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Annealing algorithms such as simulated annealing and population annealing are widely used both for sampling
the Gibbs distribution and solving optimization problems (i.e., finding ground states). For both statistical
mechanics and optimization, additional parameters beyond temperature are often needed such as chemical
potentials, external fields, or Lagrange multipliers enforcing constraints. In this paper we derive a formalism
for optimal annealing schedules in multidimensional parameter spaces using methods from nonequilibrium
statistical mechanics. The results are closely related to work on optimal control of thermodynamic systems
[Sivak and Crooks, Phys. Rev. Lett. 108, 190602 (2012)]. Within the formalism, we compare the efficiency
of population annealing and multiple weighted runs of simulated annealing (“annealed importance sampling’)
and discuss the effects of nonergodicity on both algorithms. Theoretical results are supported by numerical

simulations of spin glasses.
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I. INTRODUCTION

Simulated annealing [1] and related Monte Carlo algo-
rithms such as annealed importance sampling [2], population
annealing [3,4], parallel tempering [5,6], simulated tempering
[7], the Wang-Landau algorithm [8], and nested sampling [9]
play an important role both in equilibrium sampling and opti-
mization and have been widely applied and studied in physics,
mathematics, computer science, and operations research.

Simulated annealing (SA) consists of a Markov Chain
Monte Carlo algorithm (MCMC) that samples the Gibbs
distribution together with an annealing schedule. The temper-
ature parameter of the MCMC is adjusted during the run of the
algorithm according to the annealing schedule which starts at
some high temperature where the MCMC mixes rapidly to
some low target temperature where mixing is slow. In opti-
mization applications, the target temperature is chosen so that
there is a significant probability of finding an optimal or near
optimal solution (ground state). The hope, born out by both
theory and numerical experiments, is that for finding optima
it is much more efficient to anneal to a low temperature than
to simply run the MCMC at the low temperature.

Simulated annealing was introduced to find optima (ground
states) but it can be extended [2,10] to be used as a Gibbs
sampler. In sampling mode, it is known as annealing impor-
tance sampling (AIS) and consists of multiple independent
runs of SA. Gibbs averages are obtained as weighted averages
over these runs. Population annealing (PA) consists of many
parallel, interacting runs of SA. At each step in the anneal, a
birth-death process, also known as resampling, removes some
of these runs and copies others to keep the population near
the equilibrium distribution and PA natively functions as a
Gibbs sampler. A similar idea is implemented in diffusion
Monte Carlo [11] and substochastic Monte Carlo [12] where

2470-0045/2024/109(6)/065301(15)

065301-1

the population represents a wave function and resampling
implements time evolution.

In this paper, we explicitly discuss the optimization of
annealing schedules for population annealing and annealed
importance sampling although the ideas are expected to carry
over, at least qualitatively, to other annealing algorithms.
Our formalism specifies annealing schedules that, for a given
amount of computational work, minimize systematic errors
in sampling the Gibbs distribution. The same schedules, with
end points at sufficiently low temperatures, are expected to
work well for optimization.

A great deal of work has been done to determine optimal
annealing schedules for SA. It can be proved [13,14] that
SA will converge to the global optimum if the temperature
schedule decreases to zero logarithmically slowly but these re-
sults are not useful in practical application. A variety of ad hoc
schedules have been proposed and studied, see, for example,
Refs. [15,16] and references therein. The proposed annealing
schedules that are most closely related to the present work
are based on constant “thermodynamic speed” [17,18]. Less
effort has been devoted to optimizing annealing schedules for
PA with several proposals discussed in Refs. [19-21].

Annealing algorithms are most frequently deployed with a
single control parameter, usually inverse temperature, how-
ever, there are many applications where multiple control
parameters are useful. In statistical physics, examples include
sampling Gibbs distributions with external fields or chem-
ical potentials. In optimization applications, parameters are
employed to enforce constraints via penalty terms. During
the anneal these penalties are typically increased so that
constraints are initially soft but fully enforced at the end
of the anneal. In the present work we develop a formal-
ism for optimized annealing schedules for multiple control
parameters.
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The paper is organized as follows. In Sec. II we review pop-
ulation annealing and develop the theoretical ideas for optimal
annealing paths in the context of multiple control parameters
and smooth annealing paths. The new theoretical material
is mostly contained in Secs. IIB and ITE. In Sec. [IB we
introduce continuous time annealing and, in conjunction with
the Appendix, describe a new resampling method, pairwise
residual resampling, that can be carried out quasi-continously
without introducing significant errors.

The theory of optimal annealing paths is developed in
Sec. IIE and is formally similar to the theory of optimal
control of thermodynamic systems introduced by Sivak and
Crooks [22] and their collaborators [23]. Following Sivak and
Crooks [22] we observe that the optimal annealing schedules,
at least near equilibrium, are geodesics relative to a metric
defined by the so-called “friction tensor.” The components of
the friction tensor are integrals of time correlation functions of
the forces conjugate to the control parameters. In the familiar
case of a single control parameter, usually inverse temper-
ature, the conjugate force is the energy. It is perhaps not
surprising that optimizing annealing algorithms and optimiz-
ing the control of thermodynamics systems are closely related
since annealing algorithms were motivated by thermodynam-
ics annealing and are computer instantiations of controlled
thermodynamic systems.

The friction tensor formalism assumes the dynamics, here
a Markov chain, is ergodic and near equilibrium throughout
the annealing schedule. However, in many realistic situations
the annealing path passes through a region where ergodicity
is broken, for example, at a first-order transition or in the low
temperature phase of spin glasses. In Sec. Il E 2 we extend the
formalism to a simple case of ergodicity breaking and explore
how transitions into nonergodic regions of parameter space
contribute systematic errors in population annealing. Within
a nonergodic region the global correlation times appearing in
the standard friction tensor diverge and must be replaced by
an average over correlation times within each isolated local
minimum of the free energy, which motivates the introduction
of a restricted friction tensor in Sec. IL E 3.

