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Simulating dynamics of ellipsoidal particles using lattice Boltzmann method
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Anisotropic particles are often encountered in different fields of soft matter and complex fluids. In this work,
we present an implementation of the coupled hydrodynamics of solid ellipsoidal particles and the surrounding
fluid using the lattice Boltzmann method. A standard link-based mechanism is used to implement the solid-fluid
boundary conditions. We develop an implicit method to update the position and orientation of the ellipsoid.
This exploits the relations between the quaternion which describes the ellipsoid’s orientation and the ellipsoid’s
angular velocity to obtain a stable and robust dynamic update. The proposed algorithm is validated by looking
at four scenarios: (i) the steady translational velocity of a spheroid subject to an external force in different
orientations, (ii) the drift of an inclined spheroid subject to an imposed force, (iii) three-dimensional rotational
motions in a simple shear flow (Jeffrey’s orbits), and (iv) developed fluid flows and self-propulsion exhibited
by a spheroidal microswimmer. In all cases the comparison of numerical results shows good agreement with
known analytical solutions, irrespective of the choice of the fluid properties, geometrical parameters, and lattice
Boltzmann model, thus demonstrating the robustness of the proposed algorithm.

DOI: 10.1103/PhysRevE.109.065302

I. INTRODUCTION

The approximation that the shape of an object is a sphere
is often a first step made to solve problems in physics (occa-
sionally to the point of caricature [1]). Such an approximation
allows the development of simple analytical solutions in a
variety of problems. Examples include the calculation of
the Stokes drag for viscous flow around a spherical particle
in fluid mechanics [2] and determining the scattering cross
section due to a spherical particle impinged on by an elec-
tromagnetic wave [3]. The effect of shape anisotropy may
then understood by performing perturbation theory to the
spherical particle approximation or considering the opposite
limit of an infinitely long particle (slender body limit). Calcu-
lations may require rather nonconventional and cumbersome
coordinate systems. Interestingly, numerical simulations also
use a spherical particle approximation in some circumstances
since it. helps (i) validate the simulation method accurately
and (ii) exploit the symmetry in the system to reduce the
computational load. However, it is also known that shape of
objects, in and of itself, may lead to interesting physics as
illustrated in the examples below. In this work, we discuss the
implementation of the lattice Boltzmann method to simulate
the dynamics of rigid spheroidal particles immersed in a fluid
and demonstrate the reliability of the method by comparing it
with known analytical solutions. The study focuses on fluid
mechanical consequences of shape anisotropic particles in
low Reynolds number with intended applications in soft and
biological matter.

Fluid dynamics associated with moving objects has al-
ways been an area of interest to both scientists and engineers
alike. Analytical solutions, even in the simplest geometries
such as flow past a spherical particle, are often not available

owing to the presence of nonlinear terms in the governing
Navier-Stokes equations. Hence, the field of computational
fluid dynamics has grown over several decades with differ-
ent formulations based on finite-difference, finite-volume, or
finite-element methods, developed primarily for engineering
applications. At the same time, particle-based methods such as
dissipative particle dynamics, lattice Boltzmann simulations,
and multiparticle collision dynamics have been developed to
investigate the science of mesoscale systems often encoun-
tered in the field of soft and biological matter [4–8]. The
appeal of particle-based methods is the relative simplicity of
the numerical method, the more natural correspondence with
the atomic or mesoscale picture rather than a continuum and
hence the ability to capture features like thermal fluctuations.

In particular, the lattice Boltzmann method (LBM) has
been shown to be successful in simulating colloidal disper-
sions, for example dynamics of single and multiple rigid
colloids in fluid flows [6,9–11] and dynamics of microswim-
mer suspensions [12,13]. Most of these investigations have
dealt with spherical particles. However, synthesis of non-
spherical colloidal particles have become more common, and
their dispersions exhibit emergent properties [14–16]. Mi-
croswimmers exploit their anisotropic shape to overcome the
limitations imposed at low Reynolds number to self-propel
[17]. Hence, shape anisotropy of colloidal and active particles
is rather a common theme in the evolving scientific literature,
but relatively less work has been carried out to simulate the
dynamics of nonspherical objects dispersed in a fluid using
the lattice Boltzmann method.

Moreover, the lattice Boltzmann method has been found to
be successful in simulating a variety of mesoscale systems:
droplet dynamics and interfacial flows [5,18–20], wetting and
coating flows [21], surfactant adsorption kinetics [22–24],
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nematic and cholesteric liquid crystal dynamics [25–27],
and active fluids [13,26–31]. The common theme among
these systems is the presence of additional governing equa-
tions for the order parameters that describe the microstructure
of the material under consideration. These investigations
have illustrated that the lattice Boltzmann method correctly
captures the microstructure evolution coupled with hydrody-
namics. The field of hypercomplex fluids that are mixtures
of more than one type of constituent is an emerging area
[10,12,32–37]. Systems with shape anisotropic particles at
fluid-fluid interfaces, in liquid crystals, as well as active and
biological fluids are being investigated. Simulating such hy-
percomplex fluids as a prospective application, a robust lattice
Boltzmann method that can handle nonspherical particles is
desirable.

Dynamics of ellipsoidal particles in the framework of the
lattice Boltzmann method has been studied in the literature.
Huang et al. [38] analyzed the response of a spheroidal parti-
cle subjected to a Couette flow and hence determined the shear
viscosity of dilute suspension of spheroidal particles. Since
the spheroidal particle was placed at the center line in the
Couette flow setup where the fluid velocity is zero, accounting
for the translation of the center of mass of the spheroids
was missing in this work. Similarly, the flow-induced ro-
tational dynamics of particles is absent in studies such as
Refs. [39–44] where the flow past a cluster of spherical or
nonspherical particles is investigated. In studies where the
dynamics of particles is considered, it is typically restricted
to spherical particles. However, it is important to choose a
stable numerical scheme that couples the translational and
rotational motion of the nonspherical particles combined with
lattice Boltzmann algorithm. This is particularly important
when accounting for hydrodynamic interactions in nondi-
lute suspensions, hydrodynamic interactions with confining
walls, as well as with regard to the effects arising from the
“complex” nature of the fluids. Hybrid methods such as a
combination of lattice Boltzmann and immersed boundary
method (IBM) are also proving to be reliable tools. Studies
using coupled LBM-IBM or similar approaches [45–48] for
the sedimentation of nonspherical particles are analyzed but
restricted to two dimensions where the rotation of the particles
is less difficult to model. Even in more generalized investiga-
tions with three-dimensional simulations, the rotation of the
spheroidal particles is restricted to two dimensions [49,50].
The dynamics of prolate and oblate spheroidal particles in
three dimensions is analyzed in Refs. [51,52]. However, the
focus of these studies was on turbulent flows with large parti-
cle volume fractions. Thus, the effectiveness of the method in
capturing single-particle dynamics, whether passive or active,
is less clear. A more detailed study is given in Ref. [53]
where the dynamics of ellipsoidal particles in narrow tubes
is analyzed. Methods are also being developed that mesh
the particles separately and differently from the conventional
LBM Cartesian grid [54,55].

