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This study overviews and extends a recently developed stochastic finite-temperature Kohn-Sham density
functional theory to study warm dense matter using Langevin dynamics, specifically under periodic boundary
conditions. The method’s algorithmic complexity exhibits nearly linear scaling with system size and is inversely
proportional to the temperature. Additionally, a linear-scaling stochastic approach is introduced to assess the
Kubo-Greenwood conductivity, demonstrating exceptional stability for dc conductivity. Utilizing the developed
tools, we investigate the equation of state, radial distribution, and electronic conductivity of hydrogen at a
temperature of 30 000 K. As for the radial distribution functions, we reveal a transition of hydrogen from gaslike
to liquidlike behavior as its density exceeds 4 g/cm3. As for the electronic conductivity as a function of the
density, we identified a remarkable isosbestic point at frequencies around 7 eV, which may be an additional
signature of a gas-liquid transition in hydrogen at 30 000 K.
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I. INTRODUCTION

Warm dense matter (WDM) exists in the interior of plan-
ets [1–10] and in brown dwarf [11–15] and white dwarf
stars [16,17]. In inertial and fusion systems [18,19], WDM
is generated by subjecting materials to high-energy lasers
[20]. Despite its significance, exploring the diverse forms
and compositions of WDM poses a formidable challenge due
to experimental complexities associated with preparing and
sustaining materials under extreme conditions [5,21,22]. Con-
sequently, computational methods have become indispensable
for determining the equations of state as well as the chemical
and physical properties of different systems.

Among these methods are ab initio molecular-dynamics
(AIMD) calculations [23–27], which rely on an “adiabatic”
approximation. This approximation assumes that the quan-
tum mechanical electrons reach thermal equilibrium under
the applied temperature, electronic chemical potential, and
Coulomb potentials corresponding to the instantaneous posi-
tions of the atomic nuclei. The latter then undergo classical

motion under the conservative force derived from the elec-
tronic free energy, effectively acting as a potential of mean
force (see, e.g., Ref. [28]). The observables can be determined
by averaging over a long adiabatic molecular-dynamics (MD)
trajectory.

The adiabatic and classical approximations behind AIMD
have their limitations. There is evidence suggesting that a
classical approximation may lack sufficient accuracy, particu-
larly for temperatures below 1000 K and under high pressures
[29,30]. Moreover, nonadiabatic effects, though often disre-
garded, as done here, have not been thoroughly explored in
the context of AIMD in WDM. Previous studies concern-
ing nonadiabatic dynamics on metal surfaces introduce two
distinct types of electron-nucleus forces in addition to the
adiabatic one [31–34]. The first type manifests as rapid fluc-
tuations resembling a stochastic process, while the second
type involves dissipation, simulated as a friction force with a
friction constant determined by the electronic structure. Since
the molecular dynamics treats atomic nuclei as classical, the
Langevin dynamics approach [28,35] can be used to handle
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nonadiabatic effects, utilizing fluctuating-dissipating forces to
impose the electronic temperature as the average value of the
atomic nuclei kinetic energy in a canonical ensemble.

AIMD simulations for WDM need to consider both quan-
tum fermionic degeneracy and strong Coulomb interactions
[36]. The Kohn-Sham density functional theory (KS-DFT),
which has proven highly successful as an ab initio theory
for elucidating the structure of molecules and materials at
zero temperature [25,37–45], fulfills these requirements and
has been extended to finite temperatures, and it has become
a widely employed method for theoretical studies of WDM
[46–51]. However, applying KS-DFT to WDM requires cal-
culating and storing an increasing number of Kohn-Sham
eigenstates as the temperature rises. Consequently, for elec-
tronic temperatures exceeding 100 000 K, other approaches,
such as the extended KS method [52,53] or “orbital-free
DFT,” which include finite-temperature orbital free function-
als [54–59] and method development [60–66], are preferred.
Another emerging approach involves utilizing machine learn-
ing to generate potential-energy surfaces and interatomic
forces based on KS-DFT and variational quantum Monte
Carlo data sets. These learned models can then be employed
in molecular-dynamics calculations to predict material prop-
erties with reduced computational costs [67–71].

A linear scaling DFT procedure holds significant promise
for investigating WDM, whether applied directly in AIMD or
for generating training data sets for machine learning. This
can be realized through stochastic DFT, as demonstrated by
various authors in recent works [72–78]. In this paper, we
elaborate on additional advancements in stochastic plane-
wave Kohn-Sham density functional theory, integrating it with
Langevin dynamics and introducing a novel approach for
computing electronic conductivity. We thoroughly assess and
benchmark the method, showcasing its practical application
by conducting a detailed study of hydrogen at 30 000 K.

II. STOCHASTIC FINITE-TEMPERATURE
KOHN-SHAM DFT

A. Finite-temperature Kohn-Sham scheme

The combination of finite-temperature density functional
theory [46,79] and the Kohn-Sham procedure (FT-KS-DFT)
[80] greatly simplifies the formidable problem of treating
interacting electrons under the influence of a heat and electron
bath. Under the FT-KS-DFT formalism, we need only study
a system of noninteracting electrons in a one-body poten-
tial, which includes exchange-correlation contributions. As
a result of the exchange-correlation potential, the noninter-
acting electron density is identical to that of the interacting
system, and the grand potential of the interacting electron
system can be expressed using the noninteracting grand
potential together with exchange-correlation free-energy cor-
rections. As the finite temperature diminishes towards zero,
the FT-KS-DFT converges into the zero-temperature KS-DFT,
with corresponding exchange-correlation contributions, and
the free energy converges to zero-temperature ground-state
energy [81].

To study infinite systems, it is beneficial to impose periodic
boundary conditions within the simulation cell. The single

electron wave functions of the noninteracting system are ex-
pressed as a linear combination of the plane-wave basis eiG·r:

ψ (r) =
∑

G

c̃G
eiG·r
√

�
, (1)

where G = 2π
L (mx, my, mz ) is the simulation cell-

commensurate wave vector and mi integers. The wave-vector
parameter Gcut determines the size of the plane-wave basis
by requiring that ‖G‖2 � Gcut. This cutoff identifies a
subspace of dimension D = [ 3π

4 ( L
2π

Gcut )3] of the simulation
cell’s periodic functions, which is mapped by Eq. (1) onto
the complex vector space of D-tuples CD = {c̃G}‖G‖2�Gcut .
The basis truncation error can be systematically mitigated
by increasing Gcut, or, equivalently, the cutoff energy

Ecut = h̄2G2
cut

2me
. Variational treatment of the finite-temperature

Kohn-Sham equations within the subspace leads to a set of
algebraic eigenvalue equations,

Hc̃( j) = ε j c̃
( j), j = 1, 2, . . . , D, (2)

where H is the Kohn-Sham Hamiltonian (for more details
on the representation and the operators, see, for example,
Ref. [38]), and ε j and c̃( j) are its (real) eigenvalues and (com-
plex) eigenvectors.