In Sec. III we extend the ideas developed for population
annealing to annealed importance sampling and discuss when
one or the other algorithm is expected to be superior. In
Sec. IV we present results from population annealing sim-
ulations for finding spin-glass ground states using various
annealing schedules, These results show that the restricted
friction tensor schedule is superior to two of the commonly
used schedules for population annealing. The paper closes
with a discussion in Sec. V.

II. POPULATION ANNEALING

Population Annealing is a sequential Monte Carlo method
[24] that sequentially transforms or “anneals” a population of
R replicas of the system from an easy to sample region of
parameter space to a difficult to sample region of parameter
space. During the anneal, two processes are used to carry out
the transformation of the population from one distribution to
another. The first is the action of an MCMC algorithm whose
invariant measure is the Gibbs distribution at the current value
of the parameters. The second step consists of resampling the

population, described in detail below. Simulated Annealing
can be understood as a special case of PA where the popu-
lation has one member (R = 1) and, therefore, no resampling
occurs.

Annealing is carried out following an annealing schedule,
which is a trajectory in the space of parameters of the Gibbs
distribution. In many applications there is a single parameter,
the inverse temperature 8, which controls the average energy
of the Gibbs distribution. In this work, we consider annealing
in multidimensional parameter spaces.

We write the generalized Gibbs distribution, 7 (o, A) for
the probability of microstate o given the vector of parameters
A = {A;} in the form

m(o,A) =exp[F(A) — E(o,A)], (1)

where E (o, A) is the dimensionless energy as a function of
system configuration ¢ and F(A) is the dimensionless free
energy defined as

F(L) = —log y_exp[—E(a, M. )

We use the notation (A), to indicate an average of observable
A over the generalized Gibbs distribution with control param-
eter vector A.

In many cases, the parameters appear linearly in the energy
function. For example, consider an Ising model with coupling
strength J in an external field 4. The dimensionless energy
function is given by

E({S) BT, Bh) = =BT Y SiS;—BhY S, (3
(i) i
where the spins S; take values +1 and the summation is over
the edges of the graph of coupled spins. The two control
parameters are A} = BJ and A, = Sh.
The annealing schedule, A(¢), is parameterized by time
t, which ranges over the interval O to 7. Time is measured
in units of elementary moves of the MCMC method. For
example, in the case of the Ising model with the Metropolis
algorithm as the MCMC a unit of time corresponds to at-
tempting a single spin flip. In standard implementations of
PA and SA time progresses in discrete steps but, to simplify
the analysis, here we consider time to be a real parameter
and assume that elementary moves of the MCMC occur as
a Poisson process, as in the case of Glauber dynamics. An
elementary MCMC move at time ¢ is governed by parameters
A(t). In the case of PA , time is considered to run in parallel for
each member of the population so the annealing time variable
is independent of the population size R.

A. Resampling and free energy

For PA , values of the control parameters are taken to be
stepwise constant functions of t with jumps at regular intervals
separated by step time d¢. Resampling is taken to occur instan-
taneously at the time of the steps in A(¢) and is a birth-death
process in the population of replicas. Let ¢ be a resampling
time and ¢ be a time immediately after the parameter change
at time ¢ (more mathematically, t* is shorthand for taking
a one-sided limit). Let w,(z) be the reweighting factor for
replica r between the Gibbs distribution with parameters A ()
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and A(tT),

| +
w, (1) = e Elor(0), At )]+E[Ur(t)vk(7)]’ 4)
o)
where o,(t) is the state of replica », R is the population
size, and Q(¢) is a normalization factor used to control the
population size,

R
1
o) = % 3 el O AL 020, (5)

r=1

The reweighting factors determine the (joint) distribution of
the copy numbers n,, the number of copies in the population
at time ¢t of replica r at time ¢. The copy numbers are
nonnegative integers whose expectations satisfy

E(n,) = w,. (6)

Note that n, = 0 means replica r is removed from the popu-
lation and n, = 2 means a copy of the replica is added to the
population. Equation (6) ensures that if the population at time
t is a good sample from the Gibbs distribution with parameters
A(t) then, after resampling, the population at time ¢+ will be
a good sample from the Gibbs distribution with parameters
A@h).

There are many ways to implement resampling that satisfy
Eq. (6) with either fixed population size or variable population
size [25,26]. Population annealing is typically implemented
with nearest integer resampling [26,27]. In nearest integer
resampling n, is independently chosen from either the floor or
ceiling of w, such that Prob(n, = |w,]) = [R/R®)]I(Jw,] —
w,), and Prob(n, = [w,]) = [R/R()](w, — |w,]), where
R(t) is the population size at time ¢ before the resampling
event and the factor [R/R(¢)] is employed so that on each
step the population is pushed toward the target size, R. The
formalism developed below assumes resampling with a fixed
population size, which is discussed in detail in the Appendix.

At any time during the anneal, an estimator for observable
A can be obtained from the population average, A,

- 1
A =2 A0, (7)

where A, (¢) is the value of A in replica r at time ¢.
The resampling normalizaltion, Q(t) [Eq. (5)] provides an
estimator of the free energy F' acccording to

FIAM@)] = FIMm)] — ) log Q(0), ®)

t<t<t

where the sum is over resampling times in the interval (¢, ,].
This relation follows from the Jarzinski equality [10,28] and is
also derived in the context of population annealing in Ref. [4].

B. Continuous time annealing

Although practical applications of annealing algorithms
employ piecewise constant schedules, here we will develop
a formalism for continuous annealing schedules. We can
achieve arbitrarily good approximations to a smooth A(¢) by
successively subdividing the time step, df between resampling
in a piecewise constant schedule. Henceforth, in this work
we assume the schedule is a smooth function of time. It is

not obvious that resampling is well-behaved when the time,
dt between resamplings becomes small. In the Appendix we
introduce a new resampling scheme, which we call pair-
wise residual resampling (PRR), that is well-suited to doing
frequent resampling. Pairwise residual resampling shares fea-
tures with nearest integer resampling, systematic resampling
and residual resampling [26] but is designed to work only in
the situation that the weights w, are very close to unity as is
the case for sufficiently small time steps. Other resampling
schemes such as multinomial and Poisson resampling are not
well behaved in the df — 0 limit.