To summarize, a variety of methods and numerical tech-
niques are available in the literature to simulate the dynamics
nonspherical particles, but a stable lattice Boltzmann al-
gorithm that simulates the coupled translational, rotational
dynamics of rigid ellipsoidal particles in three dimensions
along with associated fluid mechanics is required to be

developed. Currently, the available studies in the literature
focus only on limited aspects of this problem as described
above. This is particularly important considering the potential
that lattice Boltzmann method offers to simulate dynamics
of hypercomplex fluids containing rigid, nonspherical parti-
cles. Hybrid methods such as IBM-LBM are more suitable
for elastic particles [56,57]; coupling the order parameter
equations of complex fluids with hybrid methods is tedious
and not demonstrated so far. Therefore, devising a robust,
stable numerical algorithm to simulate the dynamics of ellip-
soidal particles with lattice Boltzmann method is important,
which is the theme of this paper. To this end we restrict
ourselves to the analysis of the dynamics of active and passive
prolate spheroidal particles dispersed in a Newtonian fluid,
particularly focusing on capturing various well-known low-
Reynolds-number phenomena, with intended applications in
soft matter and complex fluids. Validations of the simulation
algorithm are performed for (i) terminal settling velocity of
sedimenting spheroid in different orientations under the action
of an external force like gravity, (ii) lateral drift of a settling
spheroid with respect to the direction of gravity, (iii) in plane
and out-of-plane (three-dimensional) rotations of the spheroid
in a simple shear flow (Jeffery’s orbits), and (iv) propulsion
velocity of a spheroidal squirmer. This paper is organized as
follows: In Sec. II we discuss the lattice Boltzmann simulation
method, the dynamical description of the ellipsoids, and the
coupling scheme between the two algorithms. Results and
discussions are contained in Sec. III, where the simulation
method is validated and its numerical results are compared to
available analytical solutions. Finally, in Sec. IV we conclude
and discuss the scope of this work.

II. SIMULATION METHOD

We consider an ellipsoid of length 2a and minor axes of
lengths 2b and 2c as shown in Fig. 1 suspended in a fluid.
The instantaneous orientation of the major axis of the ellipsoid
is indicated by a unit vector ê. Passive ellipsoids are apolar,
and they have a head-tail symmetry, i.e., ê ≡ −ê while active
ellipsoids will have a polarity.

In the following we introduce the lattice Boltzmann
method that describes the fluid dynamical aspects of the prob-
lem, the dynamical description of the ellipsoidal particles, and
the boundary conditions that ensure the coupling between the
two parts of the algorithm. The algorithm is implemented in
the parallel lattice Boltzmann code Ludwig [4,58].

A. Lattice Boltzmann method

As is common in the lattice Boltzmann literature [8], the
simulation domain is discretized using a geometric lattice
with spacing �x = 1, whereas the time-step size is �t = 1.
The simulations are performed using the D3Q19 and D3Q27
models to obtain further insights into how the results depend
on the choice of numerical scheme. D3 represents the number
of dimensions of the domain, while Q19 and Q27, respec-
tively, represent 19 and 27 discrete lattice vectors ci with i =
{0, . . . , 18} and i = {0, . . . , 26}, respectively (or equivalently
the number of nearest neighbors) on the 3D cubic lattice.
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FIG. 1. A prolate ellipsoid of length 2a (major axis) oriented
along ê with two minor axes 2b and 2c of equal length is considered
in this work.

A discrete velocity distribution function fi(x, t ) with ve-
locity ci is defined at each grid point x at time t that travels
along the ith discrete direction such that∑

i

fi(x, t ) = ρ(x, t ), (1)

∑
i

fi(x, t )ci = ρ(x, t )u(x, t ), (2)

where ρ(x, t ) and u(x, t ) are the density and velocity of the
fluid, respectively. This means the zeroth and first moment of
the discrete distribution function fi with respect to the set of
lattice directions {ci} provide the hydrodynamic fields, namely
the local density and momentum.

The discrete distribution function fi undergoes collision
and propagation steps consecutively. For a general collision
operator Ci(t ) this may be expressed as

fi(x + ci�t, t + �t ) − fi(x, t ) = �t Ci(t ). (3)

In its simplest form, the collision operator may be related to
a single relaxation time τ as Ci(t ) = [ fi(x, t ) − f eq

i (x, t )]/τ ,
where f eq

i is the equilibrium distribution. The relaxation time
determines the kinematic viscosity ν of the fluid via the re-
lation ν = (τ − 1

2 )/3 in the chosen convention [8]. The form
of the equilibrium distribution function, f eq

i , is constrained by
the governing equations to be recovered, namely the Navier
Stokes equations:

f eq
i = ρwci

[
1 + u · ci

c2
s

+ (u · ci )2

2c4
s

− u · u
2c2

s

]
, (4)

where cs is the speed of sound and wci are the weights associ-
ated with the chosen velocity set ci of the D3Q19 or D3Q27
lattice Boltzmann model. The actual collision scheme in this

work uses a single viscosity (relaxation time) for the noncon-
served hydrodynamic modes and an instantaneous relaxation
for nonhydrodynamic modes (cf. Ref. [59]).

The macroscopic behavior of the fluid following the above-
described discrete algorithm is given by the Navier-Stokes
equations:

∇ · u = 0, (5)

ρ(∂t u + u · ∇u) = −∇P + η∇2u, (6)

in the limit of an incompressible fluid. Here P is the pressure
field and η is the dynamic viscosity of the fluid η = ρν. The
speed of sound cs is related to the fluid pressure P and fluid
density ρ as P = ρc2

s , indicating the slightly compressible
nature of the numerical scheme [8].

B. Boundary conditions

Consider an ellipsoid that has a translational velocity U , an
angular velocity �, and a center of mass that is located at xc.
The surface of the ellipsoid is defined through the quadratic
relation

(x − xc)T A(x − xc) = 1, (7)

where x is any point on the surface of the ellipsoid and xT

is the transpose of x. The eigenvalues of the positive definite
3 × 3 matrix A are related to the inverse of the semiaxes
of the ellipsoid via (1/a2, 1/b2, 1/c2), while the normalized
eigenvectors represent the axes with ê being the principal
axis and specify therefore the orientation of the ellipsoid.
A simple way to understand the matrix A is to consider an
ellipsoid that is oriented along the coordinate axes, in which
case A reduces to a diagonal matrix, and the equation of the
ellipsoid is simply x2

a2 + y2

b2 + z2

c2 = 1 [60]. The surface defined
by Eq. (7) intersects the links that connect the lattice nodes
(the discrete points x in the domain) in the fluid and in the
solid. Boundary nodes are defined to be halfway along the
links, xb = x + 1

2 cb�t , and thus the boundary nodes represent
an approximation to the surface of the ellipsoid.

