two equivalent GPMRT-LB models (M, S) and (M1, S1) are identical, and then present another
form of the finite-difference scheme from the GPMRT-LB model (M1, S1), which is identical to schemes (21) and (22).

Theorem 1. The first N rows of Eq. (20) corresponding to the two equivalent GPMRT-LB models (M, S) and (M1, S1)
satisfying Eq. (42) are totally identical.

Proof. According to the relation (42a), the matrices A and A1 satisfy

A1 = NAN−1, (43)

where A1 = W1(I − S1) with W1 = M1TM−1
1 . Due to the invertible block-lower-triangular matrix N, one can obtain

det
[
T 1

�t Iq − A
] = det

[
T 1

�t Iq − A1
]
. (44)

Based on the relation (42b), we have

[A1B1M1]il = [ABM]il ;
[
A1W1M1

]
il = [AWM]il , (45)

where B1 = W1S1. Thus, from the algebraic expression of adjugate matrix adj(T 1
�t Iq − A),

adj
(
T 1

�t Iq − A
) = T q

�t

q∑
k=1

⎛
⎝q−k+1∑

l=1

γk+lAl−1

⎞
⎠T k−q

�t Iq, (46)

and for any j ∈ {1 ∼ N}, it is easy to prove[
adj
(
T 1

�t Iq − A1
)
B1M1feq,n

]
j
= [

adj
(
T 1

�t Iq − A
)
BMfeq,n

]
j
, (47a)[

adj
(
T 1

�t Iq − A1
)
W1M1

(
Fn + Gn + �t

2
DFn

)]
j

=
[

adj
(
T 1

�t Iq − A
)
WM

(
Fn + Gn + �t

2
DFn

)]
j

. (47b)

According to the relations (44) and (47), one can prove Theorem 1.
Based on Theorem 1, we can also conclude that the analysis on the truncation errors and MEs shown below will remain

identical whether the transform matrix M is independent of the parameter c [see Eq. (8)] or not. The reason is provided in the
following Remark 5.

Remark 5. Considering the following relation between the two GPMRT-LB models (Mc, Sc) and (Mo, So):

Mc = Cd Mo, Sc = Cd SoC−1
c , (48a)

[Mc]il = [Cd ]ii[Mo]il , i ∈ {1 ∼ N}; l ∈ {1 ∼ q}, (48b)
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where Cd is an invertible diagonal matrix associated with the parameter c. Similar to the proof in Theorem 1, one can
obtain

det
[
T 1

�t Iq − Ac
]
Mcfn = Cd det

[
T 1

�t Iq − A
]
Mofn (49)

and [
adj
(
T 1

�t Iq − Ac
)
BcMcfeq,n

]
j = Cd

[
adj
(
T 1

�t Iq − A
)
BMofeq,n

]
j, (50a)

[
adj
(
T 1

�t Iq − Ac
)
WcMc

(
Fn + Gn + �t

2
DFn

)]
j

= Cd

[
adj
(
T 1

�t Iq − A
)
WMo

(
Fn + Gn + �t

2
DFn

)]
j

. (50b)

It is obvious that the first N rows of Eq. (20) corresponding respectively to the two GPMRT-LB models (Mc, Sc) and (Mo, So)
satisfying Eq. (48) only differ in the constant matrix Cd , which has no influence on the truncation errors and MEs analysis in
Sec. III.

Theorem 2. The finite-difference scheme (22) corresponding to the GPMRT-LB model (M, S) can be rewritten as

det
(
T 1

�t Iq − Ã1
j

)
mn,(1)

j = [
adj
(
T 1

�t Iq − Ã1
j

)
A

1
jm

n,(1)
]

j + [
adj
(
T 1

�t Iq − Ã1
j

)
B1meq,n,(1)

]
j + �t

[
adj
(
T 1

�t Iq − Ã1
j

)
WF̃n,(1)

]
j, (51)

where

A1 = W1(Iq − S1), B1 = W1S1, Ã1
j = A1P1

j , A
1
j = A1P j, (52a)

mn,(1) = M1mn, meq,n,(1) = M1meq,n, F̃n,(1) = M1F̃n, (52b)

with matrices M1 and S1 satisfying Eq. (42) and

W1 := M1TM−1
1 , P1

j := NP jN−1, P j := Iq − P̃1
j . (53)

The proof is similar to Theorem 1, and the details are not shown here.
We now give some remarks on the conclusions in Theorems 1 and 2.
Remark 6. For two equivalent GPMRT-LB models (M, S) and (M1, S1) in Theorem 1, if we further consider the GPMRT-LB

model (M1, Ŝ1) with

Ŝ1 = NŜN−1 =
(

N1 0
N2 N3

)(
IN 0
0 Sr

)(
N−1

1 0
−N−1

3 N2N−1
1 N−1

3

)
=
(

IN 0
N2N−1

1 − N3SrN−1
3 N2N−1

1 N3SrN−1
3

)
, (54)

where matrix N1 ∈ RN×N , N2 ∈ R(q−N )×N , and N3 ∈
R(q−N )×(q−N ) are the submatrices of the block-lower-triangular
matrix N, and the matrix Ŝ is defined as that in Proposion 3,
one can obtain

Ŝ = SP̃ j + P j + (Iq − S)I jI
T
j . (55)

Substituting Eq. (55) into Eq. (54) yields

Ŝ1 = S1P̃1
j + P

1
j + (Iq − S1)NI jI

T
j N−1, (56)

where matrices P̃1
j and P

1
j are those in Eqs. (52) and

(53). It is evident that based on Corollary 2, Proposition
3, and Eq. (42), the four GPMRT-LB models (M1, S1),
(M, S), (M, Ŝ), and (M1, Ŝ1) are equivalent. Moreover, ac-
cording to Proposition 3 and Theorems 1 and 2, the four
equivalent GPMRT-LB models (M1, S1), (M, S), (M, Ŝ), and
(M1, Ŝ1) satisfy the relations presented in Fig. 1, where the
double-line arrow connecting the two boxes indicates that
the two GPMRT-LB models have the same finite-difference
scheme.

Remark 7. Regarding the finite-difference scheme (22)
with N � 1 conservative moments in Proposition 2, the
characteristics shown in Corollary 2 and Theorem 2 are
consistent with the GPMRT-LB model. Therefore, we refer
to it as the macroscopic finite-difference (GPMFD) scheme

of the GPMRT-LB model. Here it should be noted that for
simplicity, we do not consider the effect of the choice of
the initialization schemes for the GPMRT-LB model and
GPMFD scheme, and in the numerical simulations presented
in Sec. V, we initialize the distribution function fi with its
equilibrium state for the GPMRT-LB model, while for the
GPMFD scheme, we adopt some other numerical schemes to
obtain the values required for the initialization. Furthermore,
since the finite-difference schemes (22) and (37) have the
same form (see Proposition 3), we need to consider only
the latter in the following discussion, and this will simplify
the analysis on truncation errors and MEs.

III. TRUNCATION ERRORS AND MES OF THE GPMRT-LB
MODEL AND GPMFD SCHEME

In this section we will conduct some theoretical analysis on
the truncation errors and MEs of the GPMRT-LB model (13)
and GPMFD scheme (37). It is known that the GPMRT-LB
model (Mc, Sc) can be equivalent to a GPMRT-LB model
(Mc

N , Sc
N ) [see Eq. (42)] where the transform matrix Mc

N
is based on the natural moment and Sc

N is a block-lower-
triangular relaxation matrix. Then from the two purple boxes
shown in Fig. 1, one can find that the GPMFD schemes
corresponding to the equivalent GPMRT-LB models (Mc, Sc)
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FIG. 1. Relations between the finite-difference schemes of the four equivalent GPMRT-LB models (M1, S1), (M, S), (M, Ŝ),
and (M1, Ŝ1).

and (Mc
N , Ŝc

N ) where the relaxation matrices Sc and Ŝc
N [see

Eq. (54)] are assumed to be independent on the parameter
c, are identical. According to Remark 5 and for convenience
of the analysis on the truncation errors and MEs, we need to
consider only the GPMRT-LB model (MN , ŜN ) satisfying the
relations MN = C−1

d Mc
N and ŜN = C−1

d Ŝc
N Cd . Without loss of

generality, here we consider that the degree of parameter c

does not decrease with the number of rows (columns) in the
diagonal matrix Cd . Therefore, for a given GPMRT-LB model
(Mc, Sc), we focus on the GPMRT-LB model (MN , ŜN ) with
the transform matrix MN that is independent on the parameter
c and its GPMFD scheme (37). In addition, for the inverse of
the collision matrix � := MN ŜN M−1

N , the following require-
ments are needed:

q∑
j=1

e jα� jk = S10
α ik + S1

αξ1
ekξ1 ,

q∑
j=1

e jαe jβ� jk = S20
αβ ik + S21

αβξ1
ekξ1 + S2

αβξ1ξ2
ekξ1 ekξ2 ,

q∑
j=1

e jαe jβe jγ � jk = S30
αβγ ik + S31

αβγ ξ1
ekξ1 + S32

αβγ ξ1ξ2
ekξ1 ekξ2 + S33

αβγ ξ1ξ2ξ3
ekξ1 ekξ2 ekξ3 , (57)

q∑
j=1

e jαe jβe jγ e jη� jk = S40
αβγ ηik + S41

αβγ ηξ1
ekξ1 + S42

αβγ ηξ1ξ2
ekξ1 ekξ2 + S43

αβγ ηξ1ξ2ξ3
ekξ1 ekξ2 ekξ3 + S44

αβγ ηξ1ξ2ξ3ξ4
ekξ1 ekξ2 ekξ3 ekξ4 ,

where ik indicates the kth element of vector i = (1, 1, . . . , 1) ∈ Rq, Sli is a dl × di matrix (l ∈ {1 ∼ 2}; i ∈ {0 ∼ (l − 1)} and
l ∈ {3 ∼ 4}; i ∈ {0 ∼ l}), S1 is an invertible d × d relaxation matrix associated with the diffusion coefficient matrix of the
NACDE, and S2 is a d2 × d2 relaxation matrix associated with the viscosity coefficient of the NSEs. Specifically, we take
S21 = 0 for the NACDE and S32 = 0 for the NSEs.

Due to the equivalence between the GPMRT-LB model (13) and GPMFD scheme (22) discussed in Sec. II and Remark 7, we
will focus on the GPMFD scheme (37) and present details to derive its truncation error and ME. First, we decompose the matrix
W in Eq. (15) as

W = p0Iq + p−1W−1 + p1W1, (58)

where W−1 = MN T−1M−1
N and W1 = MN T1M−1

N . Due to the space shift operator with a series form (2a), the matrices W−1 and
W1 can be rewritten as

W−1 =
(+∞∑

k=0

(−�x)k

k!
Wk

0

)
= exp (−�xW0), (59a)

W1 =
(+∞∑

k=0

(�x)k

k!
Wk

0

)
= exp (�xW0), (59b)
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whereW0 = MN [diag(e1 · ∇, e2 · ∇, . . . , eq · ∇)]M−1
N , and the inverse of matrix W can be further expressed as

W−1 =
+∞∑
k=0

[Iq − p0Iq − p−1 exp (−�xW0) − p1 exp (�xW0)]k, (60)

which will be used below.
Based on the Maxwell iteration method [43,44] and the relation between adjugate matrix and determinant,(

T 1
�t Iq − A

)
adj
(
T 1

�t Iq − A
) = adj

(
T 1

�t Iq − A
)(

T 1
�t Iq − A

) = det
(
T 1

�t Iq − A
)
Iq, (61)

we set ϕ = ϕn with ϕ representing {m, meq, F̃}, and substitute the matrices MN and ŜN into the GPMFD scheme (37), one can
derive [66]

0 = det
(
T 1

�t Iq − A
)
m − (

adj
(
T 1

�t Iq − A
)(

Bmeq + �tWF̃
))

= det
(
T 1

�t Iq − A
)[

m − (
T 1

�t Iq − W(Iq − ŜN )
)−1

(WŜN meq,n + W�t F̃)
]

= det
(
T 1

�t Iq − A
)[

m − (
Ŝ−1

N W−1
(
T 1

�t Iq − W(Iq − ŜN )
))−1(

meq + Ŝ−1
N �t F̃

)]
= det

(
T 1

�t Iq − A
)[

m − (
Iq + Ŝ−1

N

(
T 1

�t W
−1 − Iq

))−1(
meq + Ŝ−1

N �t F̃
)]

:= det
(
T 1

�t Iq − A
)
�. (62)

Here m = MN f, meq = MN feq, F̃ = MN (F + G + �t/2DF), and � is defined as

� = m −
(+∞∑

k=0

�k

)(
meq + Ŝ−1

N �t F̃
)
, (63)

where � = −Ŝ−1
N (T 1

�t W
−1 − Iq). With the help of �0 = Iq, Eq. (60), and the series form of time operator T 1

�t in Eq. (2b), the
expression of � in Eq. (63) can be given as

� = m − (
meq + �t Ŝ−1

N F̃
)−

+∞∑
k=1

�xk�(k), (64)

where �(k) = �(k)(meq + Ŝ−1
N �t F̃) (k � 1) is the coefficient before the kth-order term of the series expansion of � with �(k)

denoting that of the series expansion of �.
Based on the fact that det (T 1

�t Iq − A) = det (ŜN ) + O(�x) [66], we will show that the analysis on the truncation error and
ME of scheme (62) is equivalent to the discussion on � (64). The reason is as follows.