For small time steps, the resampling normalization Q(t)
can be expanded to leading order in dt as

R
o) =1- %;E(Ur(t)v A1) — E(o,(1), A1) (9)

R
dt &L 9E, ()
-2 370 , 10
7T RETan (19

where E, is shorthand for the dimensionless energy of replica
r and summation over repeated indices is assumed. The ex-
pected number of copies of replica r reduces to

w, — 1 —dthi(X - X;). (11)
Here X! is the ith conjugate force of the rth replica,

X = __aE,(x)7 (12)
oA
and X; is the population average of X/ [see Eq. (7)]. In the
case of the Ising model in a field, Eq. (3), X; = Z(i.j> SiS;
is the dimensionless coupling energy and X, = ), S; is the
dimensionless magnetization.
From Egs. (8), (10), and (12) in the dt — 0 limit, the free-
energy estimator becomes

F[An)] = FIA1)] + / ar’ RiXi(1). 13)

4]

The integral in Eq. (13) represents the generalized work asso-
ciated with the anneal from ¢, to #,.

We conclude this section introducing some notation used
in the rest of the paper. The average of a quantity A over the
Gibbs distribution with parameters A is written as (A),. If we
carry out many runs of PA with schedule A = {A(¢) : 0 < <
T}, then the average over runs of the estimator A from each
run is written as (A(f))4. Note A(r) may depend on the an-
nealing path up to time . However, if the anneal is sufficiently
slow so that the population remains close to equilibrium, then
(A(t)) o ~ (A)rq). For example, the PA average for the free
energy is

(FIMi)Da = FIME)] + / ' (Kiha. (14)

and for an infinitely slow anneal we recover the standard result
for thermodynamic integration,

F[A(r)] = F[A(1)] —l—f dt' 1(XiOhay  (15)

1
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C. Culling fraction

An important metric associated with resampling is the
culling fraction €, the expected number of replicas removed
from the population during resampling. For both nearest in-
teger resampling and pairwise residual resampling (see the
Appendix), it is straightforward to see [21] that the culling
fraction for a single resampling step is

€ :1% Z (1 —w,). (16)

{rlw,<1}

Note that the complement, 1 — €, can also be interpreted as
the overlap between the Gibbs distributions before and after a
nearest integer resampling step. Two quite effective proposed
annealing schedules with a single control parameter for PA are
a fixed culling fraction schedule [21] and, equivalently for
nearest integer resampling, a fixed overlap schedule [19]. In
Sec. IV B we compare the friction tensor schedules proposed
below to fixed culling fraction schedules.

In the dt — O limit all w’s are near one, so the culling
fraction for a single resampling step is infinitesimal. The cu-
mulative culling fraction €(#, ;) over segment (7}, t,) of the
annealing path can be obtained by expanding w, to leading
order in dt and integrating over the annealing path segment.
Furthermore, since the population average of w, is one (or
very nearly one for nearest integer resampling), the sum in
Eq. (16) can be equivalently expressed as being over replicas
with w, > 1 except that the sign of the summand is changed.
Using Eq. (11) we obtain an expression for the cumulative
culling fraction along an annealing segment,

1 [~ . -
ety h) = ﬁf, dt<2 |)»,~(X,»’ _Xi)|>A. (17

If the population remains close to equilibrium, then the
nonequilibrium average (---), can be replaced by an equi-
librium average (- - - )x(),

1 [~ .
€(t,n) = 5/ dt’ (|L:8Xil)aa)- (18)
1
In this expression, 6X =X — (X)y).
If furthermore, the Gibbs distribution is a multivariate
Gaussian, as is often a good approximation, then we have

o) , )’\,[O—I%).\,j
€t )= | dt'\|——, (19)
' 2

where 0;; = (6X;6X;)() is the covariance matrix. In the sim-
ple case that the only control parameter is inverse temperature
the integrand reduces to Bo,/+/2 where o, is the variance of
the dimensionless energy.

D. Weighted averaging and systematic errors

A simple average over multiple independent runs of
PA reduces statistical but not systematic errors. Multiple
independent runs of PA can be combined using weighted
averaging to improve both statistical and systematic errors in
measuring either the free energy or an observable [27]. Let A,,
be the estimator of observable A from run m of PA and let F,,,
be the estimator of the dimensionless free energy in run m of

PA. The weighted average over M runs, A is given by

M
Am eXP(—Fm + f)a (20)

m=1

where F is the weighted average free energy,

M
— 1 -
F = —log i mE_l exp(—Fy). 20

It is assumed in these expressions that the population size R
and the annealing schedule in all runs are the same. For fixed
R, in the limit of M — oo, the weighted free energy and all
observables converge to their exact Gibbs value. In optimiza-
tion applications, weighted averaging corresponds simply to
choosing the best solution from all runs.

A single run of PA with finite population size will suffer
from systematic errors. The magnitude of these errors can be
obtained by comparing ordinary averaging over runs, which
does not suppress systematic errors to weighted averaging,
which becomes exact for large M. The central limit theorem
suggests that for large R, the estimators for observables and
the free energy should become Gaussian and then the system-
atic error is related to the (co)variances according to Ref. [27],

AA = cov(A, F) (22)
and
AF = var(F)/2, (23)

where AA is the difference between the exact value of the
observable and the expected result from a single PA run,

AA = (A)p — (A, (24
and (--- ), is an (ordinary) average over runs of PA (or SA)
with a schedule A that terminates at control parameter values
. The analogous definition of AF is

AF = (F)y —F(), (25)
where F (L) is the free energy associated with the Gibbs
distribution at control parameter values A.

Inspired by the central limit theorem, we assume that for
large R both cov(A, F) and var(F) scale as 1/R and we can
then rewrite the systematic errors as

AF = ps/2R (26)
and
AA = p;C(A)/R, (27)
where
pr = Rli_)n;ORvar(F) (28)
and
C(A) = lim M. (29)

R—co  var(F)

The quantity py, introduced in the context of PA in Ref. [27],
sets the scale of systematic errors in free energy measure-
ments. Furthermore, if the coefficient C(A) is approximately
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independent of the annealing schedule, then p, also sets the
scale of systematic errors in the observable A. Since A is
calculated from the final population and not from the whole
trajectory, we expect the C(A) is only weakly dependent on
the annealing path.