The electrons are in a grand-canonical mixed state with
temperature parameter β = (kBT )−1, where kB is Boltz-
mann’s constant, and chemical potential μ. The occupation
of each single-particle energy level ε is given by the Fermi-
Dirac function pβμ(ε) ≡ (1 + eβ(ε−μ) )−1. Correspondingly,
the electron density can be expressed as a sum of level
densities,

n(r) = 2 ×
∑

j

pβμ(ε j )|ϕ j (r)|2, (3)

where

ϕ j (r) =
∑

G

c̃( j)
G

eiG·r
√

�
(4)

are the [normalized, so that
∫
�

|ϕ j (r)|2dr = 1] Kohn-Sham
eigenstates in real space. The grand potential of the electrons
is then given by [82]

Φβμ[n] ≡ Eorb − EH [n] + 	βμ,xc[n] −
∫

vβμ,xc(r)n(r)dr

− β−1Ss[n] − μ

∫
n(r)dr, (5)

where

Eorb ≡ 2 ×
∑

j

pj
βμε j (6)

is the orbital energy, pj
βμ = pβμ(ε j ), EH [n] is the Hartree

energy, and 	βμ,xc[n] is the βμ-dependent approximate
exchange-correlation free-energy functional of the den-
sity, which includes entropy corrections, and vβμ,xc(r) =
δ	βμ,xc

δn(r) is the corresponding exchange-correlation poten-
tial. Temperature-dependent exchange-correlation free-energy
density functionals which have been developed recently
[83–89] show that for the temperature ranges and densities
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considered in this paper, one can safely use the approximation
	βμ,xc[n] ≈ ELDA

xc [n], where ELDA
xc [n] is the zero-temperature

local-density approximation (LDA, [80]) for the exchange
correlation energy, and correspondingly vβμxc(r) is approx-
imated as the zero-temperature LDA exchange-correlation

potential vLDA
xc (r) = δELDA

xc
δn(r) . Finally, Ss in Eq. (5) is the entropy

of noninteracting electrons at density n(r) expressed as

Ss = −2 × kB

∑
j

[
pj

βμ log pj
βμ + p̄ j

βμ log p̄ j
βμ

]
, (7)

where, in short, p̄ j
βμ ≡ 1 − pj

βμ. In this Kohn-Sham pro-
cedure, we find the density n(r) that minimizes the grand
potential Φβμ. The number of electrons is Ñe(μ) = ( ∂Φβμ

∂μ
)β =

2 × ∑
j pj

βμ.
The ξ -component (ξ = 0, 1, 2 indicates, respectively,

x, y, z) of the force on an atomic nucleus A(A = 0, . . . , Nn −
1, where Nn is the number of atomic nuclei in the simulation
cell) is equal to the corresponding derivative of the grand po-
tential, F i = − ∂Φβμ

∂Ri
+ F NN

i , where i ≡ (3A + ξ ) is the force
index, and F NN

i is the sum of forces exerted by all other atomic
nuclei. This force is an average force over all ground and
excited electronic states of all possible charge states of the
system.

An alternative to working in the grand-canonical ensemble,
where μ is given, is to impose a fixed average number of
electrons Ne and then tune μ accordingly. Such an ensemble is
more natural for small, finite simulation cells. In this ensem-
ble, the chemical potential becomes a function of the imposed
value of Ne, denoted μ̃(Ne), defined implicitly by solving the
equation

Ne = 2 ×
∑

j

pj
βμ̃(Ne ). (8)

In this ensemble, we find the density n(r) that minimizes the
Helmholtz free energy FβNe = U − β−1Ss and the force is its
derivative, Fi = − ∂FβNe

∂Ri
+ F NN

i . Once again, this force is an
average over all ground and excited electronic states of all
possible charge states of the system.

Regardless of the ensemble used, the electronic force
component i is obtained from the electron density and the cor-
responding derivative of the electron-nucleus force potential:

Fi = −
∫

n(r)
∂

∂Ri
veN(r)dr + F NN

i ,

and when nonlocal pseudopotentials are employed, i.e., v̂eN =
vloc(r) + v̂nl, the following generalization needs to be used
(now in vector notation):

F = −2 ×
∑

j

pj
βμ〈ϕ j |∇v̂eN|ϕ j〉 + FNN. (9)

B. The stochastic density functional approach

Stochastic density functional theory [72] is based on the
concept of random wave functions,

η(r) ≡
∑

G

η̃G eiG·r
√

�
, (10)

in which the random coefficients η̃G are given, in vector nota-
tion, by operating with the square-root Fermi-Dirac operator√

pβμ(H) on a random vector:

η̃ ≡ √
pβμ(H)χ̃ , (11)

where χ̃ is a random vector with components χ̃G ≡ eiθG ,
where θG are independent random phases (between 0 and 2π ).
It is straightforward to check that

E[χ̃G′
χ̃G∗] = δG′G. (12)

Here, the symbol E[r] is the expected value of a random vari-
able r. The random variable η̃G′

η̃G∗ is an unbiased estimator
of the KS density matrix in G-space, relying on the follow-
ing exact identity: [pβμ(H)]G′G = E[η̃G′

η̃G∗]. This relation is
proved by plugging Eq. (11) on the right-hand side and using
Eq. (12). Similarly, sampling η(r)η(r′)∗, where η(r) is defined
in Eq. (10), provides an estimate for the KS density matrix
ρ(r, r′) = 2 × ∑

j pβμ(ε j )ϕ j (r)ϕ j (r′)∗. From this, |η(r)|2 is
an unbiased estimator for the electron density n(r), relying
on the exact identity:

n(r) = 2 × E[|η(r)|2]. (13)

This expression is the essence of stochastic KS-DFT: it re-
places the calculation of the electron density n(r) [Eq. (3)],
which requires the KS-DFT eigenstates and eigenvalues
[Eq. (2)] by a statistical sampling of the random variable
|η(r)|2.

The fact that the expected value of the absolute square of
the random variable η(r) gives the density means that we can
now use sampling methods to obtain actual estimates of the
density. If we produce a sample of I independent random
vectors χ̃i (i = 1, . . . , I), and from them, using Eqs. (10) and
(11), obtain samples of ηi(r), then the density can be estimated
as an average

n(r) = 2 × 1

I

I∑
i=1

[|ηi(r)|2].

This sampling procedure is straightforward to parallelize
using a distributed memory model, for example, the message-
passing-interface library. Observables such as the forces on
atomic nuclei can be expressed as stochastic traces as well
(see Sec. III A). From statistics, the fluctuations in the density
or forces are proportional to the inverse square root of the sam-
ple size. For the calculations shown below, we used a sample
of I = 40 stochastic orbitals (irrespective of the system size).