According to Eq. (62), we have

0 = det
(
T 1

�t Iq − A
)
�

= det (ŜN )

[
m − (

meq + �t Ŝ−1
N F̃

)−
+∞∑
k=1

�xk�(k)

]
+
[(

m − (
meq + �t Ŝ−1

N F̃
))× O(�x) −

+∞∑
k=1

�xk+1�(k)

]
. (65)

As mentioned previously, to perform the analysis on the truncation errors and the MEs, it is necessary to specify the scaling
relationship between �t and �x. In particular, it should be noted that at the diffusive scaling (�t ∼ �x2), �(k) is at least of
order O(1), which arises from the fact that meq, F̃ and Ŝ−1

N (54) are at least of order O(1) [ the main diagonal element of the
block-lower-triangular matrix Ŝ−1

N is of order O(1), while the lower triangular element of Ŝ−1
N is at least of order O(1)]. Due to

the conservation law, mi∈{1∼N} = meq
i∈{1∼N}, for any ith (i ∈ {1 ∼ N}) row of Eq. (65), we have

diffusive scaling (�t ∼ �x2) : det (ŜN )[�x�(1)]i = O(�x2), (66a)

acoustic scaling (�t ∼ �x) : det (ŜN )
[
�t Ŝ−1

N F̃ + �x�(1)
]

i
= O(�x2), (66b)

where det (ŜN ) is of order O(1); this is because the main diagonal element of the block-lower-triangular matrix ŜN is of order
O(1). Based on Eq. (66b), one can obtain the third-order ME at the acoustic scaling,[

�t Ŝ−1
N F̃ + �x�(1) + �x2�(2)

]
i = O(�x3). (67)

Then according to Eq. (67), one can further derive fourth- (and higher-) order truncation errors and MEs of the GPMRT-LB model
(13) and GPMFD scheme (37) at the acoustic scaling. In addition, it can also be observed that the analysis on the truncation
errors and MEs of GPMFD scheme (62) are actually equivalent to the discussion on � (64), which is also true at the diffusive
scaling.
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A. MEs at the diffusive scaling

Let us begin the analysis at the diffusive scaling, i.e., �t = η�x2, η ∈ R. It should be noted that the lattice velocity λ is of
order O(1/�x), meq, F̃, and Ŝ−1

N are at least of order O(1). We would also like to point out that �x−ki mi (i ∈ {1 ∼ N}) is of order
O(1) owing to the fact that the transform matrix M is of order O(1) and the form of the equilibrium distribution function for
some specific problems [see Eq. (91) for NACDE and Eq. (98) for NSEs; ki � 0 denotes the order of the ith conservative moment
mi in space]. Thus, a higher-order expansion of � (64) beyond �(k) is necessary for the kth-order ME of the GPMRT-LB model
(13) and GPMFD scheme (37). Here we expand � (64) up to �(4) and consider the first- to third-order MEs on conservative
moment mi (i ∈ {1 ∼ N}),

[�t F̃ + �xŜN�(1) + �x2ŜN�(2) + �x3ŜN�(3) + �x4ŜN�(4)]i = O(�x5), (68)

where the ith row of matrix ŜN (54) is identical to IT
i , which is of order O(1) and has been used.

Moreover, it is also necessary to expand the inverse of matrix W (60) as

W−1 = Iq + �xaW0 + �x2a2

(
1 − b

2a2

)
W2

0 + �x3a3

(
1

6a3
− b

a2
+ 1

)
W3

0

+ �x4a4

(
b2

4a4
+ 1

3a3
− 3b

2a2
+ 1 − b

24a4

)
W0 + O(�x5). (69)

By adopting the series form (2b) of the time shift operator T 1
�t and Eq. (59), one can obtain

−ŜN� =�xA1 + �x2(A12 + A2) + �x3(A31 + A3) + �x4(A41 + A42 + A4) + O(�x5), (70)

where

A1 = aW0, (71a)

A21 = η∂t Iq, A2 =W2
0

(
a2 − b

2

)
, (71b)

A31 = aηW0∂t , A3 =
(

1

6
− ab + a3

)
W3

0, (71c)

A41 = η

(
a2 − b

2

)
W2

0∂t , A42 = η2 ∂tt Iq

2
, A4 =

(
b2

4
+ a

3
− 3a2b

2
+ a4 − b

24

)
W4

0. (71d)

In the following, the analysis are based on Eqs. (68) and (71).

1. First-order ME of the GPMRT-LB model and GPMFD scheme on conservative moment mi

For any i ∈ {1 ∼ N}, to obtain the first-order ME of the GPMRT-LB model and GPMFD scheme on the moment mi at the
diffusive scaling, one needs to consider the following truncation equation of Eq. (68):

[�t F̃ + �xŜN�(1) + �x2ŜN�(2)]i = O(�x3). (72)

With the aid of Eqs. (64) and (70), Eq. (72) can be written as[
�t F̃ − [

�xA1 + �x2A12 + �x2
(
A2 − A1Ŝ−1

N A1
)]

meq
]

i
+ O(�x3), (73)

and multiplying this equation by 1/�t yields[
F̃ − [

λA1 + A12

η
+ λ2�t

(
A2 − A1Ŝ−1

N A1
)]

meq

]
i

= O(�x); (74)

then substituting Eqs. (71a) and (71b) into Eq. (73), we have

(∂t meq + cW0meq )i =
[

F̃ + a2

η
W0

[
Ŝ−1

N +
(

b

2a2
− 1

)
Iq

]
W0meq

]
i

+ O(�x). (75)

2. Second-order ME of the GPMRT-LB model and GPMFD scheme on conservative moment mi

Similar to the discussion in the previous part, we consider the following truncation equation of Eq. (68):

[�t F̃ + �xŜN�(1) + �x2ŜN�(2) + �x3ŜN�(3)]i = O(�x4); (76)

for any i ∈ {1 ∼ N}, one can obtain[
�t F̃ − �x�tA1Ŝ−1

N F̃ − �x[A1 + �x(A12 + A2) + �x2(A31 + A3)]meq

+ �x3
[
A1Ŝ−1

N (A21 + A2) + (A21 + A2)Ŝ−1
N A1 − A1Ŝ−1

N A1Ŝ−1
N A1

]
meq

]
i
= O(�x4). (77)
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Substituting Eqs. (71a)–(71c) into Eq. (77) yields

[(∂t I + cW0)meq ]i =
[

F̃ + a2

η
W0

(
Ŝ−1

N +
(

b

2a2
− 1

)
Iq

)
W0meq − a�x∂t

(
Iq − Ŝ−1

N

)
W0meq

+ a�xW0Ŝ−1
N

[
∂t meq − F̃ − a2

η
W0

(
Ŝ−1

N +
(

b

2a2
− 1

)
Iq

)
W0meq

]

− a3�x

η

(
b

2a2
− 1

)
W2

0Ŝ−1
N W0meq − a3�x

η

(
1

6a3
− b

a2
+ 1

)
W3

0meq

]
i

+ O(�x2). (78)

3. Third-order ME of the GPMRT-LB model and GPMFD scheme on conservative moment mi

For any i ∈ {1 ∼ N}, after some manipulations by using Eqs. (64) and (70), we can derive the third-order ME,[
�t F̃ − [�xA1 + �x2(A12 + A2) + �x2(A31 + A3) + �x4(A41 + A42 + A4)]meq

− [�xA1 + �x2(A21 + A2)]�t Ŝ−1
N F̃ + �x2

(
Ŝ−1

N A1
)2

�t Ŝ−1
N F̃

+ ŜN
(
Ŝ−1

N [�xA1 + �x2(A21 + A2) + �x3(A31 + A3)]
)2

meq

− ŜN
(
Ŝ−1

N [�xA1 + �x2(A21 + A2)]
)3

meq + �x4(Ŝ−1
N A1

)4
meq]

i = O(�x5). (79)

Substituting Eqs. (71a)–(71d) into Eq. (79) gives[
F̃ −

[
cW0 + ∂t Iq + a2

η

(
1 − b

2a2

)
W2

0 + a�xW0∂t + a3�x

η

(
1 − b

2a2

)
W2

0∂t Iq

+ �x

2λ
∂tt Iq + a3�x

η

(
1

6a2
− b

a2
− 1

)
W3

0 + a4�x2

η

(
b2

4a2
+ 1

3a3
− 3b

2a2
+ 1 − b

24a4

)
W4

0

]
meq

−
(

cW0 + ∂t Iq + a2

η

(
1 − b

2a2

)
W2

0

)
�x

λ
Ŝ−1

N F̃ +
(

a2

η
W0Ŝ−1

N W0

)
�x

λ
Ŝ−1

N F̃

+
[

a2

η
W0Ŝ−1

N W0 + a�xW0Ŝ−1
N ∂t Iq + a3�x

η

(
1 − b

2a2

)
W0Ŝ−1

N W
2
0

+ a2�x2W0Ŝ−1
N W0∂t + a∂t IqŜ−1

N W0 + �x

λ
∂t Ŝ−1

N Iq∂t Iq + a2�x2

(
1 − b

2a2

)
∂t IqŜ−1

N W
2
0 + a3�x

η

(
1 − b

2a2

)
W2

0Ŝ−1
N W0

+ a2�x2

(
1 − b

2a2

)
W2

0Ŝ−1
N ∂t Iq + a4�x2

η

(
1 − b

2a2

)2

W2
0Ŝ−1

N W
2
0 + a2�x2W0∂t IqŜ−1

N W0

]
meq

−
[

a3�x

η
W0Ŝ−1

N W0Ŝ−1
N W0 + a2�x2W0Ŝ−1

N W0Ŝ−1
N ∂t Iq + a2�x2W0∂t IqŜ−1

N Ŝ−1
N W0

+ a4�x2

η

(
1 − b

2a2

)
W0Ŝ−1

N W0Ŝ−1
N W

2
0 + a4�x2

η

(
1 − b

2a2

)
W0Ŝ−1

N W
2
0Ŝ−1

N W0

+ a2�x2∂t IqŜ−1
N W0Ŝ−1

N W0 + a4�x2

η

(
1 − b

2a2

)
W2

0Ŝ−1
N W0Ŝ−1

N W0

]
meq

+ a4�x2

η
W0Ŝ−1

N W0Ŝ−1
N W0Ŝ−1

N W0meq

]
i

= O(�x3). (80)

Now we give a remark on these MEs at the diffusive scaling.
Remark 8. According to the results shown in Secs. III A 1–III A 3, we now consider a specific problem, the d-dimensional

NSEs with d + 1 conservative moments. In this case the moment m1 is O(1), while mi (i ∈ {2 ∼ (d + 1)}) is of order O(�x1).
Thus, Eqs. (75), (78), and (80) correspond to the first- to third-order MEs of the GPMRT-LB model and GPMFD scheme on
conservative moment ρ, but the zeroth- to second-order MEs of the GPMRT-LB model and GPMFD scheme on conservative
moment ρu.
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B. MEs at the acoustic scaling

At the acoustic scaling, all the λ, meq, F̃, and Ŝ−1
N

are of order O(1), and only a kth-order expansion of �

is needed for the derivation of the kth-order MEs of the
GPMRT-LB model (13) and GPMFD scheme (37). We
now expand � (64) up to �(2) and consider the first- and
second-order MEs on conservative moments mi for any
i ∈ {1 ∼ N},

[�t F̃ + �xŜN�(1) + �x2ŜN�(2)]i = O(�x3), (81)

subsequently, the second-order expansion of W−1 (60) can be
given by

W−1 = Iq + �xaW0 + �x2

(
1 − b

2a2

)
a2W2

0 + O(�x3).

(82)
Similar to the analysis at diffusive scaling, one can obtain the
expansion of −ŜN� based on Eq. (82),

−ŜN� = �x(B11 + B1) + �x2(B21 + B22 + B2) + O(�x3),
(83)

where

B11 = a∂t

c
Iq, B1 = aW0, (84a)

B21 = a2∂tt

2c2
Iq, B22 = a2W0∂t

c
, B2 = a2W2

0

(
1 − b

2a2

)
.

(84b)

1. First-order ME of the GPMRT-LB model and GPMFD scheme
on conservative moment mi

Considering the first-order truncation equation of Eq. (81),
for any i ∈ {1 ∼ N}, one can obtain

[�t F̃ − �x(B11 + B1)meq]i = O(�x2), (85)

and substituting Eq. (84a) into Eq. (85) gives rise to the first-
order ME:

[∂t meq + cW0meq]i = [F̃]i + O(�x). (86)

2. Second-order ME of the GPMRT-LB model and GPMFD
scheme on conservative moment mi

Considering the second-order equation of Eq. (81), for any
i ∈ {1 ∼ N}, we have[
�t F̃ − �x(B11 + B1)

(
meq + Ŝ−1

N �t F̃
)

+ �x2
(
ŜN
[
Ŝ−1

N (B11 + B1)
]2 − (B21 + B22 + B2)

)
meq

]
i

= O(�x3), (87)

and substituting Eqs. (84a) and (84b) into Eq. (87) yields the
following second-order ME:[

�t F̃ − �t
(
∂t Iq + cW0

)
meq − �t2

2

(
1 − b

a2

)
c2W2

0meq

+ �t2

2

[(
2Ŝ−1

N − Iq
)
∂tt + 2c

(
Ŝ−1

N W0 +W0Ŝ−1
N −W0

)
∂t

+ c2W0
(
2Ŝ−1

N − Iq
)
W0

]
meq

]
i

= O(�x3). (88)

From above results, one can see that Eqs. (86) and (88) would
reduce to the results presented in Ref. [66] when a = b = 1
and the term F̃ is neglected.

C. NACDE: MEs of the GPMRT-LB model and GPMFD scheme

The d-dimensional NACDE with a source term can be
expressed as

∂tφ + ∇ · B = ∇ · [κ · (∇ · D)] + R, (89)

where φ is a scalar variable related to both time t
and space x, R denotes the source term. B = (Bα ) is a
vector function, κ = (καβ ) and D = (Dαβ ) are symmet-
ric tensors (matrices), and they can be functions of φ, x,
and t .

In order to recover the NACDE (89) correctly, some
requirements or moment conditions on the equilibrium, auxil-
iary, and source distribution functions, denoted by f eq

i , Gi, and
Fi, should be satisfied. For a general DdQq lattice structure,
the moment conditions are given by

q∑
i=1

fi =
q∑

i=1

f eq
i = φ,

q∑
i=1

Fi = R,

q∑
i=1

Gi = 0, (90a)

q∑
i=1

ci f eq
i = B,

q∑
i=1

ciFi = 0,

q∑
i=1

ciGi = M1G, (90b)

q∑
i=1

cici f eq
i = χc2

s D + C, (90c)

where cs is a model parameter related to the lattice velocity
λ. The parameter χ is used to adjust the relaxation matrix
[see Eq. (94)], C is an auxiliary moment [30], and M1G =
(Id − (S1)−1/2)∂t B + (Id − b(S1)−1/(2a2))∇ · C is the first-
order moment of Gi. From Eq. (90) one can determine
the expressions of f eq

i , Gi, and Fi, while for sim-
plicity, we consider only the following commonly used
forms [30]:

f eq
i = wi

[
φ + ci · B

c2
s

+
(
χc2

s D + C − c2
s φId

)
:
(
cici − c2

s Id
)

2c4
s

]
,

(91a)

Gi = wi

[
ci · M1G

c2
s

]
, Fi = wiR. (91b)

According to the results shown in the Secs. III A 1 and III A 2,
it is easy to obtain the first- and second-order MEs of the
GPMRT-LB model (13) and GPMFD scheme (37) on the
conservative moment φ = O(1) (see the Appendix A 1 for
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details) at the diffusive scaling,

∂tφ + ∂αBα − �t
∂

∂xβ

[
χ

(
S1

βγ +
(

b

2a2
− 1

)
δβγ

)
c2

s

∂Dγ θ

∂xθ

]
− R = O(�x), (92a)

∂tφ + ∂αBα − �t
∂

∂xβ

[
χ

(
S1

βγ +
(

b

2a2
− 1

)
δβγ

)
c2

s

∂Dγ θ

∂xθ

]
− R = O(�x2), (92b)

and additionally, from Secs. III B 1 and III B 2, one can derive the first- and second-order MEs at the acoustic scaling (see
Appendix B 1 for details),

∂tφ + ∂αBα − R = O(�x), (93a)

∂tφ + ∂αBα − �t
∂

∂xβ

[
χ

(
S1

βγ +
(

b

2a2
− 1

)
δβγ

)
c2

s

∂Dγ θ

∂xθ

]
− R = O(�x2). (93b)

It is clear that Eqs. (92b) and (93b) are consistent with the NACDE (89) with

κ = χc2
s �t

[
S1 +

(
b

2a2
− 1

)
Id

]
. (94)

When the MRT-LB model with the orthogonal moments and D2Q9 lattice structure is considered, it is easy to show that the
second-order modified equation (92b) is consistent with the result in Ref. [69].