Thus, pr can be loosely interpreted as the popula-
tion size required to reach equilibrium. To minimize the
computational work of doing equilibrium sampling with
PA the annealing schedule should be chosen to minimize
pr. Much of the remainder of the paper is concerned with
obtaining tractable expressions for p, that are amenable to
minimization.

While py is related to systematic errors, other measures
have been proposed to estimate statistical errors in PA. One
of these, p; (see Refs. [21,26,27]) is based on the distribution
of family sizes. In this context a family is a set of replicas
descended from a single replica in the initial population and
0: is the sum of the squares of the family sizes divided by
the population size. Thus, at the beginning of the simulation,
o = 1 and is bounded by p, < R. As shown in Ref. [21], for
the Ising spin glass p; and py typically differ by a constant
that is small compared to p; itself. Because of this close
connection and the ease of measuring p,, we use this measure
to characterize the hardness of a spin-glass samples studied
in Sec. IVB. A second measure of statistical errors is the
effective population size introduced in Ref. [29], which is
bounded above by R/ p;.

E. Friction tensor

In this section we obtain a formal expression for py and
show that in the near equilibrium approximation, it can be ex-
pressed in terms of the friction tensor introduced in Ref. [22].
The variance of the free energy estimator is obtained by squar-
ing Eq. (13) and subtracting mean values so that Eq. (28)
becomes

T T
ps = lim R / dr’ / dt" 3t ) (X (t)8R; (1" )k (1),
R—o00 0 0
(30)

where A = A — (A) 5. This expression is a time integral over
a matrix of nonequilibrium correlation functions of the con-
jugate forces. The dynamics in the nonequilibrium average
includes both the dynamics of the MCMC and of resampling,
both of which promote the decay of correlations. In the more
general setting of sequential Monte Carlo algorithms, similar
expressions for the variance of the free energy estimator have
been developed [24,30].

To gain greater insights into the meaning of Eq. (30) and
to obtain a more tractable expression we make two related
approximations:

(1) The population remains close to an equilibrium sample
during the anneal.

(2) The control parameters vary slowly compared to the
time scale for the decay of correlations.

Given these approximations we set t' =¢” in the time
argument of the parameter velocities and we replace the
nonequilibrium average by an equilibrium average at the cur-
rent values of the control parameters. The resulting expression

takes the form of a time integral over a bilinear form,

T
pr= /(; dt}\.i([)cij(X(f))}"j(t)’ 3D

where &;;(A(7)) is the “friction tensor,”

Gii(A()) = 2/ dt’ (8X:(0)8X; (t"))aw)- (32)
0

The assumption that correlations decay quickly justifies tak-
ing the limit to infinity in the integral defining the friction
tensor. The friction tensor can be further decomposed into the
outer product of the matrix of equilibrium correlation times
and equal time covariances,

ij = 2Tij‘fii" (33)
where 0 = (8Xi6X)x) and

/oo ,(8X;(0)8X;(t"))ai
Tij = dt .
0 (0X:6X )

(34)

In the friction tensor approximation, the requirements for
a good annealing path are intuitively plausible: Regions of
parameter space with large values of variances or autocorre-
lation times should be avoided or, if they cannot be avoided,
traversed slowly.

From this point onward there are two directions to explore.
The first is to obtain a more detailed understanding of the
implications of Eq. (31). Fortunately, this equation is formally
identical and also conceptually related to the expression ob-
tained by Sivak and Crooks [22,23] for minimum excess work
paths in nonequilibrium thermodynamics so we can take over
their analysis with minimal modification.

The second, more difficult task is to understand the role of
resampling. In going from Eq. (30) to Eq. (31) resampling
has been explicitly removed from the expression since the
dynamics in the definition of the friction tensor is at a single
temperature and resampling only plays a role when the tem-
perature changes. It appears we have thrown away the baby
with the bath water.

1. Optimal annealing paths for population annealing

The friction tensor formulation of p; in Egs. (31) and (32)
is formally identical to the expression found by Sivak and
Crooks [22] for minimum excess thermodynamic work, which
allows us to adopt their analysis directly. They showed that the
friction tensor defines a pseudometric space whose geodesics
are minimum dissipation paths in a space of thermodynamic
parameters. In one dimension, the geodesic simply determines
the speed along the path and, when translated into an anneal-
ing schedule in the single parameter of inverse temperature,
the result is ([22], Eq. 12)

Bocg (35)

where, in this case, ¢ = 21,C/B%, C = ,32062, is the heat ca-
pacity, o, is the standard deviation of the energy, and 7, is the
integrated autocorrelation time of the energy. This annealing
schedule has the property that the rate of increase in py is
constant along the path.

The annealing schedule (35) can be rewritten as ,3 x
B/+/TC, which makes clear the similarity to the constant ther-
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modynamic speed schedule for SA proposed in Refs. [17,18],
which takes the form B o< B/7+/C. Here 7 is the “appar-
ent relaxation time” of the energy. Assuming that “apparent
relaxation time” is interpreted as the energy integrated auto-
correlation time the only difference between these schedules
is an extra factor of /7, in the denominator.

Rotskoff and Crooks [31] show how to compute geodesics
in the two-dimensional space of coupling energy and magnetic
field for the Ising model and these ideas could be applied to
determining annealing paths in the temperature-field plane.

2. Ergodicity breaking and the role of resampling

The friction tensor formalism developed at the end of
Sec. IIE does not take into account resampling since it uses
Gibbs averages taken at a single value of the control param-
eters. In this section we discuss the role of resampling. In
regions of parameter space where correlation times are short,
the role of resampling is relatively limited and difficult to
quantify. On the one hand, resampling helps keep the popu-
lation close to the current Gibbs distribution so that the local
equilibrium approximation in going from the full expression,
Eq. (30) to the friction tensor formulation, Eq. (31) is more
accurate. On the other hand, resampling increases the variance
of the free energy and covariance of the free energy with
observables because it is a stochastic process. It is not clear
which of these effects dominates for a given problem so that
it may be that AIS or simply using the MCMC at the target
values of the control parameters is more efficient.