C. Chebyshev expansion methods

1. The essential Chebyshev expansion

We now describe a recipe for performing calculations of
the type shown in Eq. (11), i.e., operating with a function
of the Hamiltonian, namely z(H) on some given a vector χ :
|ζ 〉 = z(H)|χ〉. For this, we use the Chebyshev expansion
[90] of length NC , ζ G = ∑NC−1

n=0 Z (n)χG
n , which we write in

ket-form as

|ζ 〉 =
NC−1∑
n=0

Z (n)|χn〉. (14)
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The Chebyshev coefficients are defined by

Z (n) = 2

NC
ei π

NC
nz̃(n),

where the series {z̃(n)}NC−1
n=0 is the discrete Fourier transform of

{z[Ē + �E × cos(
l+ 1

2
NC

π )]}NC−1
l=0 . In the last expression, Ē =

(Emax + Emin)/2, �E = (Emax − Emin)/2, and Emin (Emax) is
a lower (upper) bound estimate to the smallest (largest) eigen-
value of H.

The expansion length NC is chosen to be sufficiently large
so that the |Z (n)| are all smaller than a threshold value 10−d

(typically d = 7 or 8) for n > NC . An estimate for the Cheby-
shev length is the following expression:

NC ≈ 3d

4
× β × �E . (15)

The Chebyshev vectors |χn〉 in Eq. (14) are defined as
|χn〉 ≡ Tn(Hs)|χ〉, where Tn(x) is the nth Chebyshev polyno-
mial [91] and Hs ≡ H−Ē

�E is the shifted-scaled Hamiltonian,
having all eigenvalues in the interval [−1, 1]. Based on a
recurrence formula between any three consecutive Chebyshev
polynomials [91], the Chebyshev vectors χn can be computed
iteratively (hence only three of them are needed at a given
time):

|χn〉 = 2Hs|χn−1〉 − |χn−2〉, n � 2.

The first two vectors are given by

|χ0〉 = |χ〉, |χ1〉 = Hs|χ0〉.

2. Operating with several functions of H on a given state |χ〉
Each term in the Chebyshev expansion of Eq. (14) is a

product of a Chebyshev coefficient Zn and a Chebyshev vector
|χn〉. The former depends on the function z(H), while the lat-
ter does not. Suppose we want to operate with several different
functions zm(H) (m = 1, 2, . . . , M) on the same vector χ :

|ζm〉 = zm(H)|χ〉.
Chebyshev expansions can calculate these vectors,

|ζm〉 =
NC−1∑
n=0

Z (n)
m |χn〉, (16)

where Z (1)
m , Z (2)

m , . . . are the coefficients corresponding to the
function zm(ε). Most of the numerical effort goes into comput-
ing the vectors |χn〉, and these are shared by all the different
evaluations in Eq. (16). Therefore, there is only a minute
overhead in the effort to calculate M |ζm〉’s relative to just
one |ζ 〉.

3. Energy windows

An example of using this approach is the Energy Windows
method [92]. Here, we define Nw chemical potentials,

μNw
≡ μ � μNw−1 � · · · � μ1,

and corresponding energy window projections,

zm(H) = √
pβμm − pβμm−1, m = 2, . . . , Nw,

z1(H) = √
pβμ1 .

Each of these functions projects a different energy range be-
tween the chemical potentials. The sum of the square of these
functions yields the Fermi-Dirac projector

pβμ(H) = zNw
(H)2 + zNw−1(H)2 + · · · + z1(H)2.

Therefore, for any one-body operator A, the KS expectation
value 〈A〉 ≡ Tr[pβμ(H)A] can be written as a sum of contri-
butions from differing energy windows:

〈A〉 =
Nw∑

m=1

Tr[zm(H)Azm(H)].

The equivalent stochastic expression is

〈A〉 =
Nw∑

m=1

E[〈ζm|A|ζm〉].

Depending on the observable A, this procedure helps reduce
the fluctuations in estimating 〈A〉 since ζm and ζm′ span largely
nonoverlapping energy windows.

In the left panel of Fig. 1, we show the standard deviation
of the electronic force on the atomic nuclei (per degree of
freedom) as a function of the number of windows for selected
temperatures. It is seen that for low temperatures this standard
deviation is reduced by as much as a factor of 2 as NW reaches
16 or 32. However, for the high temperature considered, the
windows are less efficient, reducing the standard deviation by,
at most, a factor of 1.4.

4. Chebyshev moments

A Chebyshev moment Mn is the trace of a Chebyshev poly-
nomial Tn(Hs). The overlap 〈χ |χn〉 is an unbiased estimator of
Mn, based on the identity Tr[Tn(Hs)] = E[〈χ |Tn(Hs)|χ〉], or

Mn = E[〈χ |χn 〉].
Knowledge of the moments allows us to compute the trace
of any function z(H) of the KS Hamiltonian H through the
formula

Tr[z(H)] =
NC−1∑
n=0

Z (n)Mn,

where Z (n) are the coefficients for the Chebyshev expansion
of the function z(ε).

The following examples show where moments are useful:
(i) When working in the canonical ensemble mentioned

above, with a fixed number of electrons Ne, the chemical
potential μ is a function of Ne defined implicitly by Eq. (8),
depending on the KS eigenvalues ε j . However, in sDFT, we do
not have access to ε j . Hence, we use the Chebyshev moments
to develop an alternative implicit equation for μ:

Ne = 2 ×
NC−1∑
n=0

P(n)
βμ(Ne )Mn, (17)

where the P(n)
βμ ’s are the Chebyshev coefficients corresponding

to pβμ(ε). The actual determination of μ uses a numerical
root-searching algorithm (e.g., the bisection method) applied
to Eq. (17). The search for μ is a speedy step since the Cheby-
shev moments are independent of μ, so they are calculated

065304-4



STOCHASTIC DENSITY FUNCTIONAL THEORY COMBINED … PHYSICAL REVIEW E 109, 065304 (2024)

FIG. 1. Left panel: The sDFT force standard deviation σ f ≡
√

1
3NH

Tr�2
φ (per degree of freedom) for selected electronic temperatures as a

function of the number of windows Nw in H128 at ρ = 1 g/cm3. Right panel: The instantaneous position autocorrelation CR(�) [see Eq. (24),
averaged over all atoms] during a T = 30 000 K Langevin trajectory of H256 in two densities with additional white noise force [given in terms
of κ , see Eq. (22)] and a time step of �t = 5 h̄E−1

h for ρ = 16 g/cm3 and �t = 10 h̄E−1
h for ρ = 1 g/cm3.

only once and then stored, while calculating the Chebyshev
coefficients Pβμ for any value of μ only involves a single fast
Fourier transform.

(ii) The noninteracting electron entropy of Eq. (7) is esti-
mated as

Ss = 2 ×
NC−1∑
n=0

S(n)
βμMn, (18)

where S(n)
βμ are the Chebyshev coefficients correspond-

ing to the function sβμ(ε) = −[pβμ(ε) log pβμ(ε) +
p̄βμ(ε) log p̄βμ(ε)].