D. NSEs: MEs of the GPMRT-LB model and GPMFD scheme

We now consider the following d-dimensional NSEs with a force term:

∂tρ + ∇ · (ρu) = 0, (95a)

∂t (ρu) + ∇ · (ρuu) = −∇p + ∇ · σ + F̂, (95b)

where p = c2
s ρ is the pressure, F̂ = (F̂xα−1 )d+1

α=2 is the force term, and σ is the shear stress defined by

σ = μ[∇u + (∇u)T ] +
(

μb − 2μ

d

)
(∇ · u)Id = μ

[
∇u + (∇u)T − 2

d
(∇ · u)Id

]
+ μb(∇ · u)Id , (96)

here μ and μb are the dynamic and bulk viscosity, respectively.
To recover the macroscopic NSEs (95) from the GPMRT-LB model (13), the equilibrium, auxiliary, and source distribution

functions, i.e., f eq
i , Fi, and Gi, should satisfy the following moment conditions:

q∑
i=1

fi =
q∑

i=1

f eq
i = ρ,

q∑
i=1

ci fi =
q∑

i=1

ci f eq
i = ρu, (97a)

q∑
i=1

cici f eq
i = ρuu + c2

s ρI,
q∑

i=1

cicici f eq
i = c2

s ρ� · u, (97b)

q∑
i=1

Gi = 0,

q∑
i=1

ciGi = 0,

q∑
i=1

ciciGi = 0, (97c)

q∑
i=1

Fi = 0,

q∑
i=1

ciFi = ρF̂,

q∑
i=1

ciciFi = ρ(F̂u + (F̂u)T ); (97d)

for the DdQq lattice structure, the explicit expressions of f eq
i , Gi, and Fi can be given by [30]

f eq
i = wiρ

[
1 + ci · u

c2
s

+ uu :
(
cici − c2

s Id
)

2c4
s

]
, (98a)

Gi = 0, Fi = wiρ

[
ci · F̂

c2
s

+ (F̂u + (F̂u)T ) :
(
cici − c2

s Id
)

2c4
s

]
. (98b)

It should be noted that at the diffusive scaling, the terms wiρci · u/c2
s and wiρ[uu : (cici − c2

s Id )]/(2c4
s ) in the expression of f eq

i
are of order O(�x) and O(�x2), respectively.
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For the continuity equation (95a), the derivation process is similar to that of NACDE (see Appendixes A 2 and B 2 for details),
and the first- to second-order MEs at the diffusive and acoustic scalings are given by

�t ∼ �x2 :

{
∂α (ρuα ) = O(�x),

∂tρ + ∂α (ρuα ) = O(�x2),
(99)

�t ∼ �x :

{
∂tρ + ∂α (ρuα ) = O(�x),

∂tρ + ∂α (ρuα ) + �t
(

1
2 − b

2a2

)
∂β∂θ

(
ρuβuθ + ρc2

s δβθ

) = O(�x2).
(100)

We would like to point out that the term �t[1/2 − b/(2a2)]∂β∂θ (ρuβuθ + ρc2
s δβθ ) in Eq. (100) is of order O(�tMa2) with

Ma := u/cs being the Mach number, which can be eliminated when a2 = b. However, this term does not appear in Eq. (99) at
the diffusive scaling; this is because Ma is of order O(�x), and in this case, it can be rearranged into the truncation error O(�x2).
This also indicates that the LB method is suitable for nearly incompressible flows at both the diffusive and acoustic scalings.

With respect to the momentum equation (95b), the first- and second-order MEs at the diffusive and acoustic scalings are given
by (see Appendixes A 2 and B 2 for details)

�t ∼ �x2 :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂t (ρuα ) + ∂β

(
ρuαuβ + ρc2

s δαβ

)+ �t
(
1 − b

2a2

)
∂β

(
ρc2

s ∂θuθ δαβ

)− ρF̂xα

−�t∂β

[
S2

αβξ1ξ2
− (

1 − b
2a2

)
δξ1αδξ2β

](
ρc2

s ∂ξ1 uξ2 + ρc2
s ∂ξ2 uξ1

) = O(�x),

∂t (ρuα ) + ∂β

(
ρuαuβ + ρc2

s δαβ

)+ �t
(
1 − b

2a2

)
∂β

(
ρc2

s ∂θuθ δαβ

)− ρF̂xα

−�t∂β

[
S2

αβξ1ξ2
− (

1 − b
2a2

)
δξ1αδξ2β

](
ρc2

s ∂ξ1 uξ2 + ρc2
s ∂ξ2 uξ1

) = O(�x2),

(101)

and

�t ∼ �x :

⎧⎪⎨
⎪⎩

∂t (ρuα ) + ∂β

(
ρuαuβ + ρc2

s δαβ

)− ρF̂xα
= O(�x),

∂t (ρuα ) + ∂β

(
ρuαuβ + ρc2

s δαβ

)+ �t
2

(
1 − b

a2

)
∂β

(
ρc2

s ∂θuθ δαβ

)− ρF̂xα

−�t∂β

[
S2

αβξ1ξ2
− (

1 − b
2a2

)
δξ1αδξ2β

](
ρc2

s ∂ξ1 uξ2 + ρc2
s ∂ξ2 uξ1

) = O(�x2 + �xMa3),

(102)

where

∂t
(
ρuξ1 uξ2

) = F̂xξ1
uξ2 + F̂xξ2

uξ1 − c2
s

(
uξ1∂ξ2ρ + uξ2∂ξ1ρ

)+ O(�x + Ma3), (103a)

∂θ

(
ρc2

s �αβθζ uζ

) = ∂θ

(
ρc2

s uθ δαβ

)+ ∂α

(
ρc2

s uβ

)+ ∂β

(
ρc2

s uα

)
. (103b)

∂t (ρuuu) = O(Ma3), u = O(Ma) and ∇ρ = O(Ma2) are used at the acoustic scaling. From Eqs. (101) and (102), one can
see that the viscous terms are different at the diffusive and acoustic scalings. This is because the terms �t∂tt m̂

eq
α+1 and

�t[W0∂t m̂eq]α+1 (α ∈ {1 ∼ d}), where m̂eq := meq/�xk = O(1) with k = 1 at the diffusive scaling while k = 0 at the acoustic
scaling, are of order O(�x2) at the diffusive scaling while they are of order O(�x) term at the acoustic scaling.

For the term S2
αβξ1ξ2

shown in Eqs. (101) and (102), we consider the following commonly used form [30]:

S2
αβξ1ξ2

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
s2s

+ 1
d

(
1

s2b
− 1

s2s

)
, ξ1 = ξ2 = α = β,

1
d

(
1

s2b
− 1

s2s

)
, α = β, ξ1 = ξ2, ξ1 �= α,

1
s2s

, ξ1 = α, ξ2 = β, α �= β,

0, others.

(104)

Then the second-order ME (101) at the diffusive scaling is the same as the momentum euqation (95b) with

υ =
(

1

s2s
+ b

2a2
− 1

)
c2

s �t, υb =
[

2

d

(
1

s2b
+ b

2a2
− 1

)
+
(

b

2a2
− 1

)]
c2

s �t, μ = ρυ,μb = ρυb, (105)

while the second-order ME (102) at the acoustic scaling would reduce to the momentum euqation (95b) under the following
condition:

υ =
(

1

s2s
+ b

2a2
− 1

)
c2

s �t, υb =
[

2

d

(
1

s2b
+ b

2a2
− 1

)
+
(

b

2a2
− 1

2

)]
c2

s �t, μ = ρυ,μb = ρυb. (106)

IV. FOURTH-ORDER GPMRT-LB MODEL AND GPMFD
SCHEME FOR ONE-DIMENSIONAL CDE

Based on the above results, the GPMFD scheme of a given
GPMRT-LB model can be directly derived from Eq. (37), then

one can further conduct the accuracy and stability analysis
with the help of the traditional tools adopted in the finite-
difference method. Similar to our previous work [23], we
will present the fourth-order GPMRT-LB model and GPMFD
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scheme at the diffusive scaling for the one-dimensional CDE,

∂φ

∂t
+ u

∂φ

∂x
= κ

∂2φ

∂x2
, (107)

where φ is a scalar function of the position x and time
t , u and κ are two constants. For CDE (107), the evolu-
tion equation of the GPMRT-LB model can be written as
[23,38]

f �
i (x, t ) = fi(x, t ) − (M−1SM)ik

[
fk − f eq

k

]
(x, t ), (108)

fi(x, t + �t ) = p0 f �
i (x, t ) + p−1 f �

i (x − λi�t, t )

+ p1 f �
i (x + λi�t, t ), i = −1, 0, 1, (109)

where the D1Q3 lattice structure, the orthogonal transform
matrix M, the diagonal relaxation matrix S =diag(s0, s1, s2),
and the moment conditions required for the equilibrium dis-
tribution function are the same as those in Ref. [23]. Here the
equilibrium distribution function is given by

f eq
i = wiφ

[
1 + ciu

c2
s

+ ϑ
u2
(
c2

i − c2
s

)
2c4

s

]
, (110)

where

c2
s = (1 − w0)c2, w1 = w−1 = 1 − w0

2
; (111)

wi is the weight coefficient, ϑ = ζ ξ with ζ = 2(1 − w0)/w0,
and ξ = (1/s1 − 1/2)/[1/s1 + b/(2a2) − 1]. We would like
to point out that the equilibrium distribution function (110)
is different from that in Ref. [23].

With the help of the scheme (18), one can easily obtain the
GPMFD scheme on the variable φ,

φn+1
j = α1φ

n
j + α2φ

n
j−1 + α3φ

n
j+1 + β1φ

n−1
j + β2φ

n−1
j−1

+ β3φ
n−1
j+1 + β4φ

n−1
j−2 + β5φ

n−1
j+2

+ γ1φ
n−2
j + γ n−2

j−1 + γ3φ
n−2
j+1 + γ4φ

n−2
j−2 + γ5φ

n−2
j+2 ,

(112)

where φn
j represents φ( j�x, tn), j ∈ Z and n ∈ N , the param-

eters αi(i ∈ {1 ∼ 3}), βk and γk (k ∈ {1 ∼ 5}) can be found in
Appendix C.

Due to the fact that the accuracy analysis on the above
scheme (112) is similar to our previous work [23], here we
only present some results and do not show more details. Ac-
tually, the second-order ME of the GPMFD scheme (112) can
be given by[

∂φ

∂t
+ u

∂φ

∂x

]n

j

= ε
�x2

�t

[
∂2φ

∂x2

]n

j

− uT R3

6s1
�x2

[
∂3φ

∂x3

]n

j

+ T R4(1 − w0)

24s1s2

�x4

�t

[
∂4φ

∂x4

]n

j

+ O(�t2),

(113)

where ε = κ�t/�x2. To derive a fourth-order GPMRT-LB
model (108) and (112), the following conditions need to be
satisfied:

ε = a2

(
1

s1
+ b

2a2
− 1

)
(1 − w0), (114a)

T R3 = s2
1s2(1 − 3b) + 12a2s2(s1 − 1)

+ 3w0
[
2a2
(
s1 + 2s2 + s2

1(s2 − 1) − 3s1s2
)

+ bs1(s1(1 − s2) + s2)
] = 0, (114b)

T R4 = 6a4s2
(
6s1 − 4 − 2s3

1

)+ bs3
1s2(1 − 3b)

+ 8a2s2
1s2(1 − s1)(1 − 3b)

+ 6a4w0
[
4
(
s1 + s2 + s3

1 + 2s2
1(s2 − 1)

)
− 10s1s2 − 2s3

1s2
]+ 3b2s3

1w0(2 − s2)

+ 12a2bs1w0[2s1(1 − s1) + s2((s1 − 2)s1 + 1)] = 0,

(114c)

where u/c = O(�x) has been used, while it has not been take
into account in the previous work [23]. In addition, for the
special case with a = b = 1, the solution of the fourth-order
conditions (114) can be derived:

s1 = 12ε

6ε + 1
,

s2 = 2

6ε + 1
, (115)

w0 = 1 − 12ε2,

which is different from that in Ref. [23].
It should be noted that the F-GPMRT-LB model and F-

GPMFD scheme can be obtained once the weight coefficient
w0 and relaxation parameters s1 and s2 satisfy the fourth-
order conditions (114) for the given parameters ε, a, and b.
However, owing to existence of nonlinearity and coupling,
it is difficult to derive analytical solution of the fourth-order
conditions (114), thus here we only plot the relation between
the parameters s1, s2, w0, and ε through selecting four cases
of parameters a and b in Fig. 2. Furthermore, based on the
solution of Eq. (114) and Corollary 10 in Ref. [65], the F-
GPMRT-LB model is stable if and only if the corresponding
F-GPMFD scheme is stable in the von Neumann sense, thus
we can also consider the numerical stability of the F-GPMRT-
LB model and F-GPMFD scheme through judging whether
the modulus of the roots of the characteristic polynomial of
the amplification matrix G [see Eq. (D1) in Appendix D] is no
larger than the unit. As shown in Fig. 3, one can observe that
stability regions of the F-GPMRT-LB model and F-GPMFD
scheme can be larger than that of the MRT-LB model through
adjusting parameters a and b properly.

V. NUMERICAL RESULTS AND DISCUSSION

In this section we conduct numerical simulations of the
Gauss hill problem, the CDE with nonlinear convection and
diffusion terms, and the Taylor-Green vortex flow, since they
have the analytical solutions, which can also be used to test
the convergence rates (CRs) of the GPMRT-LB model (13)
and GPMFD scheme (37) for NACDE and NSEs. To measure
the difference between the numerical result and analyti-
cal solution, we adopt the following root-mean-square error
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FIG. 2. Weight coefficient w0 and relaxation parameters s1 and s2 as a function of the parameter ε under different values of a and b.