Resampling becomes important in regions of parameter
space where correlation times become large so that, by itself,
the MCMC cannot reach equilibrium. Here resampling may
be required to maintain equilibrium as the control parameters
change. While a full analysis of the combined effects of the
resampling and the MCMC is beyond the scope of this work,
we will investigate a simple and relatively generic situation to
show how the friction tensor formulation can be modified to
include both nonergodicity of the MCMC and the contribu-
tions of resampling to p;.

In the simplified model, there are two disconnected regions
in configuration space below an ergodicity breaking transi-
tion. Within each region the MCMC is ergodic but transitions
between regions do not occur on the time scales of the sim-
ulation. We assume that within each of the two regions, the
MCMC is able to achieve local equilibrium in the region on a
reasonable time scale and it is these times that will enter into
the modified friction tensor formulation. To further simplify
the problem, suppose that inverse temperature § is the only
control parameter, energy E is its conjugate field and the
only relevant time scales are the energy autocorrelation times
in the two regions. Finally, we assume that the difference
between the entropies and energies of the two regions are
independent of 8. Let £ > 0 be the average energy difference.
The entropy difference can be parameterized by a transition
temperature, S, where the two regions are equally probable
in the Gibbs distribution. The conclusions we obtain for this
simple two region model should apply, at least qualitatively,
to situations where configuration space fractures into multiple
disconnected regions with more complex free energy land-
scapes.

The simple two-region model is discussed in Sec. IV of
Ref. [32]. The key result is that the probability, p(8) of being
in the lower energy (and lower entropy) regions obeys a Fermi
distribution,

1

p(B) = T o—(—pE (36)

and that the entropy difference is B.£. Suppose that the
MCMC becomes effectively nonergodic at 8,,. The interesting
and computationally difficult situation is when nonergodicity
occurs before the transition, 8, < B, while the target temper-
ature is after the transition, 8(T) > B, so that the low-energy
region dominates the distribution at the target temperature
but is improbable at the ergodicity transition. As the anneal
proceeds beyond g, resampling increases the fraction of the
population in the low-energy region but stochasticity in the
number of replicas in the low-energy region at f, is not
eliminated until well beyond . when nearly all the population
is in the low-energy region.

To evaluate the contribution to p; from resampling in the
two-region model, suppose, without loss of generality, the
energy in low-energy region is zero, and let n be the fraction
of replicas in this zero energy region. Since the annealing
schedule is in B the only conjugate field is the energy and
X =(1-nk.

If we ignore the stochasticity of resampling, then from
Eq. (4), we have the following differential equation for the
population in the low-energy region as a function of 3,

dn . B
dp En(l —n), 37

whose solution with initial condition n = n(8,) is

N e E
[+ n(B e — 1)’

Since we are only concerned with resampling, we use 8
as the independent variable instead of time in calculating the
double integrals defining pr [Eq. (30)] and obtain, for an
anneal from the ergodicity transition to infinite 8,

n(B) =

(38)

[e.¢] [e.¢]
pr = lim E°R / dp f dB’ (3n(B)8N(B" Na.  (39)
where (- --), is here an average over Gaussian initial condi-
tions. At the ergodicity transition the population size in the
zero energy region, Rn(B,), is a Poisson random variable with
mean and variance Rp(8,). For Rp(B,) > 1 the distribution
of n(B,) approaches a sharply peaked Gaussian distribution
with mean p(8,) and variance p(8,)/R.

To evaluate Eq. (39) we switch the order of averaging and
integration. The only integral to be done is

0 xe€
g(x) = /0 dZ m —1 (40)

= log(x)/€. 41
The first term in the integrand is transcribed from Eq. (38) and

the one is subtracted to make the integral convergent but does
not affect the final result for py.
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In terms of g, the expression for o, takes the form
pr = lim E2R[(gn(B)")a — (G(BNR]  (42)

To carry out these Gaussian averages in the large R limit, both
g(x) and g(x)? are expanded in a Taylor series around the mean

n(Bn) = p(B,) and terms to second order in [n(B,) — p(B.)]
are kept. The final result is simple and intuitive,

oy = 1/p(Bn). (43)

The intuition behind this result is that once the population size
exceeds 1/p(B,) it becomes likely that the low-energy state
is in the population and, via resampling, can grow to take
over the population. Beyond this point, systematic errors are
suppressed proportional 1/Rp(B,).

It should be noted that a subtle error has been made in
going from the exact Poisson distribution for the population
in the low-energy region to the approximate Gaussian dis-
tribution. Specifically, with probability e RP#)| there are no
members of the population in the low-energy region when the
system becomes nonergodic. In this situation, the algorithm
completely fails. Thus, it is more correct to say that oy as
calculated above controls systematic errors when the failure
probability is small, e RPB) « 1.

Although the above calculation applies exactly to the sim-
ple two-region model, the qualitative result should hold if
there are multiple disconnected competing regions, if there
are first-order-like transition preceded by ergodicity break-
ing among several regions in configuration space along an
annealing trajectory in several dimensions. Specifically, upon
crossing each first-order-like transition one expects a contri-
bution to oy that behaves as 1/p where p is the probability of
being in the lower energy region when ergodicity is broken.

Thus far we have assumed the MCMC is capable of equi-
librating replicas within each disconnected region but we
have not quantified the contribution to p, associated with the
MCMC due to correlation times and equal time covariance.
To estimate these contributions it is necessary to modify the
friction tensor formulation because resampling takes care of
redistributing replicas between disconnected regions and the
MCMC only decorrelates replicas within these regions. In the
next section we introduce a restricted friction tensor for use in
nonergodic regions.

3. Restricted friction tensor

Suppose there are k disconnected regions in configuration
space and that as a function of time along the annealing
path, the equilibrium probability of being in each region «
is py[A(¢)]. We assume that resampling distributes the pop-
ulation 14 () =~ pu[A(¢)], where n, is the fraction of the
population in region «. If we ignore the contribution of resam-
pling to oy and proceed as before from Eq. (30) to Eqs. (31)
and (32), then we obtain, for the restricted friction tensor ¢, i

£y =2 f dt' Y paM)BXi0)8 X, (1 Na)r, (44
0 o

where (---|a), is a conditional Gibbs average over the (dy-
namically determined) regions labeled by « and §,X = X —
(X|oe)a. Note that if one region dominates the average then

this expression reduces to the unrestricted friction tensor
expression. When there are several important regions of con-
figuration space, the restricted friction tensor is an average
over the friction tensors associated with each region.