(iii) The orbital energy Eorb of Eq. (6) is estimated as

Eorb = 2 ×
NC−1∑
n=0

E (n)
βμMn,

where the E (n)
βμ are the Chebyshev coefficients corresponding

to eβμ(ε) = pβμ(ε)ε.

D. Performance of the sDFT calculation

Figure 2 shows the wall time self-consistent calculations
(averaged over many sDFT Langevin dynamics steps) as a
function of the number of electrons Ne in the simulation cell
for hydrogen at specified densities and temperatures. The
computation time of a single cycle of an SCF calculation
scales linearly in x = Ne log Ne. Since the number of SCF
cycles required to converge to a given criterion grows mildly
with system size, the overall scaling is x1.3. Calculations with
higher temperatures and the same number of electrons Ne

are faster since the Chebyshev expansions shorten in inverse
proportion to temperature [see Eq. (15)]. Higher density cal-
culations with the same number of atoms Ne also require less
computation time because of the smaller simulation cell sizes.

Let us discuss the wall times and their dependence on
scale for the cutoff energy Ecut. The plane-wave basis size is
determined by the volume in G-space of the highest momen-

tum vector Gmax =
√

2me

h̄2 Ecut (where me is the electron mass

and h̄ is Planck’s constant) and is therefore proportional to
E3/2

cut . In addition, the length of the Chebyshev expansion is
proportional to Ecut [see Eq. (15)]. Hence, overall, the wall
time scales steeply as E5/2

cut , i.e., wall time increases by a factor
32 every time the cutoff energy increases by a factor 4.

We have not yet developed the capability to expedite the
calculation speed for each stochastic orbital. We can achieve
high factors if we use a GPU on each node for this purpose.

FIG. 2. The self-consistent-field (SCF) wall times as a function
of the number of electrons Ne for hydrogen at the specified densities
and temperatures. Top panel: a single SCF iteration; bottom panel:
the entire SCF calculation (stopped when the changes in energy per
electron are below 10−5Eh). The calculations used the cutoff energy
of Ecut = 9 Eh, 40 stochastic orbitals, and a single core per stochastic
orbital on our Core-i7 cluster.
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III. STOCHASTIC FORCES AND LANGEVIN DYNAMICS

In the previous section, we discussed the WDM’s elec-
tronic structure at inverse temperature β. In this section, we
concentrate more on the behavior of the atomic nuclei in
WDM. At thermal equilibrium their state is canonically dis-
tributed with a temperature identical to that of the electrons.
Here we discuss how we use the method of Langevin dy-
namics to estimate the expected value of various observables
concerning atomic nuclei within the canonical ensemble.

A. Regularization of the stochastic forces

In sDFT, the force on each atomic nucleus is a vector of a
random variable components [72]:

f = −2 × 〈η|∇v̂eN|η〉 + FNN, (19)

where η(r) is defined in Eq. (10), and FNN is the force due
to the other bare atomic nuclei. Using the stochastic trace
formula, the force F of Eq. (9) is the expected value of the
random force:

F = E[ f ].

The 3Nn × 3Nn symmetric positive-definite force covari-
ance matrix is (�2

f )ii′ = E[ fi fi′ ] − FiFi′ , or, in matrix notation,

�2
f ≡ E[ f f T ] − FFT . (20)

To ease the handling of stochastic forces, we add independent
white noise ζ (E[ζ] = 0):

ϕ = f + ζ. (21)

The covariance matrix E[ζζT ] of this additional white noise is
specially constructed to allow the covariance �2

ϕ of the total
force to be uniform, i.e., a multiple of the unit matrix:

�2
ϕ ≡ E[ϕϕT ] − FFT = σ 2I = κ2σ 2

f I, (22)

where σ 2 is larger (κ � 1) than the largest eigenvalue σ 2
f

of �2
f . The white noise force ζ is thus sampled, using the

Metropolis-Hastings algorithm, to have a Gaussian distribu-
tion with the positive-definite covariance matrix �2

ζ ≡ σ 2I −
�2

f . The procedure obviously requires an estimate of the sDFT
force covariance �2

f and we use a sample of Ns force vectors
to estimate it (with Ns = 50, seemingly quite sufficient). The
covariance estimate is done once every Nj MD step (we took
Nj = 150). A force having such a uniform covariance matrix
enables using the same friction coefficient for all degrees of
freedom, and therefore simplifies the temperature control in
the Langevin dynamics calculation.

B. Stochastic Langevin equations of motion

The stochastic force ϕ(R) for a given atomic nuclei config-
uration is now used to perform Langevin molecular dynamics
from which we obtain configuration and momentum samples
that are canonically distributed. From these samples we can
compute the thermodynamic properties of the system. The

dynamics involves solving the Langevin equation of motion

Ṗ(t ) = ϕ(R(t )) − γ P(t ),

Ṙ(t ) = M−1P(t ),

where M−1 is a diagonal matrix of the inverse nuclei mass,
and γ is the diagonal matrix of friction coefficients. We use
a time-discretized solver [93] for the stochastic differential
equation, from which we obtain a discretized trajectory of NT

atomic configurations R(n) = R(n�τ ) (n = 1, . . . , NT ) and
their momenta P(n) = P[(n − 1

2 )�τ ], where �τ is the time
step. The phase-space trajectory is built from the following
evolution steps:

P(n+1) = e−γ�τ P(n) +
(

1 − e−γ�τ

γ

)
ϕ(R(n) ),

R(n+1) = R(n) + M−1P(n+1)�τ,

and in the limit �τ → 0 a Langevin trajectory is obtained.
Here, the (diagonal) friction matrix γ is determined from the
fluctuation-dissipation relation, which is given by

σ 2 = γ�τ/2

tanh (γ�τ/2)
× 2γ M

β
. (23)

C. Statistical sampling

For sufficiently small �τ , each of the trajectory configu-
rations R(n) is equivalent to a sample taken from the Boltz-
mann distribution pB

β (R) ∝ e−βVBO(R), where VBO ≡ Φβμ +
ENN (VBO = FβNe + ENN) is the electronic grand-canonical
(canonical) potential [see Eq. (5)]. The momentum P(n) is
equivalent to a sample from the Maxwell-Boltzmann proba-

bility distribution function pMB
Rβ (P) ∝ e−β

∑NN
i=1

P2
i

2Mi .
The estimate for the thermal average 〈O〉β ≡∫∫
O(R, P)pB

β (R)dRpMB
β (P)dP of a given observable

O(R, P) is simply the sample mean Ō ≡ 1
NT

∑NT
n=1 O(n)

over the sequence O(n) ≡ O(R(n), P(n) ). The sample variance
�O2 = 1

NT

∑NT
n=1 �O(n), where �O(n) = O(n) − Ō, allows us

to determine a confidence interval for the thermal average. For
example, the 70% confidence interval is [Ō − δO, Ō + δO],

where δO ≡
√

1
Nind

�O2 and Nind is the number of statistically

independent samples in the sequence O(n). If the values
O(1), O(2), . . . were uncorrelated, then Nind would be just
the sample size NT . However, because the configurations
R(n) are part of a molecular-dynamics trajectory, O(n+1) is
correlated with O(n), and O(n+2) is correlated with O(n+1),
etc., and therefore Nind < NT . It is common to quantify the
strength of this correlation using the autocorrelation function
for O, defined by CO(��τ ) ≡ 〈�O(n)�O(n+�)〉