(RMSE) [1]:

RMSE :=
√∑

i[ψ (xi, tn) − ψ�(xi, tn)]2∏d
j=1 Nxj

, (116)

where Nxj is the number of gird points in the j direction,
xi denotes the grid point, and ψ and ψ� are the numerical
and analytical solutions, respectively. Based on the defini-
tion of RMSE, one can estimate the CR with the following

formula:

CR = log(RMSE�x/RMSE�x/2)

log 2
. (117)

Here we consider the popular D2Q9 lattice structure with cs =
c/

√
3 for two-dimensional problems. For the MRT-LB model,

we adopt the orthogonal transform matrix [32],

Mc =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1

0 c 0 −c 0 c −c −c c

0 0 c 0 −c c c −c −c

−4c2 −c2 −c2 −c2 −c2 2c2 2c2 2c2 2c2

0 c2 −c2 c2 −c2 0 0 0 0

0 0 0 0 0 c2 −c2 c2 −c2

4c4 −2c4 −2c4 −2c4 −2c4 c4 c4 c4 c4

0 −2c3 0 2c3 0 c3 −c3 −c3 c3

0 0 −2c3 0 2c3 c3 c3 −c3 −c3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (118)
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FIG. 3. Stability regions of F-GPMRT-LB model and F-GPMFD scheme for CDE (107) under different values of a and b.

and the relaxation matrix

Sc = diag(1, (S1)−1, 1, 1, 1, 1, 1, 1) (119)

is used for the Gauss hill problem and the CDE with non-
linear convection and diffusion terms [see S1 in Eq. (57)],
while

Sc = diag(1, 1, 1, s2s, s2s, s2s, 1, 1, 1) (120)

is applied for the Taylor-Green vortex flow. To satisfy the
stability condition [68], the parameter b is located in the range
[a2, min{1, 6υ + a2}]. In addition, we also consider the one-
dimensional CDE (107) with the periodic boundary condition
to test the F-GPMRT-LB model (108) and F-GPMFD scheme
(112), where the parameter ε, weight coefficient w0, and re-
laxation parameters s1 and s2 are determined by Eq. (114) and
the stability region shown in Fig. 3.

Before performing the numerical simulations, we give a
remark on the CRs at the acoustic and diffusive scalings.

Remark 9. From the theoretical results in Secs. III C and
III D, the GPMRT-LB model and GPMFD scheme have a
second-order accuracy at both the acoustic and diffusive
scalings for the NACDE and NSEs, and these results are con-
sistent with the asymptotic analysis approaches [30,42–49].
However, it should be noted that when we estimate the CRs
of the GPMRT-LB model and GPMFD scheme, for the given
physical parameters, e.g., the diffusion or viscosity coeffi-
cient, the usually used method is to change the lattice spacing
and time step with a fixed �x/�t (the acoustic scaling) or

�x2/�t (the diffusive scaling) while maintaining the other
parameters [e.g., the general propagation parameters a and b,
the relaxation parameters S1 (or S2) related to the diffusion
(or viscosity) coefficient, and the weight coefficients, etc.]
unchanged, which means that in the LB framework, we can-
not estimate the CRs of the GPMRT-LB model and GPMFD
scheme at the acoustic scaling in numerical simulations; this
also explains why all the works associated with the LB method
consider only the CR at the diffusive scaling. In the following
simulations, we will consider only the CR at the diffusive
scaling.

Example 1. We first consider Gauss hill problem. With the
following initial condition:

φ(x, 0) = φ0

2φϒ2
0

exp

[(
− x2

2ϒ2
0

)]
, (121)

one can obtain the analytical solution of this problem under
the constant velocity u = (ux, uy)T and diffusion coefficient
matrix κ ,

φ(x, t ) = φ0

2π | det (ϒ)|1/2

× exp

{
−ϒ−1 : [(x − ut )(x − ut )]

2

}
, (122)

where x = (x, y)T , ϒ = ϒ2
0 I + 2κt , and ϒ−1 det (ϒ)

represent the inverse matrix and determinant value of
ϒ, respectively. In our simulations, the computational
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FIG. 4. Contour lines of the scalar variable φ at the time t = 2 and u = (0.01, 0.01)T : (a), (b) isotropic diffusion problem, (c), (d) diagonal
anisotropic diffusion problem, and (e), (f) full anisotropic diffusion problem.

domain is [−1, 1] × [−1, 1] and the total concentration
is set as φ0 = 2φ(ϒ0)2 with ϒ0 = 0.01, which should
be small enough when applying the periodic boundary
condition.

We first conduct some tests with ux = uy = 0.01, �x =
�t = 1/200 and the following three types of diffusion coeffi-

cient matrices:

κ =
[

1 1
1 2

]
× 10−3, κ =

[
1 0
0 2

]
× 10−3,

κ =
[

1 0
0 1

]
× 10−3, (123)
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TABLE I. RMSEs and CRs of GPMRT-LB model for five cases of parameters a and b (125) at the diffusive scaling (t = 2).

�x �t (a, b) RMSE�x RMSE�x/2 RMSE�x/4 RMSE�x/8 CR

1
80

1
50 (1,1) 9.5641 ×10−6 2.3468 ×10−6 1.0396 ×10−6 5.8420 ×10−7 ∼2.0108

1
80

1
50 (0.4,0.2) 2.8713 ×10−5 6.7951 ×10−6 2.9940 ×10−6 1.6794 ×10−6 ∼2.0368

1
80

1
50 (0.4,0.45) 2.5173 ×10−5 6.0406 ×10−6 2.6671 ×10−6 1.4971 ×10−6 ∼2.0274

1
80

1
50 (0.6,0.36) 1.4732 ×10−5 3.5532 ×10−6 1.5702 ×10−6 8.8162 ×10−7 ∼2.0240

1
80

1
50 (0.5,0.5) 1.7176 ×10−5 4.1824 ×10−6 1.8512 ×10−6 1.0400 ×10−6 ∼2.0175

which represent the isotropic diffusion, diagonal anisotropic
diffusion, and full anisotropic diffusion problems, and present
the results of the LW scheme (b = a2) at the time t = 2 in
Fig. 4, where a = 0.5. As shown in this figure, the numer-
ical results obtained from both the GPMRT-LB model and
GPMFD scheme are in good agreement with the analytical
solutions.

In addition, we also conduct some simulations at the dif-
fusive scaling under ux = uy = 0.01 and the full anisotropic
diffusion coefficient matrix,

κ =
[

1 1
1 2

]
× 10−3, (124)

and consider the following five cases with different values of
parameters a and b:

Case 1: a = b = 1, the MRT − LB model, (125a)

Case 2: a2 < b < a, a = 0.4, b = 0.2, (125b)

Case 3: a < b < 1, a = 0.4, b = 0.45, (125c)

Case 4: b = a2, a = 0.6, the LW scheme, (125d)

Case 5: b = a = 0.5, the FP scheme. (125e)

As seen from Tables I and II, both the GPMRT-LB model
and GPMFD scheme can achieve a second-order CR at the
diffusive scaling, which is consistent with the theoretical
analysis.

Example 2. We would like to point out that in the above
example, the anisotropic diffusion of the CDE is considered,
while it is only a linear problem. In this example, we will
focus on the following more general CDE with the nonlinear
convection and diffusion terms [28]:

∂tφ + ∇ · (φmu) = ∇ · [κ (∇ · D(φ))] + R, (126)

where m is a constant, and κ is the diffusion coefficient. D(φ)
is a nonlinear diffusion term, which is given by

D(φ) =
(

φnx 0
0 φny

)
, (127)

where nx and ny are two constants. R is the source term and is
defined as

R = exp(−At ){A cos(2πx) cos(2πy) − 4nxπ
2κφnx−2[(nx − 1) exp(−At ) sin2(2πx) cos2(2πy) + φ cos(2πx) cos(2πy)]

− 4nyπ
2κφny−2[(ny − 1) exp(−At ) sin2(2πy) cos2(2πx) + φ cos(2πx) cos(2πy)]

+ 2πmφm−1[ux sin(2πx) cos(2πy) + uy cos(2πx) sin(2πy)]}, (128)

here A is a constant. Under the periodic condition and the
initial condition,

φ(x, y, 0) = α − cos(2πx) cos(πy), (129)

one can derive the analytical solution of Eq. (126),

φ(x, y, t ) = α − exp(−At ) cos(2πx) cos(2πy), (130)

where α is a constant.

We consider the characteristic velocity ux = uy = 0.1, α =
1.1, A = 1.0, m = 2.0, nx = 2.0, ny = 3.0 with the diffusion
coefficient κ = 10−4 and perform some simulations under
different lattice spacings �x = 1/40, 1/80, 1/160, 1/320 and
the fixed �x2/�t = 1/160. From the results shown in Ta-
bles III and IV, one can find that both the GPMRT-LB model
and GPMFD scheme for this problem have a second-order

TABLE II. RMSEs and CRs of GPMFD scheme for five cases of parameters a and b (125) at the diffusive scaling (t = 2).

�x �t (a, b) RMSE�x RMSE�x/2 RMSE�x/4 RMSE�x/8 CR

1
80

1
50 (1,1) 6.1121 ×10−6 1.5280 ×10−6 6.7934 ×10−7 3.8222 ×10−7 ∼1.9993

1
80

1
50 (0.4,0.2) 2.7548 ×10−5 6.8421 ×10−6 3.0392 ×10−6 1.7095 ×10−6 ∼2.0036

1
80

1
50 (0.4,0.45) 1.0589 ×10−5 2.6788 ×10−6 1.1932 ×10−6 6.7179 ×10−7 ∼1.9041

1
80

1
50 (0.6,0.36) 7.6951 ×10−6 1.9097 ×10−6 8.4799 ×10−7 4.7691 ×10−7 ∼2.0045

1
80

1
50 (0.5,0.5) 9.2178 ×10−6 2.3532 ×10−6 1.0501 ×10−6 5.9156 ×10−7 ∼1.9849
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TABLE III. RMSEs and CRs of GPMRT-LB model for five cases of parameters a and b at the diffusive scaling (t = 1).

�x �t (a, b) RMSE�x RMSE�x/2 RMSE�x/4 RMSE�x/8 CR

1
40

1
10 (1,1) 2.4101 ×10−3 4.6829 ×10−4 1.1172 ×10−4 2.8655 ×10−5 ∼2.1314

1
40

1
10 (0.4,0.2) 3.9736 ×10−3 1.0548 ×10−3 2.6514 ×10−4 6.5618 ×10−5 ∼1.9734

1
40

1
10 (0.4,0.6) 2.9547 ×10−3 7.2457 ×10−4 1.8701 ×10−4 4.7613 ×10−5 ∼1.9852

1
40

1
10 (0.6,0.36) 4.3929 ×10−3 1.1640 ×10−3 2.6713 ×10−4 6.1312 ×10−5 ∼2.0543

1
40

1
10 (0.4,0.4) 3.8619 ×10−3 1.1461 ×10−3 2.6591 ×10−4 7.4452 ×10−5 ∼1.8990

TABLE IV. RMSEs and CRs of GPMFD scheme for five cases of parameters a and b at the diffusive scaling (t = 1).

�x �t (a, b) RMSE�x RMSE�x/2 RMSE�x/4 RMSE�x/8 CR

1
40

1
10 (1,1) 1.1210 ×10−3 3.0132 ×10−4 7.8017 ×10−5 2.1595 ×10−5 ∼1.9036

1
40

1
10 (0.4,0.2) 1.9264 ×10−3 5.1008 ×10−4 1.2081 ×10−4 2.9965 ×10−5 ∼2.0021

1
40

1
10 (0.4,0.6) 2.5461 ×10−3 6.1005 ×10−4 1.3577 ×10−4 3.0083 ×10−5 ∼2.1344

1
40

1
10 (0.6,0.36) 2.1193 ×10−3 5.0988 ×10−4 1.3102 ×10−4 3.2012 ×10−5 ∼2.0128

1
40

1
10 (0.4,0.4) 3.2162 ×10−3 8.8190 ×10−4 2.5154 ×10−5 6.1414 ×10−5 ∼1.9035

TABLE V. Errors and CRs of GPMRT-LB model for five cases of parameters a and b at the diffusive scaling (t = 2).

�x �t (a, b) Errux
�x Errux

�x/2 Errux
�x/4 Errux

�x/8 CRux

1
16

1
400 (1,1) 7.5590 ×10−3 1.8941 ×10−3 4.7375 ×10−4 1.1811 ×10−4 ∼2.0000

1
16

1
400 (0.5,0.5) 9.7341 ×10−3 2.5072 ×10−3 6.3126 ×10−4 1.5655 ×10−4 ∼1.9861

1
16

1
400 (0.5,0.25) 1.9696 ×10−3 4.9446 ×10−4 1.2378 ×10−4 3.0824 ×10−5 ∼1.9996

1
16

1
400 (0.5,0.75) 7.0541 ×10−3 1.7666 ×10−3 4.4183 ×10−4 1.1032 ×10−4 ∼1.9996

1
16

1
400 (0.5,0.375) 1.7801 ×10−3 4.3067 ×10−4 1.0679 ×10−4 2.6795 ×10−5 ∼2.0180

TABLE VI. Errors and CRs of GPMFD model for five cases of parameters a and b at the diffusive scaling (t = 2).

�x �t (a, b) Errux
�x Errux

�x/2 Errux
�x/4 Errux

�x/8 CRux

1
16

1
400 (1,1) 5.1430 ×10−3 1.3662 ×10−3 3.1500 ×10−4 8.8603 ×10−5 ∼1.9530

1
16

1
400 (0.5,0.5) 6.1180 ×10−3 1.5801 ×10−3 4.0917 ×10−4 9.7914 ×10−5 ∼1.9885

1
16

1
400 (0.5,0.25) 8.8766 ×10−4 2.2957 ×10−4 6.1279 ×10−5 1.5009 ×10−5 ∼1.9620

1
16

1
400 (0.5,0.75) 4.9980 ×10−3 1.2165 ×10−3 3.0613 ×10−4 7.8871 ×10−5 ∼1.9953

1
16

1
400 (0.5,0.375) 9.7244 ×10−4 2.4097 ×10−4 6.4010 ×10−5 1.6419 ×10−5 ∼1.9627
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TABLE VII. RMSEs and CRs of F-GPMRT-LB model for different value of a and b at the diffusive scaling.

�x �t (a, b) RMSE�x RMSE�x/2 RMSE�x/4 RMSE�x/8 CR

1
10

1
50 (1,1) 6.1216 ×10−4 3.7760 ×10−5 2.3466 ×10−6 1.4628 ×10−7 ∼4.0103

1
10

1
50 (0.6,0.9) 1.6485 ×10−3 1.0545 ×10−4 6.6188 ×10−6 4.1442 ×10−7 ∼3.9859

1
10

1
50 (0.9,0.8) 5.8918 ×10−4 3.6349 ×10−5 1.1590 ×10−6 1.4082 ×10−7 ∼4.0110

1
10

1
50 (0.6,0.6) 5.4684 ×10−4 3.3716 ×10−5 2.0952 ×10−6 1.3062 ×10−7 ∼4.0105

CR at the diffusive scaling, which is in agreement with the
theoretical analysis in Sec. III C.