In general, the conditional averages associated with the
restricted friction tensor are not known, however, we can
estimate the restricted friction tensor from the correlation
functions appearing in the full friction tensor if there is a clear
separation of time scales between the local relaxation time
within regions and global relaxation time. We have from the
law of total covariance:

(8X:(0)8X;(t)) = > pa(BuXi(0)8aX;(t")]er)

+ D Pal (i) = paiXiler)]

X [(Xj) = pa(Xjle)]. (45)

Note the second term on the right-hand side (RHS) of Eq. (45)
does not decay, but if we subtract off the linearly increasing
contributions to the integral defining the unrestricted friction
tensor we obtain the restricted friction tensor. To measure the
restricted friction tensor, we can do a linear fit of the time
integral whose limit is the full friction tensor,

2 f dt' (8X:(0)8X; (") = aij(Mx + &), (46)
0

where a;;(A) the second term Eq. (45) is independent of x.
‘We can write the restricted friction tensor in the same form as
Eq. (32),

¢l =2t)07; 47)

where the restricted integrated correlation time matrix t;; is
defined by this equation.

III. ANNEALED IMPORTANCE SAMPLING

Simulated annealing (PA with R = 1) can also be used
with weighted averaging; this application of SA is known
as annealed importance sampling (AIS) [2,10]. Annealing
importance sampling permits simulated annealing to be used
not only as an optimizer but also as a Gibbs sampler. In what
follows, we will compare a single run of PA with population
R to a run of AIS consisting of the weighted average over
R* runs of SA to better understand the pros and cons of
resampling. In an abuse of notation, for AIS we use F and
A to represent the estimator resulting a single run of AIS of
size R*. Multiple runs of AIS with the same R* can be addi-
tional combined using Egs. (20) and (21). With this notation,
combining Egs. (13) and (12) with R = 1 and Eq. (21) with
M = R*, we have

i 1 & hoo
FILt)] = FIL{)] —logFZexp (— /ﬂ dt x,x;),
. (48)
where
_ 0B
T TV

r

(49)
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In AIS , observables are obtained from the analog of Eq. (20),

R*
~ 1 = /g r »
A= e (‘/ awhx, ”)’ 0

Al

where A, is the value of the observable in run r of SA.
The variance of F for AIS now involves the exponential of
the integral along the annealing path. If the variance of the
exponential is itself small, then the formula for p; for AIS will
reduce to the PA formula except that two-time correlators are
with respect to the dynamics of the MCMC alone and include
no resampling.

A. Role of reweighting in annealed importance sampling

We can analyze the role of reweighting in AIS in the
context of the two-region model with the same assumptions
as used in the previous sections. The sum in Eq. (48) contains
two contributions, one from runs of SA that find the low-
energy region and one from runs that do not so that

F = Fy —log(n(B,) + (1 — n(B,))e” F=F%), (51)

Thus, py for AIS in the limit of large 8 is simply
py = Jlim_R'var(log(n(p,))). (52)

which gives exactly the same result as for PA, p; = 1/p(B,).

For the simple model of ergodicity breaking preceding a
first-order-like transition, we see that AIS and PA perform
equally well. However, for PA we have ignored the stochas-
ticity associated with resampling so, in principle, AIS may
be superior to PA. This conclusion conflicts with simulations
that show that PA with population size R is far superior to R
runs of SA for finding ground states of the three-dimensional
Ising spin glass (Edward-Anderson model) [33]. We believe
this difference is related to the fact that spin glasses and
perhaps many other systems undergo a sequence of several
first-order-like transitions as the temperature is lowered. This
phenomenon is known as temperature chaos [34,35] in the
spin-glass literature.

Furthermore, let us suppose the landscape of these succes-
sive transitions is nested in the sense that it is easier for a
replica that has already passed through one of these transitions
to pass through the next transition. In this situation PA will
be superior because resampling brings the population into the
low-energy region of the first transition so that more replicas
are exploring the subspace in which the next transition is
likely to be found. The simulation results of Ref. [33] suggest
that the landscape is indeed nested.

IV. SIMULATIONS

In this section, we describe the results of a computational
study comparing the performance of several one-dimensional
annealing schedules for population annealing applied to the
Ising spin glass. To compare the performance of these sched-
ules we measured both p; at low temperature and the
probability of finding the ground state.

TABLE I. Definitions of the annealing schedules investigated in
this paper. The schedules are defined by the inverse temperature
step size 88 and sweeps per temperature step ds as a function of B.
Note that the values given in this table are up to some normalization
factors, which are used to fix the total number of temperature steps
and sweeps. Here, ¢y is the uniform schedule, ¢ is the fixed culling
schedule, and ¢;, ¢, {3 are the three types of friction tensor sched-
ules. €, ¢, and 7, are the culling fraction, the friction tensor, and the
integrated autocorrelation time of the energy, respectively.

Name 8B 3s
Co 1 1
€ 1/e 1
gl 1—e/\/z Te
& 1/e Ve
& 1 NI

A. Numerical methods

We carried out PA simulations of 100 instances of the
three-dimensional Ising spin glass with Gaussian disorder on
a cubic lattice of size 10 x 10 x 10 with periodic boundary
conditions. We simulated 100 disorder samples using 5 an-
nealing schedules with a target population size of R = 103 and
nearest integer resampling. These disorder samples had been
previously studied in Ref. [21]. For each annealing schedule,
we carried out two separate sets of simulations. In the first
set we allotted a total of 1000 Monte Carlo sweeps to each
simulation and in the second set 3000 sweeps. In both cases,
the elementary move was a Metropolis spin flip on a randomly
chosen spin and one sweep consisted of 1000 elementary
moves. For each annealing schedule, the sweeps were divided
among 300 temperature steps starting at § = 0 and ending
at B =5. For each schedule and each sweep number, we
carried out 20 independent runs and estimated py at B =5
from the variance of these runs. For the probability of finding
the ground state for a given disorder realization, we used the
fraction of the 20 runs that found the same ground state energy
as found in Ref. [21].