〈�O(n)2〉 (the expression on
the right-hand side is independent of n). In a given sample
trajectory, the autocorrelation function is estimated by

CO(��τ ) ≈
∑

n �O(n)�O(n+�)∑
n �O(n)2

. (24)

It starts with the value CO(0) = 1 (full correlation) and then
decays steadily as step separation � grows until hitting a
regime of small random fluctuations. The decay is charac-
terized by a correlation time τO, for which CO(τO) = e−1.
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FIG. 3. The instantaneous values (brown) and running averages
(blue) of observables in two Langevin molecular-dynamics trajec-
tories of H128 (at a mass density of ρ = 1 g/cm−3 and a target
temperature of 30 000 K). Left panel: the NV T -like trajectory, where
the number of electrons is fixed (Ne = 128) by tuning the chemical
potential μ̃(n) at each time step [see Eq. (8)]. Right panel: the μV T
trajectory, where the chemical potential is fixed (μ = 9.56 eV) while
the number of electrons N (n)

e fluctuates. Details of the Langevin
dynamics: the white noise fluctuation is σ = 4σ f , i.e., κ = 4 [see
Eq. (22)], the time step is �τ = 10 atu, and the sDFT force covari-
ance [see Eq. (20)] is calculated using 50 independent samples once
every 150 dynamical time steps.

We also define the correlation length �O = τO
�τ

. We view �O

consecutive samples as “correlated” while later samples are
considered uncorrelated. The number of effectively indepen-
dent samples is thus estimated as Nind ≈ NT /�O. In the right
panel of Fig. 1 we show the Langevin dynamics position auto-
correlation function CR(��τ ) of hydrogen at T = 30 000 K,
for two densities ρ and two white noise parameters κ2 [see
Eq. (22)]. The correlation times τR are weakly dependent on
the density but grow significantly with κ . Hence, we strive for
small values of κ2 > 1.

D. Computational demonstration of μV T -NeV T
ensemble equivalence

Figure 3 displays time-dependent values of selected ob-
servables in two Langevin dynamics trajectories of hydrogen
at mass density ρ = 1 g/cm−3 at T = 30 000 K. The two tra-
jectories are calculated in different electronic ensembles: the
left panel of the plot shows the results of an NeV T -like ensem-
ble, where we impose a constant electron number Ne = 128
at each time step by tuning the electronic chemical potential
μ̃(Ne; R(n) ) in the Fermi-Dirac function at each time step [see
Eq. (8)]. This chemical potential fluctuates in time, as do the
positions and momenta of the atomic nuclei. The right panel
shows the results of an μV T ensemble, where the electronic
chemical potential is set to a constant value of μ = 9.56 eV.
Now the number of electrons fluctuates, but on average it is
128. The observables are the kinetic energy per atomic degree
of freedom T (n) (divided by kB and given in 103 Kelvin), the

pressure P(n), the chemical potential μ̃(n), and the Helmholtz
energy F̃ (n)

βNe
in the left panel, and the electron number Ñ (n)

e

and the grand potential Φ̃
(n)
βμ in the right panel. Upon studying

the numerical results in Fig. 3, it is obvious that the aver-
age over the fluctuating chemical potential in the left panel
〈μ̃〉NeV T = 1

NT

∑NT
n=1 μ̃(Ne; R(n) ) is very similar to the constant

chemical potential μ imposed in the μV T ensemble in the
right panel. Similarly, the average over the fluctuating number
of electrons in the right panel 〈Ñe〉μV T = 1

NT

∑NT
n=1 Ñe(μ; R(n) )

is very close to the imposed number of electrons Ne used in
the NeV T ensemble in the left panel. These results can be
summarized in the following relation:

μ = 〈μ̃〉NeV T ⇔ Ne = 〈Ñe〉μV T ,

showing that in our finite-sized system, the two ensembles
μV T and NeV T are already equivalent, which is characteristic
of the thermodynamic limit. All calculations shown in the next
section were performed in the NeV T ensemble.

IV. KUBO-GREENWOOD CONDUCTIVITY

In this section, we consider the stochastic calculation of
the Kubo-Greenwood conductivity [94,95]. In the context of
WDM, these calculations were addressed in Refs. [96,97] but
they become demanding as the system size and temperature
increase. Hence, a stochastic calculation may be preferable for
such systems as discussed in Ref. [74]. Here, we provide an
improved approach including the dc conductivity with con-
siderably lower statistical errors. We also provide a detailed
description of the theory, the derivation, and how the calcula-
tions were made.

Kubo’s analysis [94] starts with expressing the complex
conductivity,

σξξ ′ (ω) =
∫ ∞

0
φξξ ′ (t )e−iωt dt, (25)

as the Fourier transform of the dipole-current-density re-
sponse function:

φξξ ′ (t ) = 1

ih̄
tr

(
ρ

[∑
n

eRnξ ,
∑

n′

eVn′ξ ′ (t )

�

])
,

where e is the electron charge, tr is a many-body trace, ρ is the
equilibrium (many-body) density matrix, Rnξ is the position
in Cartesian direction ξ (ξ = x, y, z) of electron n, and Vnξ ≡
h̄

me
( 1

i
∂

∂Rnξ
− kξ ) is the corresponding velocity (where kξ = π

2Lξ

is the Baldereschi k-point). For noninteracting electrons, the
response function reduces to a single electron expression (see
Appendix A):

φξξ ′ (t ) = 4e2

h̄�
Im Tr(pμβ (H)RξVξ ′ (t )), (26)

where Tr is a single-particle operator trace, Rξ and Vξ ′ are
single electron position and velocity operators, respectively,
pμβ (H) is the Fermi-Dirac distribution, and H is the single-
particle Hamiltonian (at the Baldereschi k-point), which we
take from KS-DFT. We have also included a factor 2 due to
spin-degeneracy. The use of such a static KS Hamiltonian, as
opposed to the TDDFT description, is the central approxima-
tion of the Kubo-Greenwood theory.
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For ω �= 0, we multiply and divide by −iω the integral
of Eq. (25), use the identity −iωe−iωt = d

dt e−iωt , and then
integrate by parts, obtaining

σξξ ′ (ω) = 1

iω

(
−φξξ ′ (0) +

∫ ∞

0
φ̇ξξ ′ (t )e−iωt dt

)
, (27)

which involves the velocity-velocity response function:

φ̇ξξ ′ (t ) = −4e2

h̄�
Im Tr(pμβ (H )VξVξ ′ (t )).