Example 3. We now consider the Taylor-Green vortex flow,
which is unsteady and fully periodic in a domain of size
[0, L] × [0, L], and can obtain the analytical solution of the
NSE [1],

ux(x, y, t ) = −u0

√
kx

ky
cos(kxx) sin(kyy) exp

(
− t

td

)
, (131a)

uy(x, y, t ) = u0

√
kx

ky
sin(kxx) cos(kyy) exp

(
− t

td

)
, (131b)

ρ(x, y, t ) = 1 − u2
0

4c2
s

[
ky

kx
cos(2kxx)

+ kx

ky
cos(2kyy)

]
exp

(
−2t

td

)
, (131c)

where u0 is the initial characteristic velocity, kx = ky = 2π/L,
and the vortex decay time td is defined by

td = 1

υ
(
k2

x + k2
y

) . (132)

The initial state is determined by u(x, 0) and ρ(x, 0), which
are given by Eq. (131). To evaluate the difference between
the numerical and analytical solutions, the L2 norm error is
adopted,

Errψ =
√∑

i(ψ (xi, tn) − ψ�(xi, tn))2∑
i(ψ

�)2(xi, tn)
, (133)

where ψ = ρ, ux or uy, and the corresponding CR is defined
as

CR = log(Errψ

�x/Errψ

�x/2)

log 2
; (134)

it should be noted that the errors of velocity, Errux and Erruy ,
are of the same order. In our simulations, υ = 1/6, u0 = 0.02

and the characteristic length L = 2. We consider the following
five cases of parameters a and b [37]:

Case 1: a = 1, b = 1, the MRT − LB model, (135a)

Case 2: a = 0.5, b = a2, the LW scheme, (135b)

Case 3: a = 0.5, b = a, the FP scheme, (135c)

Case 4: a = 0.5, b = a(2 − a), (a < b < 1), (135d)

Case 5: a = 0.5, b = a2(2 − a), (a2 < b < a), (135e)

and present the results at time t = 2 in Tables V and VI,
where the lattice spacing �x = 1/16, 1/32, 1/64, 1/128 and
the time step is determined by the fixed constant �x2/�t =
25/16. We would like to point out that the magnitude of Errρ

is less than 10−13, and thus the CR of the density is not consid-
ered here. As shown in Tables V and VI, a second-order CR in
space at the diffusive scaling can be observed for the velocity
in the x direction, which is consistent with the theoretical
analysis in Sec. III D.

Example 4. We further consider the CDE (107) problem
with the periodic boundary condition and following initial
condition:

φ(x, 0) = sin(πx), −1 � x � 1, (136)

and obtain the analytical solution of this problem as

φ(x, t ) = sin[π (x − ut )] exp (−κπ2t ). (137)

In this test the initialization processes for the F-GPMRT-
LB model and F-GPMFD scheme are the same as
those in our previous work [23]; now we consider
the diffusion coefficient κ = 0.08, velocity u = 1, lat-
tice spacing �x = 1/10, 1/20, 1/40, 1/80, time step �t =
1/50, 1/200, 1/800, 1/3200, and measure the RMSEs be-
tween the numerical and analytical solutions at the time t = 2.
As seen from Tables VII and VIII, both the GPMRT-LB model
and GPMFD scheme at the diffusive scaling have a fourth-
order CR in space.

TABLE VIII. RMSEs and CRs of F-GPMFD model for different values of a and b at the diffusive scaling.

�x �t (a, b) RMSE�x RMSE�x/2 RMSE�x/4 RMSE�x/8 CR

1
10

1
50 (1,1) 5.2505 ×10−4 3.7716 ×10−5 2.5180 ×10−6 1.6268 ×10−7 ∼3.8774

1
10

1
50 (0.6,0.9) 7.2309 ×10−4 5.1108 ×10−5 3.3636 ×10−6 2.1540 ×10−7 ∼3.9043

1
10

1
50 (0.9,0.8) 2.0699 ×10−4 1.4997 ×10−5 1.0076 ×10−6 6.5284 ×10−8 ∼3.8768

1
10

1
50 (0.6,0.6) 1.8924 ×10−4 1.3172 ×10−5 9.2169 ×10−7 5.9723 ×10−8 ∼3.8766
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VI. CONCLUSIONS

In this paper we first derived the multiple-level GPMFD
scheme of the GPMRT-LB model on conservative moments,
and then conducted the accuracy analysis for the GPMRT-LB
model and GPMFD scheme through the Maxwell iteration
method at the diffusive and acoustic scalings. Furthermore,
for the NACDE and NSEs, we presented the first- and
second-order modified equations of the GPMRT-LB model
and GPMFD scheme at both diffusive and acoustic scalings.
In particular, based on our previous work [23], we also de-
veloped the F-GPMRT-LB model and F-GPMFD scheme at
the diffusive scaling for the one-dimensional CDE, which can
be more stable than the MRT-LB model and the correspond-
ing macroscopic finite-difference scheme through adjusting
parameters a and b properly (see Fig. 3). Finally, some nu-
merical simulations of the Gauss hill problem, the CDE with
nonlinear convection and diffusion terms, and Taylor-Green
vortex flow were conducted to test the GPMRT-LB model and
GPMFD scheme, and the results show that both of them have

second-order convergence rates in space. We also performed
a numerical test on the F-GPMRT-LB model and F-GPMFD
scheme for the one-dimensional CDE, and we found that they
are of fourth-order accuracy in space, which is consistent
with our theoretical analysis. We would also like to point
out that for high-dimensional problems, it is more difficult
to develop the high-order GPMRT-LB models and GPMFD
schemes.
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APPENDIX A: DERIVATION OF EQS. (92b), (99), AND (101)

For the first-order ME (75), one can obtain

[∂t meq]1 = ∂t

∑
i

f eq
i , [cW0meq]1 = c∂α

∑
i

eiα f eq
i , F̃1 =

q∑
i=1

(
Fi + Gi + �t

2
DiFi

)
,

[
�tc2W0

(
Ŝ−1

N +
(

b

2a2
− 1

)
Iq

)
W0meq

]
1

= �tc2∂β

q∑
k=1

q∑
j=1

e jβ

[
� jk +

(
b

2a2
− 1

)
δ jk

]
∂θekθ f eq

k

= �tc2∂β

q∑
k=1

(
S10

β + S1
βγ ekγ

)
∂θekθ f eq

k + �t

(
b

2a2
− 1

2

)
∂β∂θ

q∑
k=1

ckβckθ f eq
k . (A1)

For the second-order ME (78), however, apart from above equalities, we also need the following results:

[
cW0Ŝ−1

N F̃
]

1 = c∂α

q∑
k=1

ekα

(
Fk + Gk + �t

2
DkFk

)
= c∂α

q∑
k=1

q∑
j=1

eiα� jk

(
Fk + Gk + �t

2
DkFk

)

= ∂α

q∑
k=1

(
cS10

α + S1
αβckβ

)(
Fk + Gk + �t

2
DkFk

)
,

[
cW0Ŝ−1

N ∂t meq]
1 = c∂α

q∑
k=1

q∑
j=1

eiα� jk∂t f eq
k = ∂α

q∑
k=1

(
cS10

α + S1
αβckβ

)
∂t f eq

k ,

[
c∂t Ŝ−1

N W0meq]
1 = s0∂t∂α

q∑
k=1

ckα f eq
k , (cW0∂t meq )1 = ∂α∂t

q∑
k=1

ckα f eq
k , (A2)

and [
�t2c3W3

0meq
]

1 = �t2∂α∂β∂γ

∑
i

ciαciβciγ f eq
i ,

[
�t2c3W2

0Ŝ−1
N W0meq]

1 = c3�t2∂α∂β

q∑
k=1

⎛
⎝ q∑

j=1

e jαe jβ� jk

⎞
⎠∂γ ekγ f eq

k = �t2∂α∂β

q∑
k=1

(
c2S20

αβ + S2
αβθζ ckθ ckζ

)
∂γ ckγ f eq

k ,
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[
�t2c3W0Ŝ−1

N W
2
0meq

]
1 = c3�t2∂α

q∑
k=1

⎛
⎝ q∑

j=1

e jα� jk

⎞
⎠∂βekβ∂γ ekγ f eq

k = �t2∂α

q∑
k=1

(
cS10

α + S1
αθ ckθ

)
∂βckβ∂γ ckγ f eq

k ,

[
�t2c3W0Ŝ−1

N W0Ŝ−1
N W0meq

]
1 = c3�t2∂α

q∑
i=1

⎡
⎣ q∑

k=1

⎛
⎝ q∑

j=1

e jα� jk

⎞
⎠∂βekβ�ki

⎤
⎦∂γ eiγ f eq

i

= �t2∂α

q∑
i=1

[
q∑

k=1

(
cS10

α + S1
αθ ckθ

)
∂βckβ�ki

]
∂γ ciγ f eq

i

= �t2∂α

q∑
i=1

[
cS10

α ∂β

(
S10

β + S1
βηciη

)+ S1
αθ∂β

(
S20

θβ + S21
θβηciη + S2

θβζμciζ ciμ
)]

∂γ ciγ f eq
i

= �t2∂α

q∑
i=1

[(
cS10

α ∂βS10
β + S1

αθ∂βS20
θβ

)+ (
cS10

α ∂βS1
βη + S1

αθ∂βS21
θβη

)
ciη + S1

αθ∂βS2
θβζμciζ ciμ

]
∂γ ciγ f eq

i . (A3)

1. NACDE: Derivation of Eq. (92b)

Substituting the moment conditions (90) for NACDE into Eq. (A1), one can derive

[cW0meq]1 = ∂αBα, [∂t meq]1 = ∂tφ, F̃1 = R,[
�tc2W0

(
Ŝ−1

N +
(

b

2a2
− 1

)
Iq

)
W0meq

]
1

= �t
∂

∂xβ

{
cS10

β

∂Bθ

∂xθ

+
[

S1
βγ +

(
b

2a2
− 1

)]
δβγ c2

s χ
∂Dγ θ

∂xθ

}
+ O(�x2)

= �tχ
∂

∂xβ

{[
S1

βγ +
(

b

2a2
− 1

)
δβγ

]
c2

s

∂Dγ θ

∂xθ

}
+ O(�x); (A4)

then the first-order ME of the GPMRT-LB model and GPMFD scheme for the NACDE can be given by

∂tφ + ∂αBα − �t
∂

∂xβ

{
χc2

s

[
S1

βγ −
(

b

2a2
− 1

)
δβγ

]
∂Dβθ

∂xθ

}
− R = O(�x). (A5)

Similarly, substituting the moment conditions (90) for NACDE (89) into Eqs. (A2) and (A3) yields[
cW0Ŝ−1

N F̃
]

1 = ∂α

[
cS10

α R + (
S1

αβ − δαβ/2
)
∂t Bβ

]+ O(�x) = c∂αS10
α R + O(1),[

cW0Ŝ−1
N ∂t meq]

1 = c∂αS10
α ∂tφ + O(1),

(
c∂t Ŝ−1

N W0meq)
1 = O(1),

(cW0∂t meq )1 = O(1),

[
�t2c3W3

0meq
]

1 = ∂α∂β∂γ

q∑
i=1

eiαeiβeiγ

{
wi

[
φ +

[
c2

s (Dηξ − φδηξ ) + Cηξ

]
(ciηciξ − c2

s δηξ )

2c4
s

]
+ O(�x)

}
�t2c3 = O(�x2),

[
�t2c3W2

0Ŝ−1
N W0meq]

1 = �t2∂α∂β

(
c2S20

αβ∂γ Bγ + S2
αβθζ ∂γ �θζγ ξ Bξ c2

s

) = O(�x2),[
�t2c3W0Ŝ−1

N W
2
0meq

]
1 = �t2∂α

(
cS10

α ∂β∂γ

(
χc2

s Dβγ + Cβγ

)+ S1
αθ∂β∂γ �θβγ ξ Bξ c2

s

)
= �t2χ∂α

(
cS10

α c2
s ∂β∂γ Dβγ

)+ O(�x2),[
�t2c3W0Ŝ−1

N W0Ŝ−1
N W0meq]

1 = �t2∂α

[(
cS10

α ∂βS10
β + S1

αθ∂βS20
θβ

)
Bγ

+ (
cS10

α ∂βS1
βη + S1

αθ∂βS21
θβη

)
∂γ

(
c2

s χDηγ + Cηγ

)+ S1
αθ∂βS2

θβζμc2
s ∂γ �ζμγ δBδ

]
= �t2χ∂α

[
cS10

α ∂βS1
βηc2

s ∂γ Dηγ

]+ O(�x2); (A6)
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thus one can derive the following second-order ME of the GPMRT-LB model and GPMFD scheme for NACDE (89):

∂tφ + ∂αBα − �t
∂

∂xβ

{
χc2

s

[
S1

βγ −
(

b

2a2
− 1

)
δβγ

]
∂Dβθ

∂xθ

}
− R

+ �tc

{
∂

∂xβ

[
S10

β

(
∂φ

∂t
+ ∂Bθ

∂xθ

− ∂

∂xθ

[
χc2

s �t

[
S1

θη +
(

b

2a2
− 1

)
δθη

]
∂Dηγ

∂xγ

]
− R

)]}
︸ ︷︷ ︸

O(�x2 )

= O(�x2), (A7)

where the first-order ME (A5) has been used.