We studied three friction tensor schedules satisfying g =
1/3/C [see Sec. IIE 1 and Eq. (35)], the commonly used fixed
culling fraction schedule satisfying 8 = 1/¢ (see Sec. I1C),
and a constant B-step schedule, 8 = const. The different an-
nealing schedules are distinguished by the inverse temperature
step size § 8 and sweeps per temperature step s as a function
of B. In our continuous time formulation, it is only the ratio
ds/8 B that is relevant to computing p, so that there are many
ways to implement schedules for a given . In the case of
the friction tensor schedules, we choose three options that
seem natural: (1) The number of sweeps per temperature step
is constant, (2) the number of sweeps per temperature step
yields a fixed culling fraction € in each resampling step, and
(3) the number sweeps is proportional to the energy integrated
autocorrelation time, ... If our simulations are close enough to
the continuous time (dt — 0) limit, then there is expected to
be little difference in the performance of these three schedules.

The five schedules and their designations are given in
Table I. In all cases, the constants of proportionality are fixed
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FIG. 1. Extraction of the energy autocorrelation time t, by linear fits to the integral of the energy autocorrelation function defined in
Eq. (34). Panels (a—f) show examples of this procedure at different inverse temperatures . We use a long run with 100 sweeps per temperature
step for one realization in each bin. A linear curve is then fit to the data after 70 sweeps and the intercept (shown by the red stars) is interpreted

as the autocorrelation time.

by the total number of temperature steps (300) and the total
number of sweeps, either 1000 or 3000.

The 100 spin-glass samples used in our study were selected
from a set of 5000 samples analyzed in Ref. [21]. As noted in
Ref. [21], the distribution of hardness for PA, as measured
by ps or p, is very broad and described by a log inverse
Gaussian distribution. The 100 samples used in our study were
selected to span the whole range of hardness encountered
in the randomly generated 5000 Gaussian instances. Specif-
ically, the 5000 instances were divided into 10 bins equally
spaced on a logarithmic scale ranging from the easiest to the
hardest instances. The 10 bins contain different numbers of
instances but are of equal logarithmic width. Ten instances
were then randomly selected from each of the ten bins so that
our study set of 100 instances are roughly uniformly spread
over the range of (log) hardness that would be encountered in
a much larger sample of instances. The value of p, measured
in Ref. [21] is taken as the true measure of the hardness of
each instance. As observed in Refs. [21,27], pr and p; differ
by a relatively small constant for spin glasses and can be used
interchangeably as a measure of computational hardness. We
note that resources devoted to the simulations in Ref. [21]
were much larger than used here and that we are reasonably
confident that p, has been measured in the asymptotic regime
and the exact ground state was found.

1. Measuring the integrated autocorrelation time

Relaxation times become very long in spin glasses so that
we use the restricted friction tensor formalism developed for
nonergodic systems in Sec. II E 3, which, in any case reduces
to the usual definition in the high temperature regime where
equilibration is fast. For simplicity of notation we refer to the
restricted energy autocorrelation time, defined in Eq. (47), as
7.. To obtain 7, we measured the autocorrelation function in
preliminary runs with 100 sweeps per temperature step for
one disorder realization for each of the 10 bins. The sum of
the energy autocorrelation function from 0 to t sweeps, minus
1/2, was fit to a linear function of t in the interval 70 and
100 sweeps. The intercept of the linear fit is identified as the
restricted integrated energy autocorrelation time, 7. The value
of 7, used in the annealing schedule for each bin was obtained
by averaging the value obtained from 20 runs on the examplar
of that bin.

Figure 1 shows the sum of autocorrelation function minus
1/2 for several values of 8 for a disorder instance in bin 3
and a single long run. The red stars mark the location of the
intercept, which is the value of 7,. For the highest temperature
shown (B = 0.3), the integrated autocorrelation function is
noisy but appears to flatten indicating that the full autocorre-
lation time has been measured. However, for all larger values
of B the integrated autocorrelation function is nearly linear
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0

FIG. 2. Autocorrelation time 7, versus inverse temperature
extracted by fitting a line to different sections of the integrated
autocorrelation function as illustrated in Fig. 1. The integrated au-
tocorrelation function was measured over 500 sweeps in total for a
select disorder realization in bin 3. The noise in the curves is due
to the fact that the data is taken from one single run here. For the
performance comparison simulations, we used the bottom range [70,
100] (bottom curve) to define t,.

with a positive slope in the range 70 to 100 sweeps indicating
that Metropolis dynamics are nonergodic on these time scales
but that a restricted integrated autocorrelation time can be
measured.

The lowest (purple) curve Fig. 2 shows 7, as a function
of B from the same run as shown in Fig. 1. We see that t,
rises sharply as 8 increases and reaches a maximum somewhat
before the critical temperature. Thereafter, in the nonergodic
low-temperature regime, t, slowly decreases. The roughness
of the curves is primarily because of the fact that this data is
from a single run.

The simple assumption in Sec. IIE 3 of two widely sepa-
rated time scales does not hold for spin glasses where there
are many time scales. This fact manifests as an ambiguity in
measuring 7, depending on the range over which the linear
fit is carried out. Unfortunately, t,, which is the intercept of
the linear fit, is very sensitive to the choice of the fit window.
To demonstrate this point, we measured 7, using different fit
windows in the same long run as described above. The results
are shown in Fig. 2. As the window is moved toward longer
times, there are two main effects: (1) the sharply rising curve
for small B extends closer to the critical point and reaches a
higher value, and (2) 7, in the large 8 phase is larger. However,
in the low temperature region, the different curves for t, are
similar except for a scale factor. Thus, the primary effect
moving the fitting window to larger times would be to sharpen
the peak in the §s/88 curve and to move computational work
from the high temperature to the low temperature phase.
Given a limited total number of sweeps, it is not clear how
to choose the best fitting window for measuring the restricted
autocorrelation time.