During the streaming-collision operations in the lattice
Boltzmann algorithm, the populations fb located on the fluid
node at x and connecting to a boundary node xb via the lattice
velocity vector cb follow a half-way bounce-back scheme,
which is known as bounce-back on the links [9]. There is
no fluid inside the volume enclosed by the boundary nodes
[59]. The bounce back of the fluid populations fb results in an
exchange of momentum between the fluid and the solid nodes.
The corresponding force exerted by the fluid on the solid per
link may be calculated [59] as

Fb

(
xb, t + 1

2
�t

)
= �x3

�t

[
2 f ∗

b (x, t ) − 2wcbρ0ub · cb

c2
s

]
cb,

(8)

where f ∗
b (x, t ) is the postcollision distribution function, ρ0 is

the mean density of the fluid, and ub is the local velocity of
the boundary node calculated as

ub = U + � × (xb − xc). (9)

The contributions Fb(xb, t + 1
2�t ) from all boundary nodes

are accumulated to obtain the total force on the ellipsoid
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F = ∑
b Fb. Similarly, the torque on the ellipsoid, T is ob-

tained by adding the contributions (xb − xc) × Fb from all
boundary nodes. This procedure also ensures that the com-
bined momentum of the fluid and the particle is conserved
during the simulation.

C. Dynamics of the ellipsoid

In the formulation discussed above, the translational and
angular velocities U and � of the ellipsoidal particle are to
be calculated as part of the algorithm. An explicit update is
usually unstable, and thus, following the procedure suggested
by Nguyen and Ladd [59] for spherical particles, an implicit
numerical evaluation scheme is proposed to update transla-
tional and angular velocities of the ellipsoidal particles. To
facilitate this, the total force F and the torque T on the particle
are written as

F = F0 − ζFU · U − ζF� · �, (10)

T = T 0 − ζTU · U − ζT � · �, (11)

where F0 and T 0 are “velocity-independent” forces and
torques, evaluated solely from the postcollision distributions:

F0

(
t + 1

2
�t

)
= �x3

�t

∑
b

2 f ∗
b (x, t )cb, (12)

T 0

(
t + 1

2
�t

)
= �x3

�t

∑
b

2 f ∗
b (x, t )(xb − xc) × cb. (13)

The drag coefficient matrices in Eqs. (10) and (11) may be
calculated [59] as

ζFU = 2ρ0�x3

c2
s �t

∑
b

wcbcbcb, (14)

ζF� = 2ρ0�x3

c2
s �t

∑
b

wcbcb(xb − xc) × cb, (15)

ζTU = 2ρ0�x3

c2
s �t

∑
b

wcb[(xb − xc) × cb]cb, (16)

ζT � = 2ρ0�x3

c2
s �t

∑
b

wcb[(xb − xc) × cb][(xb − xc) × cb].

(17)

Assuming that the drag coefficients are independent of time,
discretized conservation equations of linear and angular mo-
mentum along with Eqs. (10) and (11) are written down as

M
U (t + �t ) − U (t )

�t
= F0

(
t + 1

2
�t

)
− ζFU · U (t + �t )

− ζF� · �(t + �t ), (18)

I(t ) · �(t + �t ) − �(t )

�t
+ dI

dt
· �(t + �t )

= T 0

(
t + 1

2
�t

)
− ζTU · U (t + �t ) − ζT � · �(t + �t ),

(19)

where M and I are the mass and moment of inertia tensor of
the ellipsoidal particle, respectively. The time dependence of
I (t ) will be discussed in detail in the following section. Hence,

we obtain two linear equations in U (t + �t ) and �(t + �t )
from Eqs. (18) and (19), which are solved using the Gaussian
elimination method. Since the formulation is implicit, the
stability of the algorithm is guaranteed as well.

Thus, solving the linear system consisting of Eqs. (18) and
(19) determines the unknowns U (t + �t ) and �(t + �t ). The
only remaining unknowns are the new position and orientation
of the particle. The position of the particle is simply evaluated
as

xc(t + �t ) = xc(t ) + 1
2 [U (t + �t ) + U (t )]. (20)

Similarly, the mean angular velocity �̃(t ) = 1
2 [�(t ) + �(t +

�t )] is used to update the orientation of the particles. How-
ever, unlike in case of spherical particles, the orientation
dynamics of ellipsoids, namely the time evolution of its princi-
pal axes, requires careful consideration. Following Goldstein
[61] the three Euler angles φ, θ, ψ are defined in the co-
moving frame of the particle. φ is the rotation angle around
the z axis, whereas θ and ψ are the rotation angles around the
resulting intermediate x′ and z′ axis, respectively. However, to
avoid accumulated errors from successive matrix operations
and singular matrix operations, it is convenient to introduce
unit quaternions [62–67] (also referred to as Euler parameters)
defined as

q ≡[cos (θ/2) cos [(φ + ψ )/2], sin (θ/2) cos [(φ − ψ )/2],

× sin (θ/2) sin [(φ − ψ )/2], cos (θ/2) sin [(φ + ψ )/2]],
(21)

The temporal evolution of q determines the instantaneous
Euler angles and thus the orientation of the ellipsoid.

Knowing the angular velocity of the ellipsoid �, the evo-
lution equation for the quaternion may be written as

q̇ = 1

2
� q, (22)

where � = (0,�) is a pure quaternion with vectorial part
�. However, following Refs. [63,64,67], we suggest the pro-
cedure given below to determine the time evolution of the
quaternions,

q̃(t ) =
[

cos
||�̃(t )||�t

2
, sin

||�̃(t )||�t

2

�̃(t )

||�̃(t )||

]
, (23)

q(t + �t ) = q̃(t )q(t ), (24)

thus avoiding numerical integration of Eq. (22). In the above,
|| · || indicates the norm of the vector. The magnitude of the
quaternion is exactly unity and therefore this procedure avoids
any requirement of renormalization to account for errors from
numerical integration. Thus, both position [Eq. (20)] and ori-
entation [Eq. (24)] are updated based on the mean value of
translational and angular velocity at t and t + �t .

D. Moment of inertia of the ellipsoid

The left-hand side of Eq. (19) is based on the Euler equa-
tions for rigid body rotation,

T = d

dt
(I · �) = I · d�

dt
+ dI

dt
· �. (25)
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The second term in Eq. (25) vanishes for spherical particles
as their moment of inertia tensor is constant in the laboratory
frame. This is not the case for ellipsoidal particles, and the rate
of change of the moments of inertia requires consideration. In
the literature on molecular dynamics and other particle-based
simulation techniques, Eq. (25) is usually written in a body-
fixed coordinate system so that the second term in Eq. (25)
vanishes even for anisotropic shapes. However, we avoid this
route as for algorithmic purposes it is more appropriate to for-
mulate the implicit solution method for updating U and � in
the laboratory frame following Eqs. (18) and (19). Below we
discuss the time dependence of the moment of inertia tensor
I(t ) and its time derivative that may be used in evaluating
terms in Eq. (25).