2. NSEs: Derivation of Eqs. (99) and (101)

Substituting the moment conditions (97) for NSEs (95) into Eq. (A1), we have

[∂t meq]1 = ∂tρ, [cW0meq]1 = ∂α (ρuα ), F̃1 = 0,[
�tc2W0

(
Ŝ−1

N +
(

b

2a2
− 1

)
Iq

)
W0meq

]
1

= �t
∂

∂xβ

(
cS10

β

∂ (ρuθ )

∂xθ

+
[

S1
βγ +

(
b

2a2
− 1

)
δβγ

]
∂
(
ρuγ uθ + ρc2

s δγ θ

)
∂xθ

)
, (A8)

and for any α ∈ {1 ∼ d},
[cW0meq]α+1 = ∂β

(
ρuαuβ + ρc2

s δαβ

)
/c, (F̃)α+1 = O(�x),[

�tc2W0

(
Ŝ−1

N +
(

b

2a2
− 1

)
Iq

)
W0meq

]
α+1

= �t∂β

[
cS20

αβ∂γ (ρuγ ) + S21
αβξ1

∂γ

(
ρuξ1 uγ + ρc2

s δξ1γ

)+ 1

c

(
S2

αβξ1ξ2
+
(

b

2a2
− 1

)
δαξ1δβξ2

)
∂γ

(
ρc2

s �ξ1ξ2γ ζ uζ

)]
= �t∂β

[
S21

αβξ1
∂γ

(
ρc2

s δξ1γ

)]+ O(�x) = O(�x). (A9)

From Eqs. (A8) and (A9), the first-order MEs of the GPMRT-LB model and GPMFD scheme on conservative moments m1 = ρ

and mα+1 = (ρuα )/c can be expressed as

[cW0meq]1 = ∂β (ρuβ ) = O(�x), (A10a)

[cW0meq]α+1 = 1

c
∂β

(
ρc2

s δαβ

)+ O(�x) = O(�x), (A10b)

and this illustrates that at the diffusive scaling, ∇ρ = O(�x2), which will be used below. Subsequently, substituting the moment
conditions (97) for NSEs (95) into Eqs. (A2) and (A3) yields[

�tcW0∂t meq
]

1 = �t∂α∂t (ρuα ) = O(�x2),[
�tcW0Ŝ−1

N ∂t meq
]

1 = �t
[
c∂α

(
S10

α ∂tρ
]+ ∂α

[
S1

αβ∂t (ρuβ )
]] = c∂α

(
S10

α ∂tρ
]+ O(�x2),[

�tc∂t Ŝ−1
N W0meq

]
1 = ∂t s0∂α (ρuα ) = O(�x2),

[
�tcW1Ŝ−1

N F̃
]

1 = �t∂α

[
cS10

α

�t

2
∂γ (ρF̂xγ

) + S1
αβ (ρF̂xβ

) + O(�x)

]
= O(�x2),

[
�t2c3W3

0meq
]

1 = �t2c3∂α∂β∂γ

q∑
i=1

eiαeiβeiγ (wiρ + O(�x)) = O(�x2),

[
�t2c3W2

0Ŝ−1
N W0meq]

1 = �t2∂α∂β

[
c2S20

αβ∂γ (ρuγ ) + cS21
αβξ1

∂γ

(
ρuξ1 uγ + c2

s ρδξ1γ

)
+ S2

αβξ1ξ2
∂γ

(
ρc2

s �ξ1ξ2γ ζ uζ

)] = O(�x2),

[
�t2c3W0Ŝ−1

N W
2
0meq

]
1 = �t2∂α

q∑
k=1

(
cS10

α + S1
αξ1

ckξ1

)
∂βckβ∂γ ckγ f eq

k

= �t2∂α

[
cS10

α ∂β∂γ

(
ρuβuγ + c2

s ρδβγ

)+ S1
αξ1

∂β∂γ

(
ρc2

s �ξ1βγ ζ uζ

)] = O(�x2),
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[
�t2c3W0Ŝ−1

N W0Ŝ−1
N W0meq]

1 = �t2∂α

[(
cS10

α ∂βS10
β + S1

αξ1
∂βS20

ξ1β

)
∂γ (ρuγ )

+ (
cS10

α ∂βS1
βζ1

+ S1
αξ1

∂βS21
ξ1βζ1

)
∂γ

(
ρuζ1 uγ + c2

s ρδζ1γ

)
+ S1

αξ1
∂βS2

ξ1βζ1ζ2
∂γ

(
c2

s ρ�ζ1ζ2γ ζ uζ

)] = O(�x2). (A11)

Additionally, one can also derive the following second-order ME of the GPMRT-LB model and GPMFD scheme for the
continuous equation (95a):

∂tρ + ∂α (ρuα ) + �tc

{
∂

∂xβ

[
S10

β

(
∂ρ

∂t
+ ∂ (ρuγ )

∂xγ

)]}
︸ ︷︷ ︸

O(�x2 )

= O(�x2), (A12)

where the first-order ME (A10a) has been applied.
For the GPMRT-LB model and the GPMFD scheme for the momentum equation (95b), one can obtain

[−∂t meq]α+1 = −1

c
∂t (ρuα ), [−cW0meq]α+1 = −1

c
∂β

(
ρuαuβ + ρc2

s δαβ

)
,

[F̃]α+1 = F̂xα
,

[
�tc2W2

0meq
]
α+1 = −�t

1

c
∂β∂γ

(
ρc2

s �αβγ ζ uζ

)
,

[
�tcW0Ŝ−1

N ∂t meq
]
α+1 = �tc

q∑
k=1

⎡
⎣q−1∑

j=0

e jαe jβ∂β� jk

⎤
⎦∂t f eq

k = �t∂β

[
cS20

αβ∂tρ + S21
αβξ1

∂t
(
ρuξ1

)+ 1

c
S2

αβξ1ξ2
∂t
(
ρc2

s δξ1ξ2

)]
,

[
�tc2W0Ŝ−1

N W0meq
]
α+1 = �tc2

q∑
k=1

⎡
⎣ q∑

j=1

e jαe jβ∂β� jk

⎤
⎦ekγ ∂γ f eq

k

= �t∂β

[
cS20

αβ∂γ (ρuγ ) + S21
αβξ1

∂γ

(
ρuξ1 uγ + ρc2

s δξ1γ

)+ 1

c
S2

αβξ1ξ2
∂γ

(
ρc2

s �ξ1ξ2γ ζ uζ

)]
, (A13)

and [− �tcW0∂t meq
]
α+1 = −�t

1

c
∂β∂t

(
ρuαuβ + ρc2

s δαβ

) = −�t
1

c
∂β∂t

(
ρc2

s δαβ

)+ O(�x3),

[− �tcW0Ŝ−1
N F̃

]
α+1 = −c�t

q∑
k=1

⎡
⎣ q∑

j=1

e jαe jβ∂β� jk

⎤
⎦(Fk + �t

2
DkFk

)

= −c�t
q∑

k=1

∂β

[
S20

αβ + S21
αβξ1

ekξ1 + S2
αβξ1ξ2

ekξ1 ekξ2

](
Fk + �t

2
DkFk

)

= −�t∂β

[
S21

αβξ1

(
ρF̂xα

)]+ O(�x3),

[
�tc∂t Ŝ−1

N W0meq]
α+1 = �tc∂t

q−1∑
k=0

⎡
⎣q−1∑

j=0

e jα� jk

⎤
⎦ekβ∂β f eq

k

= �t∂t S
10
α ∂β (ρuβ ) + �t

1

c
∂t S

1
αξ1

∂β

(
ρuξ1 uβ + ρc2

s δξ1β

) = �t∂t
[
S10

α ∂β (ρuβ )
]+ O(�x3),

[
�t2c3W2

0Ŝ−1
N W0meq

]
α+1 = �t2c3

q∑
k=1

⎡
⎣ q∑

j=1

e jαe jβ∂βe jγ ∂γ � jk

⎤
⎦ekζ ∂kζ f eq

k

= �t2∂β∂γ

[
c2S30

αβγ ∂ζ (ρuζ )
]+ O(�x3),

[
�t2c3W0Ŝ−1

N W
2
0meq

]
α+1 = �t2c3

q∑
k=1

⎡
⎣ q∑

j=1

e jαe jβ∂β� jk

⎤
⎦ekγ ekζ ∂γ ∂ζ f eq

k

= �t2∂β

[
cS20

αβ∂γ ∂ζ × O(1) + S21
αβξ1

∂γ ∂ζ

(
ρc2

s �ξ1γ ζχuχ

)+ 1

c
S2

αβξ1ξ2
∂γ ∂ζ

× [
ρc3

s �ξ1ξ2γ ζ + O(1/�x2)
]] = �t2∂β

[
S21

αβξ1
∂γ ∂ζ

(
ρc2

s �ξ1γ ζχuχ

)]+ O(�x3),
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[− �t2c3W0Ŝ−1
N W0Ŝ−1

N W0meq
]
α+1 = −

q∑
i=1

⎡
⎣ q∑

k=1

⎡
⎣ q∑

j=1

e jαe jβ∂β� jk

⎤
⎦ekγ ∂γ �ki

⎤
⎦eiθ ∂θ f eq

i �t2c3

= −�t2∂β

[
S20

αβ∂γ

(
c2S10

γ ∂θ (ρuθ )
)+ S21

αβξ1
∂γ

(
c2S20

ξ1γ
∂θ (ρuθ )

+ S2
ξ1γ ζ1ζ2

∂θ

(
ρc2

s �ζ1ζ2θηuη

))+ S2
αβξ1ξ2

∂γ

(
c2S30

ξ1ξ2γ
∂θ (ρuθ )

)]+ O(�x3), (A14)

where α ∈ {1 ∼ d}. Together with Eqs. (A13) and (A14), the second-order ME of GPMRT-LB model and GPMFD scheme on
conservative moment mα+1 = (ρuα )/c can be obtained,

[(∂t Iq + cW0)meq
]
α+1 =

[
F̃ + �tcW0

(
Ŝ−1

N +
(

b

2a2
− 1

)
Iq

)
cW0meq + �tcW0∂t Ŝ−1

N meq

]
α+1

=
[
∂t (ρuα ) + ∂β

(
ρuαuβ + ρc2

s δαβ ) − �t∂βS2
αβξ1ξ2

∂t
(
ρc2

s δξ1ξ2

)
− ρF̂xα

− �t∂β

[
S2

αβξ1ξ1
+
(

b

2a2
− 1

)
δαξ1δβξ2

]
∂γ

(
ρc2

s �ξ1ξ2γ ζ uζ

)]1

c
= O(�x2), (A15)

where the second-order ME of the GPMRT-LB model and GPMFD scheme for the continuous equation (A12) has been used.
Actually, at the diffusive scaling, c = O(1/�x), and above ME of the GPMRT-LB model and GPMFD scheme for the momentum
equation (95b) is first-order accurate. This also explains why we further conduct the expansion of � up to �(4) in Eq. (68). To
obtain a second-order ME of the GPMRT-LB model and GPMFD scheme for the momentum equation (95b), it is necessary to
compute Eq. (80), and after some manipulations, one can derive[

−�t

2
∂tt meq

]
α+1

= −1

c

�t

2
∂tt (ρuα ),

[
�t∂t Ŝ−1

N ∂t meq
]
α+1 = �t∂t

q−1∑
k=0

⎡
⎣q−1∑

j=0

e jα� jk

⎤
⎦∂t f eq

k = �t∂t

q−1∑
k=0

[
S10

α + S1
αξ1

ekξ1

]
∂t f eq

k =�t∂t
[
S10

α ∂tρ
]+O(�x3),

[
�t2c2W2

0Ŝ−1
N ∂t meq]

α+1 = �t2c2
q∑

k=1

⎡
⎣ q∑

j=1

e jαe jβ∂βe jγ ∂γ � jk

⎤
⎦∂t f eq

k = �t2c2∂β∂γ S30
αβγ ∂tρ + O(�x3),

[
�t2c2W0Ŝ−1

N W0∂t meq
]
α+1 = �t2c2

q∑
k=1

⎡
⎣ q∑

j=1

e jαe jβ∂β� jk

⎤
⎦ekγ ∂γ ∂t f eq

k

= �t2∂β

[
cS20

αβ∂γ ∂t × O(1) + S21
αβξ1

∂γ ∂t
(
ρc2

s δξ1γ

)+ 1

c
S2

αβξ1ξ2
∂γ ∂t × O(1/�x2)

]
= �t2∂β

[
S21

αβξ1
∂γ ∂t

(
ρc2

s δξ1γ

)]+ O(�x3),

[−�t2c2W0Ŝ−1
N W0Ŝ−1

N ∂t meq
]
α+1 =

q∑
i=1

⎡
⎣ q∑

k=1

⎡
⎣ q∑

j=1

e jαe jβ∂β� jk

⎤
⎦ekγ ∂γ �ki∂t f eq

i

= −�t2∂β

[
S20

αβ∂γ

(
c2S10

γ ∂tρ
)+ S21

αβξ1
∂γ

(
c2S20

ξ1γ
∂tρ
)+ S21

αβξ1
∂γ

[
S2

ξ1γ ζ1ζ2
∂t
(
ρc2

s δζ1ζ2

)]
+ S2

αβξ1ξ2
∂γ

(
c2S30

ξ1ξ2γ
∂tρ
)]+ O(�x3), (A16)

[
�t2c3W3

0meq
]
α+1 = 1

c
�t2∂β∂γ ∂ζ

q∑
i=1

ciαciβciγ ciζ [wiρ + ciη∂η + O(�x2)] = O(�x3), (A17)

[
�t3c4W4

0meq
]
α+1 = 1

c
�t3∂β∂γ ∂ζ ∂η

q∑
i=1

ciαciβciγ ciζ ciη[wiρ + O(�x)] = O(�x3), (A18)

[− �t2c2W2
0∂t meq

]
α+1 = −�t2 1

c
∂β∂γ ∂t

(
ρc2

s �αβγ ζ uζ

) = O(�x3), (A19)

[− �t∂t Ŝ−1
N F̃

]
α+1 = −�t

q∑
k=1

⎡
⎣ q∑

j=1

e jα∂t� jk

⎤
⎦(Fk + �t

2
DkFk

)
= O(�x3), (A20)
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[− �t2c2W2
0Ŝ−1

N F̃
]
α+1 = −�t2c2

q∑
k=1

∂β∂γ

⎡
⎣ q∑

j=1

e jαe jβe jγ � jk

⎤
⎦(Fk + �t

2
DkFk

)

= −c�t2
q∑

k=1

∂β∂γ

[
S30

αβγ + S31
αβγ ξ1

ekξ1 + S33
αβγ ξ1ξ2ξ3

ekξ1 ekξ2 ekξ3

](
Fk + �t

2
DkFk

)
= O(�x3), (A21)

[− �t2c2W0Ŝ−1
N W0Ŝ−1

N F̃
]
α+1 = −�t2c2

q∑
i=1

⎡
⎣ q∑

k=1

∂β

⎡
⎣ q∑

j=1

e jαe jβ� jk

⎤
⎦e jγ ∂γ �ki

⎤
⎦(Fi + �t

2
DiFi

)

= −�t2∂β

[
S20

αβ∂γ S1
γ ζ1

(
ρF̂xζ1

)+ S21
αβξ1

∂γ

(
S21

ξ1γ ζ1

(
ρF̂xζ1

)+ 1

c
S2

ξ1γ ζ1ζ2
× O(1)

)

+ S2
αβξ1ξ2

∂γ

(
S31

ξ1ξ2γ ζ1

(
ρF̂xζ1

)+ 1

c2
S33

ξ1ξ2γ ζ1ζ2ζ3
× (

ρc2
s �ζζ2ζ3ηF̂xη

))]+ O(�x6) = O(�x4),

(A22)