For evaluating the trace, we use the stochastic trace formula:

Tr(pVξVξ ′ (t )) = E[〈ζξ t |Vξ ′ |ηt 〉], (28)

where, for brevity, p = pβμ(H) and

|ηt 〉 ≡ e−iHt/h̄√p|χ〉, |ζξ t 〉 ≡ e−iHt/h̄Vξ |η〉,
and |χ〉 is a stochastic state. To use Eq. (28) we generate a
sample of Ns stochastic vectors χ , and for each, we obtain a
specific value of 〈ζξ t |Vξ ′ |ηt 〉. Averaging these values gives an
estimate of the trace in the response function with a statistical
error proportional to 1/

√
Ns.

The trace operations provide correlation functions, which
we denote φ̇(t ) [whether φ̇ξξ ′ (t ) described above or ψ̇ξξ ′ (t )
described below]. To use it for obtaining the conductivity
as a function of ω, we first select a desired spectral energy
resolution h̄ν, which defines a frequency grid ωg = g × ν,
where g = 0, 1, . . . , Nω, and then we perform the Fourier
integral of Eq. (27) for these frequencies. Given the resolution,
the integral of the correlation function φ̇(t ) is augmented by
a Gaussian window, discretized, and summed utilizing the
fast-Fourier algorithm∫ ∞

0
φ̇(t )e−iωgt dt →

∫ ∞

0
e− ν2t2

2 φ̇(t )e−iωgt dt

→ τ f

Nω

Nω∑
g′=0

wg′e−
ν2τ2

g′
2 φ̇(τg′ )e−iωgτg′ (29)

on an equally spaced time-grid τg = g × τ f

Nω
, extending from

zero to τ f = 7/ν. The number of time and frequency grid
points is taken as Nω = qfac × Ecut

h̄ν
, where the quality factor

qfac > 1 determines the precision of the time integration. We
also inserted integration weights, the simplest of which is the
trapeze rule: wk = (1 − δk0/2). These weights are essential as
the integral is a half-Fourier transform, which means that the
integrand does not decay smoothly to zero at the time-grid
boundaries. We experimented with various choices of ν and
qfac, finding that a resolution of h̄ν = 0.025 Eh and a quality
factor in the range of 3–5 yield meaningful and stable results.
Dividing these values by iωg (g > 0), we obtain the ac con-
ductivity σξξ ′ (ωg).

Since evaluating the conductivity in Eq. (27) requires divi-
sion of the Fourier integral by ω, the statistical fluctuations are
amplified as ω → 0. The procedure is undefined for ω = 0,
the dc limit. In this case, we could use the analytical limit of
Eq. (27),

Reσξξ ′ (0) =
∫ ∞

0
φ̇ξξ ′ (t )tdt, (30)

which does not divide by zero. We can use the same integra-
tion procedure outlined above for the integral. But experience
shows that the stochastic error in Eq. (30), although finite, is
not small and requires extensive sampling. For the important
case of ξ = ξ ′, it is possible to show (see Appendix B) that

Reσξξ (0) =
∫ ∞

0
ψ̇ξξ (t )dt, (31)

where [see Eq. (B4)]

ψ̇ξξ (t ) = −2e2

�
Re Tr(p′

μβ (H )VξVξ (t )),

and p′
μβ (ε) = −βpμβ (ε)[1 − pμβ (ε)] is the derivative of

the Fermi-Dirac function. The stochastic evaluation of
the correlation function Tr(p′

μβ (H )VξVξ (t )) follows the
same procedure as Tr(pμβ (H )VξVξ (t )) except that this
time we take p = p′

βμ(H). Then, the same time-integration
scheme outlined above for the Fourier integral of φ̇ξξ can be
used to evaluate the integral of Eq. (31).

The problem of high fluctuations in the low-frequency
part of the ac conductivity is exacerbated due to the need to
take smaller ν for converging the ac results to the dc limit:
the smaller ν is, the larger are the fluctuations. Thus, we
developed an interpolation procedure for the low-frequency
spectrum relying on the steadiness of the dc conductivity. This
procedure is described in Appendix C.

For calculating the direction-averaged conductivity, σ̄ =
1
3 (σxx + σyy + σzz ), we replace the ξ component of the ve-
locity (Vξ ) in the above equations by a random-direction
component Vd = ηT V , where η = (ηx, ηy, ηz ), taken as a ran-
dom point on the 3D unit sphere, since E[ηηT ] = 1

3I, where
I is the 3 × 3 unit matrix. Averaging over Vd automatically
computes σ̄ .

V. TEST CASE: HYDROGEN AT 30 000 K

In this section, we use as a test case hydrogen at 30 000 K.
We first consider system-size effects on the estimation of
pressure and conductivity. Then, we give its equation of
state, electric conductivity, and radial distributions, compar-
ing, where possible, with VASP [98–102].

All sDFT calculations in this section used 40 stochastic
orbitals (for all system sizes), the LDA exchange-correlation
energy functional, and norm-conserving pseudopotentials
[103]. Unless specifically mentioned otherwise, we use 9 Eh

cutoff energy and the Baldereschi k-point [104].

A. System-size-dependent pressure and conductivity

In Fig. 4 we present the pressure (left panel) and the con-
ductivity (right panel) estimates for hydrogen at 30 000 K and
density ρ = 1 g/cm3, as a function of the system size. The
pressure estimates at the Baldereschi k-point are rather steady
and change only mildly with system size. Those done at the
� point show a stronger sensitivity to system size, peaking at
H256 and then decreasing towards the steadier k-point values.
The sDFT pressure estimates increase by about 5% when go-
ing from cutoff energy of 9 to 25 Eh. The dDFT results, based
on the VASP code, are less sensitive to the cutoff energy and
change by only 2.5%. This reflects the superiority of the PAWs
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FIG. 4. Pressure and conductivity averaged over a Langevin trajectory. Left panel: Size dependence of pressure at density 1 g/cm3. Each
point on the graph is an average over the pressure estimates along the xDFT (x=“s” or “d”) trajectory, performed using 9 or 25 Eh cutoff
energy at the � or B (Baldereschi) k-point, as indicated in the legend. The sDFT calculations for each point on the Langevin trajectory used
40 stochastic orbitals at the LDA/NCPPs level. The dDFT calculations were performed by the VASP program [98–102], at the LDA/PAW
level. The trajectory time step was �τ = 5 atu, and white noise parameter κ2 = 2. Right panels: Size dependence of the conductivity where
the top (bottom) panel shows results for ρ = 1(16) g/cm3. Each conductivity curve is an average over the conductivity curves calculated
for Ns = 20 configurations of the atomic nuclei (snapshots) taken every 1000 atu along the sDFT/Langevin trajectory. The error bars are
±s/

√
Ns, where s is the standard deviation. One conductivity calculation produces an entire conductivity curve [σ (ω)] based on 120 stochastic

orbitals, performed at the Baldereschi k-point, with a 15 Eh cutoff energy. Dark empty circles appearing in the top-right panel are conductivity
calculations for H128 on the identical configurations using the deterministic conductivity method of Ref. [96] using VASP.

used by VASP over the norm-conserving pseudopotentials used
in the sDFT calculation when converging to the infinite energy
cutoff limit. The sDFT and the VASP pressure estimates are
similar at the higher cutoff energy.