In the body frame of reference defined by the principal axes
of the ellipsoid, the moment of inertia tensor is

I =
⎡
⎣ 1

5 M(b2 + c2) 0 0
0 1

5 M(a2 + c2) 0
0 0 1

5 M(a2 + b2)

⎤
⎦, (26)

=
⎡
⎣I1 0 0

0 I2 0
0 0 I3

⎤
⎦. (27)

Since the ellipsoid undergoes rotational motion, but the angu-
lar momentum equation [Eq. (19)] is given in the laboratory
frame, the moment of inertia tensor I has to be determined
at every time step. This may be done using the unit quater-
nion q(t ) as follows. Any pure quaternion s = (0, s) with
vectorial part s = (s1, s2, s3) in the body frame can be ro-
tated using the unit quaternion q = (q0, q) with vectorial part
q = (q1, q2, q3) and its inverse q−1 = (q0,−q) [64,68]:

s′ = q s q−1. (28)

The quaternion algebra provides the explicit expression for
the vectorial part of s′: s′ = (2q2

0 − 1)s + 2(q · s)q + 2q0q ×
s. Repeated application of Eq. (28) gives the moment of inertia
of the rotated ellipsoid [63,65,67],

I′ = (q(q I q−1)T q−1)T , (29)

where T is the matrix transpose and I′ and I are pure quater-
nion moment of inertia tensors, so for instance

I =

⎡
⎢⎢⎣

0 0 0 0
0 I1 0 0
0 0 I2 0
0 0 0 I3

⎤
⎥⎥⎦. (30)

Therefore, the time-dependent moment of inertia tensor I(t )
can be easily determined from the quaternion q(t ).

The first term in Eq. (25) assumes that the moment of
inertia tensor I(t ) is determined at time t and not at t + �t .
This procedure can be improved with a predictor-corrector
method which determines I(t + �t ), but it is not pursed in
this work.

There are two possibilities to calculate the time derivative
of the moment of inertia tensor in the second term in Eq. (19).
The first method is to adopt a simple, finite-difference
approximation,

dI
dt

= I(t ) − I(t − �t )

�t
. (31)

The second, and more elegant, route is to avoid numeri-
cal differentiation of the temporal derivative but differentiate
Eq. (29) directly. With repeated application of product rule of
differentiation of Eq. (29) we have

dI
dt

= (q̇(q I q−1)T q−1)T + (q(q̇ I q−1)T q−1)T

+ (q(q I q̇−1)T q−1)T + (q(q I q−1)T q̇−1)T . (32)

The time derivative of the quaternion q̇ may be determined
using Eq. (22), and hence each term in Eq. (32) may be easily
evaluated. Thus, this second method to evaluate dI/dt avoids
numerical differentiation altogether. In our simulations, no
discernible difference in the stability of the simulation was
observed between the two methods mentioned above.

The complete algorithm can be summarized as follows:
The streaming and collision step are performed in the usual
way. The two-way coupling of fluid-structure interaction is
realized on one side during the streaming step, when midgrid
bounce back conditions are applied on those populations
which stream to a solid node, and on the other side through
the solid nodes, which are determined at every time step from
the updated position and orientation of the ellipsoid using the
above implicit method. All operations are carried out in the
laboratory frame of reference. The use of quaternion algebra
made the calculation of the angular velocity, moment of inertia
and orientation more efficient. The individual steps of the
algorithm are detailed in Appendix.

III. RESULTS AND DISCUSSION

Four different cases were analyzed using the lattice
Boltzmann formulation discussed in the previous section: (i) a
sedimenting spheroid in different orientations, (ii) drifting of
a sedimenting spheroid in an inclined orientation, (iii) kine-
matics of a spheroid in a simple shear flow, and (iv) dynamics
of an active, spheroidal microswimmer. The results from each
case are discussed below. All simulations corresponding to
cases (i), (ii), and (iv) have been carried in a cubic domain
with periodic boundary conditions. In case (iii), the spheroid
is placed between two moving parallel plates. All simulations
are initialized with a quiescent fluid in the domain. The sim-
ulations are performed until a steady state is reached and the
obtained results are discussed below.

A. Sedimenting spheroid

Consider a spheroid with orientation vector ê as shown
in Fig. 1 sedimenting under the action of an external force,
say gravity in an otherwise quiescent fluid. Let ĝ be the unit
vector indicating the direction of the external force. Under the
action of the external force, the spheroidal particle accelerates,
but the fluid drag opposes this motion. Balancing the two
opposing forces, the particle undergoes a steady translation
with a constant velocity, usually referred to as terminal settling
velocity in the context of gravitational sedimentation.

Figure 2 shows the fluid flow developed around the sed-
imenting spheroid at its terminal settling velocity in three
different orientations (a) when the long axis of the spheroid
is perpendicular to the direction of the external force, ê ⊥ ĝ
(broad-side on); (b) when the long axis is parallel to the
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FIG. 2. Fluid velocity in the laboratory frame developed around a settling spheroid (a > b = c) in three different orientations, the long
axis of the spheroid oriented (a) perpendicular to the direction of gravity, ê ⊥ ĝ; (b) parallel to the direction of gravity, ê ‖ ĝ; and (c) inclined
at an angle 45◦ to the direction of gravity. The black arrow in each figure indicates the velocity of the spheroid. The fluid velocity vectors are
colored using a “jet” color map such that red arrows indicate larger velocity than blue arrows.

direction of the external force, ê ‖ ĝ (end-on); and (c) when
the long axis forms a 45◦ angle with the direction of gravity.
The arrows in the figure indicate the direction of the velocity
vectors in the fluid in the laboratory frame of reference. The
color code gives the magnitude of the velocity, where blue and
red mark the lowest and highest velocities, respectively. As
expected, the fluid velocity has a maximum at the surface of
the translating spheroid, and it decays further away from the
particle. The flow fields are similar in all cases. There is also
a qualitative similarity to the well-known Stokeslet flow. In
the broad-side on orientation, the flow field appears laterally
extended compared to that of a sphere. In the end-on orienta-
tion of the spheroid, the flow appears extended in the vertical
direction, in consonance with the geometry of the sedimenting
particle. Figure 2(c) is discussed in the next subsection.

At zero Reynolds number, the terminal settling velocity of
the spheroid in the two orientations can be exactly determined.
If Fe is the external force acting on the spheroid, then the
translational velocity can be determined as [69]

Fe = −6πμa(U‖C‖ê + U⊥C⊥ê⊥), (33)

C‖ = 8

3
ε3

[
−2ε + (1 + ε2) log

1 + ε

1 − ε

]−1

, (34)

C⊥ = 16

3
ε3

[
2ε + (3ε2 − 1) log

1 + ε

1 − ε

]−1

, (35)

where ê⊥ is the direction normal to the long axis and ε =√
1 − b2/a2; 0 � ε < 1 is the eccentricity of the spheroid.
The comparison between the sedimentation velocity of the

spheroid obtained from simulations and that determined from
the analytical expression [Eq. (33)] is shown in Fig. 3. In each
subplot in this figure, the x axis represents the aspect ratio of
the spheroid determined as the ratio of length along the minor
axis to length along the major axis, b/a; the y axis represents
the terminal settling velocity of the spheroid normalized with
that of a sphere of radius b. Parameters chosen in these simu-
lations correspond to a Reynolds number <0.01.