[
�t2c2W0∂t Ŝ−1

N W0meq
]
α+1 = �t2c2

q∑
k=1

⎡
⎣ q∑

j=1

e jαe jβ∂β∂t� jk

⎤
⎦ekγ ∂γ f eq

k

= �t2∂β∂t

[
cS20

αβ∂γ × O(1) + S21
αβξ1

∂γ × O(1) + 1

c
S2

αβξ1ξ2
∂γ × O(1/�x2)

]
= O(�x3), (A23)

[
�t2c2∂t Ŝ−1

N W
2
0meq

]
α+1 = �t2c2∂t

q∑
k=1

⎡
⎣q−1∑

j=0

e jα�
−1
jk

⎤
⎦ekβ∂βekγ ∂γ f eq

k

= �t2∂t

q∑
k=1

[
S10

α ∂β∂γ × O(1) + 1

c
S1

αξ1
∂β∂γ × O(1/�x2)

]
= O(�x3), (A24)

[
�t3c4W2

0Ŝ−1
N W

2
0meq]

α+1 = �t3c4
q∑

i=1

⎡
⎣ q∑

j=1

e jαe jβe jγ ∂β∂γ � jk

⎤
⎦∂ηekη∂ζ ekζ f eq

k

= �t3
q∑

i=1

[
c2S30

αβγ ∂η∂ζ × O(1) + cS31
αβγ ξ1

∂η∂ζ × O(1/�x2) + 1

c
S33

αβγ ξ1ξ2ξ3
∂η∂ζ×O(1/�x4)

]
=O(�x3),

(A25)

[− �t3c4W0Ŝ−1
N W0Ŝ−1

N W
2
0meq

]
α+1 = −�t3c4

q∑
i=1

⎡
⎣ q∑

k=1

⎡
⎣ q∑

j=1

e jαe jβ∂β� jk

⎤
⎦ekγ ∂γ �ki

⎤
⎦eiζ ∂ζ eiη∂η f eq

i

= −�t3∂β

[
S20

αβ∂γ

(
c2S10

γ ∂ζ ∂η × O(1) + cS1
γ ζ1

∂ζ ∂η × O(1/�x2)
)

+ S21
αβξ1

∂γ

(
c2S20

ξ1γ
∂ζ ∂η × O(1) + cS21

ξ1γ ζ1
∂ζ ∂η × O(1/�x2)

+ S2
ξ1γ ζ1ζ2

∂ζ ∂η

[
ρc4

s �ζ1ζ2ζη + O(1/�x2)
])+ S2

αβξ1ξ2
∂γ

(
c2S30

ξ1ξ2γ
∂ζ ∂η × O(1)

+ cS31
ξ1ξ2γ ζ1

∂ζ ∂η × O(1/�x2) + 1

c
S33

ξ1ξ2γ ζ1ζ2ζ3
∂ζ ∂η × O(1/�x4)

)]
= O(�x3), (A26)

[− �t2c2W0∂t Ŝ−1
N Ŝ−1

N W0meq
]
α+1 = −�t2c2

q∑
i=1

⎡
⎣q−1∑

k=0

⎡
⎣ q∑

j=1

e jαe jβ∂β∂t� jk

⎤
⎦�ki

⎤
⎦eiγ ∂γ f eq

i

= −�t2∂β∂t

[
S20

αβcs0∂γ × O(1) + S21
αβξ1

(
cS10

ξ1
∂γ × O(1) + S1

ξ1ζ1
∂γ × O(1)

)
+ S2

αβξ1ξ2

(
cS20

ξ1ξ2
ciγ ∂γ + S21

ξ1ξ2ζ1
∂γ × O(1) + 1

c
S2

ξ1ξ2ζ1ζ2
∂γ × O(1/�x2)

)]
= O(�x3),

(A27)
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[− �t3c4W0Ŝ−1
N W

2
0Ŝ−1

N W0meq
]
α+1 = −�t3c4

q∑
i=1

⎡
⎣ q∑

k=1

⎡
⎣q−1∑

j=0

e jαe jβ∂β� jk

⎤
⎦ekζ ∂ζ ekη∂η�ki

⎤
⎦eiθ ∂θ f eq

i

= −�t3∂β

[
S20

αβ∂ζ ∂η

(
c3S20

ζη∂θ × O(1) + c2S21
ζηζ1

∂θ × O(1) + cS2
ζηζ1ζ2

∂θ × O(1/�x2)
)

+ S21
αβξ1

∂ζ ∂η

(
c3S30

ξ1ζη∂θ × O(1) + c2S31
ξ1ζηζ1

∂θ × O(1)

+ S33
ξ1ζηζ1ζ3

∂θ

[
ρc4

s �ζ1ζ2ζ3θ + O(1/�x2)
])+ S2

αβξ1ξ2
∂ζ ∂η

(
c3S40

ξ1ξ2ζη∂θ × O(1)

+ c2S31
ξ1ζηζ1

∂θ × O(1) + cS42
ξ1ξ2ζηζ1ζ2

∂θ × O(1/�x2) + S43
ξ1ξ2ζηζ1ζ3

∂θ

× (
ρc4

s �ζ1ζ2ζ3θ + O(1/�x2)
)+ 1

c
S44

ξ1ξ2ζηζ1ζ3
∂θ × O(1/�x4)

)]
= O(�x3), (A28)

[− �t2c2∂t Ŝ−1
N W0Ŝ−1

N W0meq
]
α+1 = −�t2c2∂t

q∑
i=1

⎡
⎣ q∑

k=1

⎡
⎣ q∑

j=1

e jα� jk

⎤
⎦ekβ∂β�ki

⎤
⎦eiγ ∂γ f eq

i

= −�t2∂t

[
S10

α ∂β

(
cS10

γ ∂γ × O(1) + S1
γ ζ1

∂γ × O(1)
)+ S1

αξ1
∂β

(
cS20

ξ1β
∂γ × O(1)

+ S21
ξ1βζ1

∂γ × O(1) + 1

c
S2

ξ1βζ1ζ2
∂γ × O(1/�x2)

)]
= O(�x3), (A29)

[− �t3c4W2
0Ŝ−1

N W0Ŝ−1
N W0meq

]
α+1 = −�t3c4

q∑
i=1

⎡
⎣ q∑

k=1

⎡
⎣ q∑

j=1

e jαe jβ∂βe jγ ∂γ � jk

⎤
⎦ekζ ∂ζ�ki

⎤
⎦eiη∂η f eq

i

= −�t3∂γ ∂β

[
S30

αβγ ∂ζ

(
c3S10

ζ ∂η × O(1) + c2S31
ζ ζ1

∂η × O(1)
)

+ S31
αβγ ξ1

∂ζ

(
c3S20

ξ1ζ
∂η × O(1) + c2S21

ξ1ζ ζ1
∂η × O(1) + cS2

ξ1ζ ζ1ζ2
∂η × O(1/�x2)

)
+ S33

αβγ ξ1ξ2ξ3
∂ζ

(
c3S40

ξ1ξ2ξ3ζ
∂η × O(1) + c2S41

ξ1ξ2ξ3ζ ζ1
∂η × O(1)

+ cS42
ξ1ξ2ξ3ζ ζ1ζ2

∂η × O(1/�x2) + S43
αβγ ξ1ξ2ξ3ζ1ζ2ζ3

∂η × [
ρc4

s �ζ1ζ2ζ3η + O(1/�x2)
]

+ 1

c
S44

αβγ ξ1ξ2ξ3ζ1ζ2ζ3
∂η × O(1/�x4)

)]
= O(�x3), (A30)

and [
�t3c4W0Ŝ−1

N W0Ŝ−1
N W0Ŝ−1

N W0meq
]
α+1

= �t3c4
q∑

l=1

⎡
⎣ q∑

i=1

⎡
⎣ q∑

k=1

∂β

⎡
⎣ q∑

j=1

e jαe jβ� jk

⎤
⎦ekγ ∂γ �ki

⎤
⎦eiζ ∂ζ�il

⎤
⎦elη∂η f eq

l

= �t3∂β

[
S20

αβ∂γ S10
γ ∂ζ

(
c3S10

ζ ∂η × O(1) + c2S1
ζχ1

∂η × O(1)
)

+ S20
αβ∂γ S1

γ ζ1
∂ζ

(
c3S20

ζ1ζ
∂η × O(1) + c2S21

ζ1ζχ1
∂η × O(1) + cS2

ζ1ζχ1χ2
∂η × O(1/�x2)

)
+ S21

αβξ1
∂γ S20

ξ1γ
∂ζ

(
c3S10

ζ ∂η × O(1) + c2S1
ζχ1

∂η × O(1)
)+ S21

αβξ1
∂γ S21

ξ1γ ζ1
∂ζ

(
c3S20

ζ1ζ
∂η × O(1) + c2S21

ζ1ζχ1
∂η × O(1)

+ cS2
ζ1ζχ1χ2

∂η × O(1/�x2)
)+ S21

αβξ1
∂γ ∂ζ S2

ξ1γ ζ1ζ2
∂ζ

(
c3S30

ζ1ζ2ζ
∂η × O(1) + c2S31

ζ1ζ2ζχ1
∂η × O(1)

+ S33
ζ1ζ2ζχ1χ2χ3

∂η

[
ρc4

s �χ1χ2χ3η + O(1/�x2)
])+ S2

αβξ1ξ2
∂γ S30

ξ1ξ2γ
∂ζ

(
c3S10

ζ ∂η × O(1) + c2S1
ζχ1

∂η × O(1)
)

+ S2
αβξ1ξ2

∂γ S31
ξ1ξ2γ ζ1

∂ζ

(
c3S20

ζ1ζ
∂η × O(1) + c2S21

ζ1ζχ1
∂η × O(1) + cS2

ζ1ζχ1χ2
∂η × O(1/�x2)

)
+ S2

αβξ1ξ2
∂γ S33

ξ1ξ2γ ζ1ζ2ζ3
∂ζ

(
c3S40

ζ1ζ2ζ3ζ
∂η × O(1) + c2S41

ζ1ζ2ζ3ζχ1
∂η × O(1) + cS42

ζ1ζ2ζ3ζχ1χ2
∂η × O(1/�x2)

+ S43
ζ1ζ2ζ3ζχ1χ2χ3

∂η × [
ρc4

s �χ1χ2χ3η + O(1/�x2)
]+ 1

c
S44

ζ1ζ2ζ3ζχ1χ2χ3χ4
∂η × O(1/�x4)

)]
= O(�x3). (A31)

065305-29



CHEN, LIU, CHAI, AND SHI PHYSICAL REVIEW E 109, 065305 (2024)

With Eqs. (A17)–(A31), the second-order ME of GPMRT-LB model and GPMFD scheme (80) for the momentum equation (95b)
becomes [

F̃ −
(

cW0 + ∂t Iq + �tc2

(
1 − b

2a2

)
W2

0 + �tW0∂t + �t

2
∂tt Iq

)
meq − �tcW0Ŝ−1

N F̃

+
[
�tc2W0Ŝ−1

N W0 + �tcW0Ŝ−1
N ∂t Iq + �t2c3

(
1 − b

2a2

)
W0Ŝ−1

N W
2
0

+ �tc∂t IqŜ−1
N W0 + �t∂t Ŝ−1

N Iq∂t Iq + �t2c3

(
1 − b

2a2

)
W2

0Ŝ−1
N W0

+ �t2c2

(
1 − b

2a2

)
W2

0Ŝ−1
N ∂t Iq + �t2c2W0Ŝ−1

N W0∂t Iq

]
meq

− [
�t2c3W0Ŝ−1

N W0Ŝ−1
N W0 + �t2c2W0ŜN−1W0Ŝ−1

N ∂t Iq
]
meq

]
α+1

+ O(�x3), (A32)

then substituting Eqs. (A13)–(A16) into Eq. (A32), we have

∂t (ρuα ) + ∂β

(
ρuαuβ + ρc2

s δαβ

) = �t∂β

[[
S2

αβξ1ξ2
−
(

1 − b

2a2

)
δαξ1δβξ2

]
∂γ

(
ρc2

s �ξ1ξ2γ ζ uζ

)]
+ �t∂β

[
S2

αβξ1ξ2
∂t
(
ρc2

s δξ1ξ2

)]+ ρFxα
= O(�x2), (A33)

where the first-order ME (A15) has been used.

APPENDIX B: DERIVATION OF EQS. (93b), (100), AND (102)

1. NACDE: Derivation of Eq. (93b)

Due to the fact that

meq
1 = φ, cW0meq

1 =
q∑

i=1

ciα f eq
i = Bα,

F̃1 =
[

M
(

F + G + �t

2
DF
)]

1

= S + �t

2

q∑
i=1

(∂t + ciγ ∂γ )Fi = S + �t

2
∂t S, (B1)

one can obtain the first-order ME:

∂φ

∂t
+ ∇ · B = S + O(�x), (B2)

For the second-order ME, we also need to further consider the following equalities:[
−�t

2
∂t F̃
]

1

= −�t

2
∂t S + O(�t2),

[− �tcW0Ŝ−1
N F̃

]
1 = −c�t∂β

q∑
k=1

q∑
j=1

[e jβ� jk (Fk + Gk )] + O(�t2)

= −�t∂β

q∑
k=1

(
cS10

β + S1
βγ ckγ

)
(Fk + Gk ) + O(�t2) = −c�t∂βS10

β S − �t∂β

(
S1

βγ − δβγ

2

)
∂t Bγ

= −�t∂β

[
S1

βγ −
(

1 − b

2a2

)
δβγ

]
∂θCγ θ + O(�x2),

[
cW0

(
Ŝ−1

N − Iq/2
)
∂t meq

]
1 = ∂β

q∑
k=1

(
cS10

β + S1
βξ1

ckξ1

)
∂t f eq

k − 1

2
∂t∂βBβ = ∂β

[
cS10

β ∂tφ +
(

S1
βξ1

− 1

2
δβξ1

)
∂t Bξ1

]
,

[
c2W0Ŝ−1

N W0meq]
1 = ∂β

q∑
k=1

(
cS10

β + S1
βγ ckγ

)
∂θckθ f eq

k = ∂

∂xβ

[
cS10

β

∂Bθ

∂xθ

+ S1
βγ

∂
(
Dγ θc2

s χ + ζCγ θ

)
∂xθ

]
,

[c2W0W0meq]1 = ∂β∂θ

q∑
j=1

c jβc jθ f eq
j = ∂2

(
χc2

s Dβθ + ζCβθ

)
∂xβxθ

. (B3)
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Substituting Eqs. (B1) and (B3) into Eq. (86), one can obtain

[(∂t Iq + cW0)meq]1 + �t

2

(
1 − b

a2

)[
cW2

0meq
]

1 − �t
[
cW0

(
Ŝ−1

N −Iq/2
)(

∂t +cW0
)
meq

]
1 − F̃1 + �t

2
∂t F̃1 + �t

[
cW0Ŝ−1

N F̃
]

1

= ∂tφ + ∂αBα − S − �tc2
s

∂

∂xβ

([
S1

βγ +
(

b

2a2
− 1

)
δβγ

])
∂Dγ θ

∂xθ

+ c�t∂βS10
β

[
∂tφ + ∂Bθ

∂xθ

− S

]
︸ ︷︷ ︸

O(�x2 )

= O(�x2), (B4)

where the first-order ME (B2) has been used.