The size dependence of hydrogen conductivity at 30 000 K,
calculated at the Baldereschi k-point, is shown for two density
values in the right panel of Fig. 4. For 1 g/cm3, the con-
ductivity curves of H128 and H512 are already quite close (a
difference of 3%). Note that the larger the system, the smaller
the fluctuations. We also show results from a deterministic
calculation on H128, which tend to be too small as ω decreases
but fit our results well for all other frequencies.

Finally, the conductivity for the high-density systems is
much more noisy than at low density, and the system size
effects are more noticeable, since the simulation cell size is
small for these systems.

B. Density-dependent properties of hydrogen at 30 000 K

The estimated pressure of hydrogen at T = 30 000 K as
a function of density is depicted for sDFT and dDFT (us-
ing VASP) in the left panel of Fig. 5. The two curves are
generally close. The more significant difference in the lower-
pressure estimates stems primarily from the smaller cutoff
energy used in our calculation. The equation of state can
be fitted by a van der Waals form, P = Pideal(1 + ρ

ρ0
) with

ρ0 = 0.87 g/cm3.
The right panel of Fig. 5 illustrates the radial distribu-

tion for hydrogen at T = 30 000 K, with varying densities
from 0.25 to 16 g/cm3. At the lowest density, it reveals a

relatively large excluded volume with some corrugated
pattern. As the density increases to 1 g/cm3, the radial dis-
tribution curve steepens as the proton-proton repulsion range
shortens, and the corrugated pattern largely dies out, leaving
a shallow signature of a correlation shell at r = 1.5 Å. This
feature is enhanced and contracts to a shorter distance of
0.75 Å at the density of 4 g/cm3. In this regime, the radial
distribution signifies a combined short-range repulsion and
longer-range attraction between pairs, typical of a gas. Finally,
at the highest density considered, 16 g/cm3, the correlation
shell contracts further to 0.5 Å while a second correlation shell
seems to form 0.9 Å, hence a radial distribution typical of a
liquid emerges at these high densities.

We now turn to studying hydrogen conductivity using
Drude’s theory of metals [105] as a reference point. Drude’s
theory gives the real part of the normalized conductivity at
frequency ω as

Reσ (ω)

n
= e2

me

τc

1 + ω2τ 2
c

, (32)

where n = Ne
�

is the average electron density, and τc, the
collision time, is the only material parameter. τc is assumed
to be independent of n. In Fig. 6 (left panel) we plot our
stochastic estimates of the ab initio normalized conductivity
for hydrogen in various densities at 30 000 K. While the
normalized conductivity in Drude’s theory [Eq. (32)] does
not depend on n, the ab initio dc normalized conductivity
does depend on it: it changes fourfold as n changes 64-fold.
Yet, as seen in Fig. 6, at h̄ω = 7.2 eV, all four ab initio
curves cross at approximately the same point, the isosbestic
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/

FIG. 5. Left panel: the estimated pressure as a function of density for hydrogen at T = 30, 000 K. The results of the sDFT calculations are
shown together with the calculations taken from Ref. [13] and a dotted van der Waals trend of P(ρ ) = ρ

mp
kBT (1 + ρ

ρ0
), where ρ0 = 0.87 g/cm3

is obtained by fitting. Right panel: the H-H radial distribution for different densities.

point, where they assume the same normalized conductivity
value of 0.6 × 10−3 Sa2

0. The existence of the isosbestic point,
especially in the rather large density range seen here, is some-
times indicative of a system composed of two phases or two
states [106–108]. The value of τc at the isosbestic point is
equal to (0.084 ± 0.035i) fs, with the real part small relative
to typical values of τc for room-temperature metals (between
1 and 10 fs [105]). This result is consistent with the dense
metal (with rs between 0.28 and 0.7) we have, and the high
temperatures should speed up relaxation times and shorten
mean free paths in the material. Equation (32) also shows that
Reσ is proportional to ω−2 for high frequencies, ωτc � 1 (in
our case, h̄ω > 30 eV). As seen in the inset of the figure, the
ab initio conductivity decreases faster than the Drude second
power law in the frequency.

The relative statistical errors in the conductivity evaluation
(before stabilization according to the method of Appendix C)
are shown in the right panel of the figure. In general, they grow
with the density of the gas. Remarkably, the dc conductivity,
calculated through Eq. (31), has a much smaller statistical
error than the ac conductivity.

VI. SUMMARY

We developed a linear-scaling stochastic DFT implementa-
tion in periodic boundary conditions combined with Langevin
dynamics, which we applied to hydrogen at 30 000 K. Our
pressure estimates at various hydrogen densities between
0.125 and 16 g/cm3 matched well with results based on de-
terministic DFT for a high cutoff energy (near convergence).
The sensitivity to the cutoff energy reduced as the density
increased.

The pair correlation functions showed that hydrogen ex-
hibits gaslike behavior at densities below 4 g/cm3 and
liquidlike behavior above it. We also developed a stochastic
method to estimate the Kubo-Greenwood conductivity with
minimal statistical noise at ω → 0. All the calculations were
done in the Baldereschi k-point, and then the overall size
effects in the hydrogen systems were not large once H512

was used, except for the high density, which required a large
number of atoms.

Future work will focus on adapting stochastic
time-dependent DFT [109–111] and Green’s function

/

/

FIG. 6. Left panel: The real part of the Kubo-Greenwood conductivity normalized by the electron density at T = 30 000 K. The black
circle indicates an isosbestic point, which appears at 7.2 eV, where all systems have the same normalized conductivity of ∼0.5 × 10−3 Sa2

0.
The inset shows the conductivity in log-log scale, with dashed lines indicating slopes of ω−2. Right panel: The relative error bars for the
conductivity calculations, as described in the caption of Fig. 4.