Figure 3(a) shows the results obtained for (i) a broad-side
on sedimenting spheroid, i.e., when ê ⊥ ĝ and an end-on
sedimenting spheroid, i.e., when ê ‖ ĝ in an otherwise qui-
escent fluid. A schematic of the configurations is shown in
the figure inset. The symbols are the data obtained from the
simulation and the continuous curves are the analytical pre-
dictions based on Eq. (33). When b/a = 1, the simulations
correspond to that of a settling sphere. As the aspect ratio of
the spheroid increases (b/a decreases) the terminal settling
velocity of the spheroid decreases. In the simulations, the
external force acting on the spheroid and the length of the
minor axis b are not changed. Therefore, increasing the aspect
ratio corresponds to a larger drag force on the spheroid, and
hence a reduction in the terminal settling velocity, irrespective
of the orientation of the spheroid. Second, the spheroid in
broad-side on orientation sediments at a slightly smaller ter-
minal settling velocity than the spheroid in end-on orientation,
and this difference increases with increase in aspect ratio. All
these features predicted by the analytical expression [Eq. (33)]
are captured by the simulations.

Figure 3(a) has shown the results of the cases when the
unit vector ê and ĝ are oriented along one of the coordinate
directions of the discrete domain, as in the inset. To check the
generality of the method developed, in particular, to test any
dependency of the accuracy of the results when ê and ĝ are not
aligned with the principal directions of the grid, sedimentation
simulations are performed by orienting the spheroid at a finite
angle to the coordinate directions, as shown in the inset in
Fig. 3(b). Again, both the broad-side on and the end-on orien-
tation are tested. The obtained results are plotted in Fig. 3(b)
as a function of the aspect ratio. The reduction in the terminal
settling velocity with increase in aspect ratio, the larger ter-
minal settling velocity in the end-on orientation compared to
broad-side on orientation, and increase in the difference in the
terminal settling velocity in two orientations with increase in
aspect ratio are all captured by the simulations. These results
confirm the validity of the method implemented.

While the results presented in both Figs. 3(a) and 3(b)
show a reasonable match between the analytical predictions
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(a) (b)

(c) (d)

FIG. 3. Settling velocity of a spheroid (a > b = c) in two different orientations, the long axis of the spheroid oriented (i) perpendicular to
the direction of gravity, ê ⊥ ĝ (red line, •) and (ii) parallel to the direction of gravity, ê ‖ ĝ (green line, �). Simulations of spheroids (a) with
b = 2.5, ν = 0.1, and when ê are ĝ are along the principal directions of the grid (as shown in the inset), (b) with b = 2.5, ν = 0.1 but ê are
ĝ are oriented at 30◦ to the principal directions of the grid (as shown in the inset), (c) with LB parameters as reported in Ref. [59] namely
b = 2.7, ν = 0.1667 for spherical particles (see text). (d) Comparison using D3Q19 and D3Q27 LBM models with b = 2.7, ν = 0.1667. In
all cases, simulations have been done in a domain of 2563. The reported settling velocity |U | is normalized to the settling velocity of a sphere
with radius r = b. The error bars indicate the error in the calculations originating from the discrete shape of the particle and are smaller than
the symbol in most cases.

and lattice Boltzmann simulations, small differences between
the two calculations may also be noticed. The spread of the
data indicates that the error may be associated with numerical
discretization of the particle surface as discussed in Sec. II B.
The implementation of the bounce back scheme on the sur-
face of the ellipsoidal particle is only first order accurate in
�x, but previous work on simulating suspensions of spher-
ical particles have shown that the error arising from a first
order bounce back scheme can be considerably reduced by
an appropriate choice of the fluid viscosity and radius of the
spherical particle [59]. This is possible because (i) the error
in the boundary conditions are dependent on the viscosity of
the fluid and may alter the “hydrodynamic radius” at which
no-slip boundary conditions exist and (ii) the variance in dis-
crete shape of the particle compared to the spherical shape
is not a monotonic function of the nominal radius, but it
gives rise to certain “favorable radii” at which the variance
is smaller. Therefore, we performed simulations of a sedi-
menting spheroid by selecting the kinematic viscosity of the

fluid ν = 1/6 and the length of the minor axis b = 2.7, one of
the choices suggested for spherical particles in Ref. [59]. The
results obtained for both broad-side on and end-on orientation
are shown in Fig. 3(c). No considerable improvement in the
results is observed compared to Figs. 3(a)–3(b). This lack of
improvement by choosing special values of kinematic viscos-
ity and size indicates that such special choices are restricted
solely to spherical particles; nonspherical particles have a
range of lengths associated with it (lengths varying between
a and b for a spheroidal particle), and further improvement in
the accuracy of the method can be achieved by improving the
spatial resolution of the simulations.

The final test case reported in Fig. 3(d) is to compare the
results of two different LB models: D3Q19 and D3Q27. The
latter model consists of a larger number of discrete velocity di-
rections, yet both models show comparatively similar results.
Thus, increasing the number of discrete velocity directions
from 19 to 27 did not result in any significant improvement
on comparing with analytical predictions, but the similarity of
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FIG. 4. Effect of domain size on the accuracy of the settling
velocity of a spheroid in two different orientations, the long axis of
the spheroid oriented (i) perpendicular to the direction of gravity,
ê ⊥ ĝ (red line, •), and (ii) parallel to the direction of gravity, ê ‖ ĝ
(green line, �). In the simulations a = 7.5, b = 2.5, and ν = 0.1. The
error calculated with respect to the analytical solution in each case is
indicated below the marker.

results demonstrates the robustness of the proposed numerical
algorithm irrespective of the choice of the lattice Boltzmann
model.

All the simulations reported in Fig. 3 are performed by
imposing periodic boundary conditions on the domain. While
this choice approximates a bulk fluid in the limit of large
system size, the central particle inevitably interacts hydro-
dynamically with its images. Therefore, the simulation is
equivalent to a periodic array of spheroids settling in the fluid.
While analytical solutions are available to determine the set-
tling velocity of an array of spheres [70], no such approaches
are available for settling ellipsoidal particles. Therefore, to
isolate this effect due to periodic images and quantify the
contribution from the hydrodynamic interactions, simulations
were performed in cubic domains of size spanning from 323

to 5123. Both broad-side on and end-on orientations were
considered. The results are illustrated in Fig. 4 where the set-
tling velocity is plotted as a function of the domain size. The
horizontal lines in the figure indicate the analytical predictions
according to Eq. (33). The numbers annotating each data point
are the percentage difference in the result from the simula-
tions compared to the analytical predictions. It can clearly be
seen that in small domains hydrodynamic interactions with
the periodic images result in large deviations (>25%) from
the analytical result. However, an increase in the size of the
domain by an order of magnitude decreases the deviation in
the settling velocity also by an order of magnitude.