2. NSEs: Derivation of Eqs. (100) and (102)

For the first conservative moment, i.e., the density ρ, one can obtain

meq
1 = ρ, F̃1 =

[
M
(

F + �t

2
DF
)]

1

= 0 + �t

2

q∑
i=1

(∂t + ciγ ∂γ )Fi = �t

2
∂γ (ρF̂γ ),

[cW0meq]1 =
q∑

i=1

ciα f eq
i = ρuα, (B5)

and for the second to (d + 1)th conservative moments, i.e., the momentum ρuα , we have

meq
α+1 = ρuα

c
, [cW0meq]α+1 = 1

c
∂β

q∑
i=1

ciαciβ f eq
i =

(
ρuαuβ + ρc2

s δαβ

)
c

,

[F̃]α+1 =
[

M
(

F + �t

2
DF
)]

α+1

= ρF̂xα

c
+ �t

2c

q∑
i=1

ciβ (∂t + ciγ ∂γ )Fi

= ρF̂xα

c
+ �t

2c
∂t (ρF̂xα

) + �t

2c
∂γ (ρF̂βuγ + ρF̂γ uβ ), (B6)

then the corrseponding first-order MEs of the GPMRT-LB model and GPMFD scheme for the NSEs (95) are given by

∂tρ + ∂β (ρuβ ) = O(�x), (B7a)

∂t (ρuα ) + ∂α∂β

(
ρuαuβ + c2

s ρδαβ

)− ρF̂xα
= O(�x). (B7b)

To obtain the second-order ME, the following equalities are needed:

− �t
[
cW0Ŝ−1

N F̃
]

1 = −�t∂β

q∑
k=1

q∑
j=1

[c jβ� jkFk] + O(�t2) = −�t∂β

q∑
k=1

(
S10

β + S1
βγ ckξ1

)
Fk = −�t∂βS1

βξ1
ρF̂ξ1 + O(�x2),

[
−�t

2
∂t F̃
]

1

= 0, [cW0∂t meq]1 = ∂β∂t

q∑
i=1

ciβ f eq
i = ∂β∂t (ρuβ ),

[
cW0Ŝ−1

N ∂t meq
]

1 = ∂β

q∑
k=1

q∑
j=1

ciβ� jk∂t f eq
k = ∂β

q∑
k=1

(
cS10

β + S1
βξ1

ckξ1

)
∂t f eq

k = ∂β

[
cS10

β ∂tρ + S1
βξ1

∂t (ρuξ1 )
]
,

[
c2W0Ŝ−1

N W0meq
]

1 = ∂β

q∑
k=1

q∑
j=1

c jβ� jkckθ ∂θ f eq
k = ∂β∂θ

q∑
k=1

(
cS10

β + S1
βξ1

ckξ1

)
ckθ ∂θ f eq

k

= ∂

∂xβ

[
cS10

β

∂

∂xθ

(ρuθ ) + S1
βξ1

∂

∂xθ

(
ρuξ1 uθ + ρc2

s δξ1θ

)]
,

[c2W0W0meq]1 = ∂β∂θ

q∑
j=1

c jβc jθ f eq
j = ∂2

(
ρuβuθ + ρc2

s δβθ

)
∂xβxθ

; (B8)
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combining Eqs. (B5) and (B8) yields

[(∂t Iq + cW0)meq]1 + �t

2

(
1 − b

a2

)[
cW2

0meq
]

1

− �t
[
cW0

(
Ŝ−1

N − Iq/2
)
(∂t + cW0)meq

]
1 − F̃1 + �t

2
∂t F̃1 + �t

[
cW0Ŝ−1

N F̃
]

1

= ∂tρ + ∂α (ρuα ) − �t

(
b

2a2
− 1

2

)
∂2
(
ρuβuθ + ρc2

s δβθ

)
∂xβxθ

+∂βcS10
β [∂ρ + ∂θ (ρuθ )]︸ ︷︷ ︸

O(�x2 )

− ∂β

(
S1

βξ1
− 1

2
δβξ1

)[
∂t (ρuξ1 ) + ∂θ

(
ρuξ1θ + ρc2

s δξ1θ

)− ρF̂xξ1

]
︸ ︷︷ ︸

O(�x2 )

+O(�x2)

= ∂tρ + ∂α (ρuα ) − �t

(
b

2a2
− 1

2

)
∂2
(
ρuβuθ + ρc2

s δβθ

)
∂xβxθ

+ O(�x2), (B9)

where the first-order MEs (B7a) and (B7b) have been used. In addition, for any α ∈ {1 ∼ d}, we can derive the following
equations: [

−�t

2
∂t F̃
]

α+1

= −�t

2c
∂t
(
ρF̂xα

)+ O(�x2),

[− �tcW0Ŝ−1
N F̃

]
α+1 = −�t

1

c

q∑
k=1

q∑
j=1

[c jαc jβ∂β� jkFk] + O(�t2),

= −�t
1

c
∂β

q∑
k=1

(
S20

αβ + S21
αβξ1

ckξ1 + S22
αβξ1ξ2

ckξ1 ckξ2

)
Fk + O(�t2)

= −�t
1

c
∂β

[
S21

αβξ1

(
ρF̂ξ1

)+ S22
αβξ1ξ2

(
ρF̂ξ1 uξ2 + ρF̂ξ2 uξ1

)]+ O(�t2),

[cW0∂t meq]α+1 = 1

c

q∑
k=1

ckαckβ∂β∂t f eq
k = 1

c
∂β∂t

(
ρc2

s δαβ + ρuαuβ

)
,

[
cW0Ŝ−1

N ∂t meq
]
α+1 = 1

c
∂β

q−1∑
k=0

(
S20

αβ + S21
αβξ1

ckξ1 + S22
αβξ1ξ2

ckξ1 ckξ2

)
∂t f eq

k

= 1

c
∂β

(
S20

αβ∂tρ + S21
αβξ1

∂t
(
ρuξ1

)+ S22
αβξ1ξ2

∂t
(
ρc2

s δξ1ξ2 + ρuξ1 uξ2

))
,

[
c2W0Ŝ−1

N W0meq
]
α+1 = 1

c
∂β

q∑
k=1

(
S20

αβ + S21
αβξ1

ckξ1 + S22
αβξ1ξ2

ckξ1 ckξ2

)
ckθ ∂θ f eq

k

= 1

c
∂β

[
S20

αβ∂θ (ρuθ ) + S21
αβξ1

∂θ

(
ρuθ uξ1 + ρc2

s δξ1θ

)+ S22
αβξ1ξ2

∂θ

(
ρc2

s �ξ1ξ2θζuζ

)]
,

[c2W0W0meq]α+1 = 1

c
∂β∂θ

q∑
j=1

c jαc jβc jθ f eq
j = 1

c
∂β∂θ

(
ρc2

s �αβθζ uζ

)
, (B10)

considering Eqs. (B6) and (B10) yields

[(∂t Iq + cW0)meq]α+1 + �t

2

(
1 − b

a2

)[
c2W2

0meq]
α+1 − �t

[
cW0

(
Ŝ−1

N − Iq/2
)(

∂t + cW0
)
meq]

α+1

− F̃α+1 + �t

2
∂t F̃α+1 + �t

[
cW0Ŝ−1

N F̃
]
α+1 = 1

c
∂t (ρuα ) + ∂β

(
ρuαuβ + ρc2

s δαβ

)
+ �t

2c

(
1 − b

2a2

)
∂β∂θ

(
ρc2

s �αβθζ uζ

)− ρF̂xα

c
− �t

1

c
∂βS20

αβ

(
∂tρ + ∂θ (ρuθ )

)
︸ ︷︷ ︸

O(�x2 )
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− �t
1

c
∂βS21

αβξ1

(
∂t (ρuξ1 ) + ∂θ (ρuθuξ1 + ρc2

s δξ1θ ) − ρF̂xξ1

)
︸ ︷︷ ︸

O(�x2 )

− �t
1

c
∂β

(
S22

αβξ1ξ2
− 1

2
δξ1αδξ2β

)(
∂t
(
ρc2

s δξ1ξ2 + ρuξ1 uξ2

)+ ∂θ

(
ρc2

s �ξ1ξ2θζ uζ

)− ρF̂xξ1
uξ2 − ρF̂xξ2

uξ1

) = O(�x2), (B11)

where the results of first-order MEs (B7a) and (B7b) have been adopted.

APPENDIX C: THE PARAMETERS OF GPMFD SCHEME (112)

The parameters αi(i ∈ {1 ∼ 3}), βk, γk (k ∈ {1 ∼ 5}) of the GPMFD scheme (112) are given by

α1 = 1

c2θ

(
6a2c2 − 4a2bc2 − 8a2c2s1 − 2a2c2s2 − bc2s2

1 − 2b2c2s1 + 2a2c2s2
1 + b2c2s2

1

+ 3bc2s1 − 2a2bc2s2
1 − bc2s1s2 + 6a2bc2s1 + 2a2c2s1s2 − 2a2bs2u2 + 2a2bc2s2w0

+ a2bs1s2u2 + b2c2s1s2w0 − 2a2bc2s1s2w0
)
,

α2 = 1

2c2θ

(
4a2bc2 + 2b2c2s1 − b2c2s2

1 + 2a2bc2s2
1 + 2a3cs1u − 6a2bc2s1 + 2a2bs2u2

− 2a3cs2
1u − 2a2bc2s2w0 − a2bs1s2u2 − b2c2s1s2w0 + abcs2

1u + 2a2bc2s1s2w0
)
,

α3 = − 1

2c2θ

(
b2c2s2

1 − 2b2c2s1 − 4a2bc2 − 2a2bc2s2
1 + 2a3cs1u + abcs2

1u − 2a2bc2s1s2w0

+ 6a2bc2s1 − 2a2bs2u2 − 2a3cs2
1u + 2a2bc2s2w0 + a2bs1s2u2 + b2c2s1s2w0

)
,

β1 = − 1

2c2θ

(
12a2c2 + 2a4c2 − 16a2bc2 − 20a2c2s1 − 8a2c2s2 − 4a4c2s1 − 4bc2s2

1

− 8b2c2s1 + 3b3c2s1 + 2a4s2u2 + 6a2b2c2 + 8a2c2s2
1 + 2a4c2s2

1 + 6b2c2s2
1

− 3b3c2s2
1 + 6bc2s1 − 13a2bc2s2

1 − 12a2b2c2s1 − 4a2c2s2
1s2 + 6a2b2s2u2

− 2b2c2s2
1s2 + a4s2

1s2u2 − 4bc2s1s2 + 6a2b2c2s2
1 + 29a2bc2s1 + 8a2bc2s2

+ 12a2c2s1s2 − 4a2bs2u2 + 2bc2s2
1s2 + 4b2c2s1s2 − 2a4c2s2w0 − 3a4s1s2u2

+ 4a2bc2s2w0 + 6a2bs1s2u2 + 4a4c2s1s2w0 + 2b2c2s1s2w0 − 3b3c2s1s2w0

− 6a2b2c2s2w0 − 2a2bs2
1s2u2 − 9a2b2s1s2u2 − 2a4c2s2

1s2w0 − 2b2c2s2
1s2w0

+ 3a2b2s2
1s2u2 + 5a2bc2s2

1s2w0 + 12a2b2c2s1s2w0 − 6a2b2c2s2
1s2w0,

− 9a2bc2s1s2w0 + 4a2bc2s2
1s2 − 12a2bc2s1s2 + 3b3c2s2

1s2w0
)
,

β2 = 1

2c2θ

(
2b3c2s1 − 4b2c2s1 − 8a2bc2 + 4a2b2c2 − 4a2b2c2s2

1s2w0 − 4a2bc2s1s2w0

+ 3b2c2s2
1 − 2b3c2s2

1 − 6a2bc2s2
1 − 8a2b2c2s1 + 4a2b2s2u2 − b2c2s2

1s2

+ 4a2b2c2s2
1 + 14a2bc2s1 + 4a2bc2s2 − 2a2bs2u2 + 2b2c2s1s2 + 2a3cs2

1u

+ 2a2bc2s2w0 + 3a2bs1s2u2 − 2a3cs2
1s2u + b2c2s1s2w0 − 2b3c2s1s2w0

− 4a2b2c2s2w0 − a2bs2
1s2u2 − 6a2b2s1s2u2 − b2c2s2

1s2w0 + 2b3c2s2
1s2w0

− 6a2bc2s1s2 + 2a3cs1s2u + 2a2b2s2
1s2u2 + 2a2bc2s2

1s2w0

+ 8a2b2c2s1s2w0 − 2a3cs1u + 2a2bc2s2
1s2 − abcs2

1u + abcs2
1s2u

)
,

β3 = − (a2 − b2)(s1 − 1)

4c2θ
[2a2c2(1 − s1) + a2s2(2 − s1)(u2 − 2w0c2) + bc2s1(1 − s2w0)],

β3 = β2, β5 = β4, γ1 = (s1 − 1)(s2 − 1)(−a2 + b2)

4
(2a2 + 6b2 − 8b + 4),

γ2 = (s1 − 1)(s2 − 1)(b − b2), γ3 = γ2, γ4 = (s1 − 1)(s2 − 1)(−a2 + b2)

4
, γ5 = γ4. (C1)

where θ = 1/(bs1 − 2a2s1 + 2a2).
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APPENDIX D: THE EXPRESSION OF THE AMPLIFICATION MATRIX OF THE F-GPMFD SCHEME (112)

For the F-GPMFD scheme (112), one can obtain the expression of the amplification matrix G,

G =

⎛
⎜⎝

α1 + α2e−iθ + α3eiθ β1 + β2e−iθ + β3eiθ + β4e−2iθ + β5e2iθ γ1 + γ2e−iθ + γ3eiθ + γ4e−2iθ + γ5e2iθ

1 0 0

0 1 0

⎞
⎟⎠, (D1)

where θ ∈ [−π, π ]. However, it is difficult to discuss the von Neumann stability condition of the F-GPMFD scheme (112) from
the theoretical perspective, thus we consider the numerical stability for the F-GPMFD scheme (112) in Sec. IV.
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