065304-10



STOCHASTIC DENSITY FUNCTIONAL THEORY COMBINED … PHYSICAL REVIEW E 109, 065304 (2024)

methodologies [112–114] for WDM applications, building on
the foundation of our current work.
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APPENDIX A: PROOF OF EQ. (26)

For noninteracting electrons, the Hamiltonian and the
grand-canonical distribution are

H =
∑

i

εini, ni ≡ a†
i ai, N =

∑
i

ni, ρ = e−β(H−Nμ)

tr[e−β(H−Nμ)]
,

where ai (a†
i ) are electron annihilation (creation) operators

into eigenstates of the Hamiltonian, with the standard anti-
commutation relations {ai, a j} = {a†

i , a†
j} = 0, {aia

†
j} = δi j .

From these relations alone, we find the following:

[a†
i a j, a†

kal ] = δ jka†
i al − δil a

†
ka j, (A1)

tr[ρa†
i al ] = δil tr[ρni] ≡ δil pμβ (εi ), (A2)

and

eiHt a†
kal e

−iHt = e−i(εl −εk )t a†
kal . (A3)

From Eqs. (A1) and (A2),

tr[ρ[a†
i a j, a†

kal ]] = (
pi

μβ − pj
μβ

)
δ jkδil (A4)

and

tr[ρ[a†
i a j, a†

k (t )al (t )]] = ei(εi−ε j )t/h̄
(
pi

μβ − pj
μβ

)
δ jkδil . (A5)

Therefore, first quantization (single-particle) observables A
and B, summed over all electrons A = ∑

n An and B =∑
n Bn, correspond in second quantization to Â = a†

i a jAi j and
B̂ = a†

i a jBi j (Ai j = 〈i|A| j〉 and Bi j = 〈i|B| j〉). We find from
Eq. (A4)

tr[ρ[Â, B̂]] = Tr[pμβ (H)[A,B]],

and from these,

Im tr[ρÂB̂] = Im Tr[pμβ (H)AB]. (A6)

Using Eq. (A3) we obtain the generalization of Eq. (A6),

Im tr[ρÂB̂(t )] = Im Tr[pμβ (H)AB(t )]. (A7)

This latter equation, used with Â → ∑
n Rnξ and B̂ →∑

n Vnξ ′ , gives Eq. (26).

APPENDIX B: PROOF OF EQ. (31)

The Fourier-transform of Eq. (A5) gives∫ ∞

−∞
e−iωt tr[ρ[a†

i a j, eiHt a†
kale

−iHt ]]dt = 2πδ

(
εi − ε j

h̄
+ ω

)
[pμβ (ε j − h̄ω) − pμβ (ε j )]δ jkδil ,

where we used the spectral representation of Dirac delta functions, 2πδ(ω) = ∫ ∞
−∞ e−iωt dt , and the identity δ(x − y) f (x) =

δ(x − y) f (y). Dividing the above expression by iω and taking the limit ω → 0, we find

lim
ω→0

1

iω

∫ ∞

−∞
e−iωt tr[ρ[a†

i a j, eiHt a†
kal e

−iHt ]]dt = 2π h̄iδ

(
εi − ε j

h̄

)
p′

μβ (ε j )δ jkδil .

Using the spectral representation in the reverse direction, we find

lim
ω→0

1

iω

∫ ∞

−∞
e−iωt tr[ρ[a†

i a j, eiHt a†
kale

−iHt ]]dt = ih̄
∫ ∞

−∞
e−i(εi−ε j )t p′

μβ (ε j )dtδ jkδil .

From these, it is now straightforward to show the two one-body observables

lim
ω→0

1

iω

∫ ∞

−∞
e−iωt tr[ρ[Â, B̂(t )]]dt = ih̄

∫ ∞

−∞
Tr[p′

μβ (H)B(t )A]dt . (B1)

For the case A = B, the left-hand side can be developed to give an integral over positive times,

lim
ω→0

1

iω

∫ ∞

−∞
e−iωt tr[ρ[Â, Â(t )]]dt = 4i Re

[
lim
ω→0

1

iω

∫ ∞

0
e−iωt Im tr[ρÂÂ(t )]dt

]
. (B2)

The right-hand side of Eq. (B1) can also be developed in a similar fashion:

ih̄
∫ ∞

−∞
Tr[p′

μβ (H)A(t )A]dt = 2ih̄ Re
∫ ∞

0
Tr[p′

μβ (H)AA(t )]dt . (B3)
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Equating both right sides,

Re

[
lim
ω→0

1

iω

∫ ∞

0
e−iωt Im tr[ρÂÂ(t )]dt

]
= h̄

2
Re

∫ ∞

0
Tr[p′

μβ (H)AA(t )]dt .

Finally, using Eq. (A7), we obtain

Re

[
lim
ω→0

1

iω

∫ ∞

0
e−iωt dt Im tr[pμβ (H)AA(t )]

]
= h̄

2

∫ ∞

0
Re Tr[p′

μβ (H)AA(t )]dt, (B4)

from which Eq. (31) can be directly deduced.

APPENDIX C: STABILIZING THE LOW-FREQUENCY
CONDUCTIVITY SPECTRUM

One of the practical problems in calculating the conductiv-
ity at low frequencies arises in connection with introducing a
finite resolution parameter ν in Eq. (29). The finite resolution
distorts and usually underestimates the conductivity. This is
seen in the red empty dots of Fig. 4, which shows reduced
conductivity as ω → 0.

A second problem involves the fact that our conductivity
calculations use a stochastic approach, which has fluctuation
errors. For low frequency, these fluctuations grow consider-
ably as ω → 0 (see the right panel of Fig. 6) due to the
division by ω in Eq. (27).

The two problems described above combine: the high fluc-
tuations in the low-frequency part of the ac conductivity are
exacerbated when we take smaller ν, needed for converging
the ac results to the dc limit.

Here, we introduce an approximation that helps converge
the low-frequency ac conductivity, which relies on the fact
that the dc conductivity (ω = 0), calculated by a different
expression, Eq. (31), has finite and small fluctuations (seen in
the right panel of Fig. 6). Our stabilization procedure mixes

the low-frequency conductivity with that of an optimized
model:

σk ← (1 − wk )σk + wkσmodel(ωk ),

where σk is the conductivity corresponding to the frequency
ωk = kν, k = 0, 1, 2, . . . . Here, wk are mixing weights

wk = 1

1 + (
ωk
ωc

)6 ,

emphasizing the low-energy spectrum. Since our system ex-
hibits a metallic behavior, we choose ωc as the highest
frequency in the spectrum for which σc > 0.7σ0, and we use
the Drude model σmodel(ω) = σ0

1+ω2τ 2
c

, depending on the single
parameter τc, i.e., the collision time. Given the calculated
spectrum, we set this parameter as follows:

τ 2
c =

∑
k wkω

2
kσk (σ0 − σk )∑

k wkω
4
kσ

2
k

.

With this choice of parameter, the calculated conductivity val-
ues σk are as close as possible, in the root-mean-square sense,
to those of the model conductivity σmodel(ωk ) because we min-
imize the Lagrangian L(τ 2

c ) = ∑
k wk[(1 + ω2

kτ
2
c )σk − σ0]2.
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