B. Sedimentation of an inclined spheroid

In this section we consider a sedimenting spheroid when
it is neither in broad-side on nor in end-on orientation, i.e.,
ê and ĝ are neither parallel nor perpendicular to each other.
An example of the velocity field developed around the sed-
imenting spheroid, in an otherwise quiescent fluid, in this

inclined orientation is shown in Fig. 2(c). Here the direction
of the external force ĝ is acting downwards, but the spheroid
is oriented at a 45◦ angle to ĝ. Owing to the reversibility
constraints imposed by the low-Reynolds-number hydrody-
namics, the sedimenting spheroid retains its orientation during
the simulation and reaches a terminal settling velocity.

Even though the sedimenting spheroid does not rotate [71],
the anisotropy in the drag coefficients for broad-side on and
end-on orientation, as given by Eq. (33), results in a lateral
drift as the spheroid sediments. If α is the angle that the
spheroid makes with the direction of gravity, ê · ĝ = cos α,
then the center of mass of the spheroid will drift at an angle
δ < α determined by the aspect ratio of the spheroid. Balanc-
ing the gravitational and the drag forces [Eq. (33)] the angle
at which spheroid drifts can be calculated as

tan(α − δ) = C‖
C⊥

tan α. (36)

Figure 5(a) shows the trajectories of the center of mass for
spheroids oriented at a range of different angles α with respect
to the direction of gravity. The color bar indicates the angle
α which varies from 0◦ to 90◦; the limiting values indicate
the end-on and broad-side on orientation of the sedimenting
spheroid. In these two cases, the spheroid sediments vertically,
along ĝ. For any intermediate angle, the center of mass drifts
laterally. In the figure, the symbols are the data obtained from
the simulation, while the continuous lines are predictions of
Eq. (36). A reasonable match between the simulation data and
the analytical prediction may be seen. The maximum lateral
drift occurs for the spheroid oriented at 45◦ to the direction of
gravity. With further increase in α, the extend of lateral drift
decreases and disappears for the broad-side on orientation.
The figure also shows the the black, circular markers (•) that
show the position of the spheroid at the end of the simulations.
This is also also shown in the inset of Fig. 5(a). It can be seen
that the total distance traveled by the spheroid decreases as
α goes from 0◦ to 90◦, with the maximum drift observed for
α = 45◦. An important point to note from Fig. 5(a) is the scale
of abscissa and ordinate. The scale on ordinate is an order of
magnitude larger than the scale of abscissa, indicating that the
drift due to inclination of the spheroid is rather small. Despite
the smallness of the drift, the numerical simulations clearly
capture the drift with reasonable accuracy.

The drift gets even weaker with a decrease in the aspect
ratio of the spheroid. Figure 5(b) illustrates the dependence of
the trajectory of the center of mass of the spheroid for various
aspect ratios. The markers represent the data obtained from
simulation and the continuous lines are analytical predictions
based on Eq. (36). It can be clearly seen that a sedimenting
sphere does not drift, but as the aspect ratio increases the
drifting angle increases. Again, the difference in the scale of
abscissa and ordinate may be noted. The simulations accu-
rately capture the drift for small aspect ratio particles despite
the smallness of the drift.

C. Spheroid suspended in a shear flow

Due to the constraints imposed by low-Reynolds-number
hydrodynamics, the sedimenting spheroid discussed in the
previous section did not exhibit any rotational motion. Here
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(a) (b)

FIG. 5. Trajectory of a spheroid settling at an angle to gravity. (a) a = 7.5 and b = 2.5. The angle of inclination, α is varied from 0 to
90◦ as indicated in the color bar. The initial position of the spheroid is (0,0), and the final locations of the spheroid at the end of simulations
(t = 200 000 steps) are highlighted with a black circle (•). The final locations [(x, z)] are also plotted in the inset. (b) The aspect ratio is
varied by varying a keeping b = 2.5. The continuous lines are from analytical predictions and the symbols are from the lattice Boltzmann
simulations. In the analytical calculations for the trajectories reported in (a) and (b) the settling velocity in the two principal directions of the
spheroid (ê ⊥ ĝ and ê ‖ ĝ) are taken from the lattice Boltzmann simulations directly.

we consider a spheroid suspended in a simple shear flow. A
sphere suspended in a simple shear flow rotates with an angu-
lar velocity commensurate with the vorticity of the imposed
flow, but a spheroid exhibits even more complex, periodic
motions as analytically calculated by Jeffery [72]. As shown
in Fig. 6(a) consider a spheroid suspended in a simple shear
flow u = γ̇ z where γ̇ is the imposed shear rate and u is the
velocity in the y direction. As noted in Refs. [71,72] the time
evolution of the orientation vector ê is given by

dê

dt
= � · ê + β[E · ê − ê(ê · E · ê)], (37)

where E and � are the rate of strain and vorticity tensors,
which are the symmetric and antisymmetric parts of the ve-
locity gradient tensor, respectively. β = a2−b2

a2+b2 is a measure of
the aspect ratio of the spheroid. Note that β = 0 for a sphere.

Figure 6(b) shows the results obtained when the spheroid is
placed in the flow-gradient plane. In this case, the symmetry
of the configuration restricts the rotation of the spheroid to the
flow-gradient plane and the orientation of the spheroid can
be completely specified by the Euler angle θ . In Fig. 6(b),
temporal evolution of θ for spheroids of various aspect ra-
tios are shown. The symbols are the data obtained from the
simulations and the continuous lines are analytical predictions
[Eq. (37)]. The dashed line indicates the rotation of a sphere
(b/a = 1), an object that rotates with constant angular veloc-
ity. As the aspect ratio increases (b/a decreases) (i) the angular
velocity decreases as indicated by the longer time periods of
revolution, and (ii) the angular velocity is not constant but
varies as a function of time. Capturing both these features,
a significant match between the simulation results and the
analytical predictions in Fig. 6(b) can be observed.

The suspended spheroid exhibits more complex, three-
dimensional trajectories when placed at an angle to the
flow-gradient plane. The resulting trajectories, captured by
the three components of the orientation vector, ex, ey, ez, are

shown in Fig. 6(c). Different curves correspond to different
initial orientations of the spheroid, specified by Euler angles
φ = 90◦, θ = 90◦, ψ . Here ψ = 0 shows the spheroid ini-
tially aligned along the vorticity axis. It then simply rotates
with a constant angular velocity without any change in orien-
tation, as indicated by a point in Fig. 6(c). For any 0 < ψ <

90◦, the spheroid exhibits three-dimensional trajectories. At
ψ = 90◦ the spheroid will be in the flow-gradient plane and
therefore the dynamics is restricted to a plane, as indicated by
the circle. The symbols are obtained from the LB simulations
and the continuous curve is the analytical prediction, Eq. (37).
The simulations accurately capture these nontrivial, three-
dimensional trajectories exhibited by the suspended spheroid
in the simple shear flow.

The simple shear flow in lattice Boltzmann simulations
is generated by placing two rigid walls in the x − y plane,
moving in opposite directions. However, Eq. (37) is derived
for a spheroid suspended in a fluid in an infinite domain.
Therefore, to understand the role of hydrodynamic interaction
of the spheroid with rigid walls and with periodic images,
simulations were performed in domains of size 263 up to 643.
The results are shown in Fig. 6(d). The analytical prediction
of Eq. (37) is shown by the continuous line. It can be clearly
seen that, compared to analytical predictions, the simulations
show significant difference in smaller domains, but the results
approach the analytical predictions with increase in domain
size. The mismatch seen in smaller domains is solely due to
the hydrodynamic interactions of the spheroid with its own
images and the confinement imposed by the rigid walls.

D. Spheroidal microswimmer

In the preceding sections we considered a rigid, passive
spheroid responding to externally imposed forces or flow
fields. In this section, we consider a spheroidal squirmer
microswimmer, an active particle with slip boundary
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(a) (b)

(c) (d)

FIG. 6. Jeffery orbits of spheroids in a simple shear flow at an imposed shear rate γ̇ = 1.56 × 10−5. (a) In-plane rotation of spheroids for
various aspect ratios, b/a. The dashed line indicates the motion of an object (such as a sphere) rotating with the vorticity of the flow (angular
velocity = 1

2 of vorticity). (b) Out-of-plane rotation of the spheroid. Orientation of the spheroid described ex, ey, ez for the initial orientation
φ = 90, θ = 90, ψ . The blue curve corresponds to the in-plane rotation. (c) In plane rotation (in flow-gradient plane) of the spheroid described
by the Euler angle θ (t ) in domains of different sizes.

conditions that generates its own flow field and exhibits self-
propulsion.

Following Theers et al. [73] the spheroidal squirmer ex-
hibits a surface slip velocity,

us = −B1(s · ê)s − B2ζ (s · ê)s. (38)

B1 and B2 describe the strength of two modes of swimming:
B1 mode describes the swimmer as a source dipole and im-
parts the swimmer polarity while B2 mode is apolar and
describes the swimmer as a force dipole, the leading order
description of a force-free particle. The latter distinguishes a
pusher swimmer (B2 < 0) from a puller swimmer (B2 > 0).
For B2 = 0 the microswimmer is neutral. In Eq. (38)

s = −
√

a2 − z2

√
a2 − ε2z2

ê +
√

1 − ε2

√
a2 − ε2z2

zê⊥ (39)

is the surface tangent vector when the long axis of the spheroid
ê is oriented along the z axis of the coordinate system [74].
The spheroidal coordinate ζ = [

√
x2 + y2 + (z + aε)2 −√

x2 + y2 + (z − aε)2]/(2aε). In the absence of any other ob-
jects or confinement, the spheroidal squirmer translates with a
swimming speed

Us = B1ε
−1[ε−1 − (ε−2 − 1) coth−1 (ε−1)]. (40)

The swimming velocity of a free, unconfined spheroidal
squirmer depends only on the value of B1 and not on the
strength of the force dipole B2. The same is true for a spherical
squirmer.

In the lattice Boltzmann implementation, the slip veloc-
ity prescribed by Eq. (38) needs to be incorporated into the
calculation of the velocity at the boundary nodes. A simple
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FIG. 7. Fluid velocity developed around a spheroidal squirmer (a > b = c) with three different swimming strengths (a) B1 = B2, a puller;
(b) B1 
= 0, B2 = 0, a neutral swimmer; and (c) B2 = −B1, a pusher. The orientation of the squirmer is indicated with a thick, black arrow. The
fluid velocity vectors are colored using a “jet” color map such that red arrows indicate larger velocity than blue arrows.

modification of Eq. (9) allows

ub = U + � × (xb − xc) + us(xb). (41)

Apart from this aspect, the procedure outlined in Sec. II re-
mains the same.

The fluid velocity fields generated by puller, neutral, and
pusher spheroidal microswimmers are shown in Figs. 7(a)–
7(c), respectively. The arrows represent the velocity vectors
and the color code indicates the magnitude of the velocity
ranging from blue as the lowest to red as highest velocity in
the domain. The thick black arrow indicates the orientation of
the swimmer. The neutral swimmer exhibits a flow field simi-
lar to that of a source-sink dipole aligned with the orientation
of the spheroidal swimmer. The correspondence between the
velocity fields of a puller and a pusher, namely fluid drawn
from the front and back for the puller, or fluid pushed away
from the front-back for the pusher, are also clearly evident in
the figures.

Crucial for the validation of the implemented lattice
Boltzmann algorithm is the swimming velocity of the
spheroidal squirmer. The slip velocity results in the thrust
force on the squirmer, while the viscous drag acts simultane-
ously in the opposite direction, resulting in a steady motion of
the squirmer with the translational velocity given by Eq. (40).
Hence, the steady swimming speed of the spheroidal squirmer
at various aspect ratios b/a is determined from the simulations
for two cases, (i) when B1/B2 = 5 and (ii) when B1/B2 = 1.
The results are shown in Fig. 8(a). In this figure, the y axis is
normalized by the steady translational velocity of a spherical
squirmer, 2

3 B1. The analytical solution given by Eq. (40) is
also plotted as a continuous line. The increase in the trans-
lational velocity of the squirmer with increasing aspect ratio
(decrease in b/a) is clearly obtained in the simulations as
predicted by the analytical calculations. The improvement in
accuracy with decreasing b/a is related to an effective increase
in resolution as b/a decreases (a is varied, b is fixed at 2.5 in
the simulations).

For a further check of the dependency of these results
on the choice of parameters B1 and B2, simulations were
performed by varying these quantities over an order of

magnitude. The results are shown in Fig. 8(b). In this fig-
ure the primary and secondary x axes show B1 and B2,
respectively, while the continuous lines show the analytical
predictions. On varying B1 the translational velocity of the
squirmer linearly increases while variation in B2 does not
result in any changes in the translational velocity. Both ob-
servations agree quantitatively with the analytical predictions
[Eq. (40)].

E. Improving accuracy of results

In the previous subsections we discussed the results ob-
tained from numerical simulations of spheroidal particles in
different contexts. The generality of the method was also
established by comparing the results from two different lattice
Boltzmann schemes, namely the D3Q19 and D3Q27 model.
In this section, and for completeness, we briefly discuss how
an increased spatial resolution improves the accuracy of the
results.

Figure 9 illustrates the results obtained from the numerical
simulations of (i) a sedimenting spheroid in broad-side on
configuration, (ii) a sedimenting spheroid in end-on config-
uration, and (iii) an active spheroidal microswimmer. In order
to change the spatial resolution, the size of the particle was
changed by keeping �x fixed, i.e., by changing �x/b. Simul-
taneously, in (i) the domain size was also changed in order
to avoid the changed effect of images (arising from periodic
boundary conditions), and in (ii) the gravitational force for the
settling particles and the slip velocity for the microswimmer
are changed to maintain the same Reynolds number, the only
nondimensional number of relevance in the present investiga-
tions. In all cases the translational velocity of the spheroidal
particle is determined and compared to the analytical solution.
The plots clearly indicate that the numerical results approach
the analytical solution as the spatial resolution is increased
(i.e., smaller ratio �x/b). However, this improved accuracy
comes at an increased cost of computational resources and the
parameters reported in the previous sections are recommended
as a compromise between accuracy and computational
resources.
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(a) (b)

FIG. 8. (a) Variation in the translational velocity of a spheroidal squirmer with respect to the changes in aspect ratio. The translational
velocity |U | is normalized with that of a spherical squirmer |U | = 2

3 B1. (b) Variation in the translational velocity of a spheroidal squirmer as a
function of B1 (on the primary x axis) and B2 (on the secondary x axis). Here the continuous line is the analytical prediction and the symbols
are data obtained from the simulations.

IV. CONCLUSIONS

In this work we present a lattice Boltzmann algorithm to
describe the modeling and hydrodynamic behavior of ellip-
soidal particles. The lattice Boltzmann method is a reliable
computational tool to investigate a variety of complex fluids.
Moreover, it is highly scalable and suitable for simulating
complex geometries. A simple bounce back scheme is im-
plemented on the surface of the ellipsoid. The application of
boundary conditions on the boundary nodes as done in this
work makes the scheme easier to adapt for active particles
which assume a slip-boundary condition. Similarly, regarding
the ellipsoid as a solid body avoids defining other field pa-
rameters (say, order parameter field for microstructured fluids)
on the solid nodes. The force and torque calculated on the
boundary nodes are used to update the position and orientation
of the ellipsoidal particles.

Determining the evolution of the orientation of the ellip-
soidal particles is the most intricate part of the algorithm. To
this end quaternions are used as they form the most efficient
way and stable option for integrating the orientational degrees
of freedom. As the definition of the quaternion is based on the
angular velocity of the particle, it (i) prevents renormalization
of errors and (ii) avoids separate numerical integration in dif-
ferent parts of the algorithm. Moreover, the use of quaternions
permits determining the instantaneous moment of inertia and
its time derivative without applying numerical approxima-
tions. Following Ref. [59] an implicit numerical scheme is
also proposed to determine the instantaneous translational and
angular velocity of the ellipsoidal particles in the fluid.

The method presented is validated using several known
analytical solutions in low-Reynolds-number hydrodynam-
ics. The translational velocity of a sedimenting spheroid in
both broad-side on and end-on orientation compares very

(a) (b) (c)

FIG. 9. The accuracy of the simulations is improved by changing the spatial resolution, �x/b, illustrated for (i) a settling spheroid with the
long axis of the spheroid oriented perpendicular to the direction of gravity, i.e., ê ⊥ ĝ; (ii) a settling spheroid with the long axis of the spheroid
oriented parallel to the direction of gravity, i.e., ê ‖ ĝ; and (iii) a self-propelling spheroidal squirmer. In (a) and (b) the kinematic viscosity is
ν = 0.1, whereas it is ν = 0.167 in (c). In all cases the translational velocity |U | is normalized with the translational velocity of a spherical
particle of radius r = b. The error bars indicate the error in the calculations originating from the discrete shape of the particle and are smaller
than the symbol in most cases with higher resolution.
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well with the analytical predictions. A sedimenting spheroid
inclined at an angle to gravity maintains its orientation dur-
ing the simulation time in accordance with the predictions
of Stokes flow while its center of mass drifts at an an-
gle intermediate between the direction of gravity and the
orientation of the spheroid. The simulations captured this
weak drift reliably. The applicability of the algorithm was
found to be independent of the choice of simulation param-
eters, orientations, and lattice Boltzmann models (D3Q19 and
D3Q27).

Simulations were also performed to investigate the capa-
bility of the algorithm to capture Jeffery orbits accurately.
These complex, three-dimensional trajectories are traced by
a spheroid when subject to simple shear flow. The results
discussed in Sec. III C show a very good match with ana-
lytical predictions despite the significant complexity of the
trajectories. Furthermore, the spheroidal particle exposed to
a slip velocity to simulate the dynamics of microswimmers in
a fluid. It was demonstrated that the algorithm can simulate
different types of swimmers such as pushers, pullers, and
neutral swimmers. The swimming velocity of the squirmer
and its variation with the aspect ratio of the squirmer and
strength of various swimming modes match the analytical
predictions. Currently we have restricted our analysis and
validations to prolate spheroidal particles, but the imple-
mented method is not restrictive; and future investigations will
include oblate spheroidal and nonaxisymmetric ellipsoidal
particles.

Anisotropic particles are commonly observed in various
areas of soft matter and complex fluids. Even in Newto-
nian fluids nonspherical particles exhibit rich dynamics as
outlined in this work. Considering that the lattice Boltz-
mann method proves to be a reliable computational tool for
simulating different types of complex fluids, including sus-
pensions, emulsions, and liquid crystals, this work shows that
the LBM is also a very promising candidate for simulating
hypercomplex liquids such as ellipsoidal particles dispersed in
complex fluids.
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APPENDIX: ALGORITHMIC STEPS

Below we provide the algorithmic steps related to the rigid-
body dynamics during one iteration step t → t + �t .

(1) Perform lattice Boltzmann collision operation.
(2) Perform lattice Boltzmann streaming operation on all

fluid nodes except those streaming to boundary nodes.
(3) Compute the velocity-independent force and torque

F0 and T0 using Eqs. (12) and (13) based on postcollision
distributions

(4) Compute the moment of inertia tensor and its time
derivative in the laboratory frame of reference using Eqs. (29)
and (32), respectively.

(5) Solve the set of linear equations described by Eqs. (18)
and (19) to determine the translational [U(t + �t )] and angu-
lar velocity [�(t + �t)] of the ellipsoid.

(6) Perform midgrid bounce back based on Eq. (9) for
populations streaming from fluid to boundary nodes.

(7) Update the position [x(t + �t )] using Eq. (20) and ori-
entation in terms of quaternions [q(t + �t )] using Eqs. (23)
and (24).

(8) Remap the nodes as solid, fluid and boundary nodes
based on the updated position and orientation of the ellipsoid
using Eq. (7).

(9) Recompute the drag coefficient matrices using
Eqs. (14)–(17).

(10) Go to step 1.
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