3000} — ¢ -
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FIG. 3. Number of sweeps per unit 8 as a function of inverse
temperature S for the three types of schedules: friction tensor (red,
), fixed culling fraction (blue, €j), and constant S-step (green, c).
The total number of sweeps, i.e., the area under the curves is 3000 in
all three cases. The ¢ schedule distributes the sweeps uniformly in
temperature, whereas the €y and ¢ schedules put more work at high
temperatures and close to the critical point, respectively.

In addition to t,, the variance of the energy, o2 is an input
to the friction tensor. Our estimator of this variance is the
geometric mean of population variance immediately after a
resampling step and immediately before the next resampling
step. The temperature step size s for the fixed culling frac-
tion schedule was obtained by direct measurement of 8s in
the same simulations used to obtain 7, and 062, which were
carried out using the adaptive fixed culling fraction schedule
described in Ref. [21].

2. Annealing schedules

Figure 3 shows &s/88 for the three types of schedule.
A single curve labeled ¢ can be used for all three friction
tensor schedules since they all have the same functional
form for As/ApB. The constant culling fraction schedule and
the friction tensor schedules are similar in doing very little
computational work at large B and instead relying on re-
sampling. The friction tensor schedule differs from the fixed
culling schedule in doing more sweeps in the region near
the spin-glass phase transition (at § = 1.07, see Ref. [36]),
where the autocorrelation time becomes large. The idea
that more sweeps are required near a phase transition or
where the autocorrelation time becomes large has been dis-
cussed in other studies of annealing and tempering algorithms
[18,20,21,37,38]. Figure 3 shows the fixed culling and friction
tensor schedules for bin 3 but in practice the schedules for all
bins were roughly the same and it would have been sufficient
to choose a single schedule for all bins.

The culling fraction is roughly proportional to the stan-
dard deviation of the energy [see Eq. (19)], which explains
why it decreases monotonically with 8. The friction tensor is
proportional to the product of the variance of the energy and
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FIG. 4. Scatter plot comparison of p, for the friction tensor schedules ¢; versus the flat schedule ¢y and constant culling schedule .
Each dot shows one sample with the vertical position of the dot representing o for the ¢; friction tensor schedule and the horizontal position

representing the competing schedule, either constant -

step, ¢ or constant culling fraction €. The color of the dot is the value of p,, given in

the color bar below the panels, for that sample obtained from long simulations [21] and represents the hardness of the corresponding instance.
Easy samples are in the lower left, while the hard samples are concentrated in the upper right of each panel. Panels (a) and (b) are measured
in 1000-sweep simulations, whereas (c) and (d) in 3000-sweep simulations. The value of p; is not meaningful when it is greater than 10° so
the comparison should only be trusted for the easier samples. The friction tensor schedule outperforms the other two schedules although the

difference is smaller as more sweeps are used.

the restricted integrated autocorrelation time, which leads to a scatter plot comparing a friction tensor schedule to one of
a sharply peaked functional form for §s/88 near the critical the two other types of schedules and the coordinates of each

point. dot represent the values of pr for a single disorder realization
and the two schedules labeled on the axes. The upper panels

B. Performance of annealing schedules are results from 1000 sweep simulations and the lower panels

Figure 4 presents py values for the 100 disorder realiza- form 3000 sweep simulations. The easiest samples are found

tions comparing the three types of schedules. Each panel is  in the lower left and the hardest in the upper right of each
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FIG. 5. Cumulative probability of finding the ground state for the five annealing schedules. The height of each bar represents the overall
probability of finding the ground state for the 100 disorder samples. Each bar is divided by horizontal lines into 5 blocks each containing 20
disorder realizations whose hardness is represented by the color bar with the easiest problems in the bottom block and hardest problems in
the top block. Panel (a) shows results from 1000 sweep simulations and panel (b) 3000 sweep simulations. The ground state is almost always
found using all schedules for the easier problems but for the hardest problems the ground state is rarely found.

panel. We have shown only the ¢; friction tensor schedule.
Similar scatter plots comparing the three friction tensor sched-
ules are not shown because the p; values are statistically
indistinguishable.

When py is comparable to or larger than R the system
is not well-equilibrated and the value of py is likely to be
underestimated, both because the population size is too small
and the number of independent runs to measure it is too small.
For these reasons, py is best suited for comparing the perfor-
mance of different schedules for the easier samples. We see
in panel (a) that p, for the constant B-step schedule is always
near or above 10° suggesting it is unable to well-equilibrate
any of the samples with 1000 sweeps. However the constant
culling and friction tensor schedules do succeed in equilibrat-
ing most of the easier samples with 1000 sweeps. For the
hardest samples, none of the schedules reach equilibrium even
with 3000 sweeps. For the harder samples, we cannot draw
meaningful comparisons between schedules based on the pf¢
measurements.

It is clear from Fig. 4 that the friction tensor and fixed
culling schedules are far superior to the fixed 8 schedule for
the easier samples. From Figs. 4(b) and 4(d) we see that the
friction tensor schedule outperforms the fixed culling schedule
though by a relatively small margin. Finally, it is interesting
to observe that the differences between the schedules are most
pronounced for the 1000 sweep simulations where computa-
tional resources are more limited.

We next turn to the probability of finding the ground state.
This metric is better suited to comparing the performance of

the schedules for the harder samples in the study set. These
samples are typically not well-equilibrated at the lowest tem-
perature, nonetheless, the ground state is sometimes found.

Figure 5 is a bar graph showing the cumulative probability
of finding ground states for all 100 samples for each of the
three types of schedules. If an algorithm always found the
ground state for every sample, then the height of the bar would
be one. The easiest samples are at the bottom of the bar and
the height of the bar at a given color level is the cumulative
probability of finding ground states easier than the hardness
represented by that color. The horizontal lines in each bar
separate groups of two hardness bins. Figure 5(a) presents
results for 1000 sweeps and Fig. 5(b) for 3000 sweeps.

First note the ground states are found with very high prob-
ability by all schedules for the two easiest bins (i.e., the height
of the first horizontal line is near 0.2, the value expected if the
ground state is found for all 20 samples in all 20 runs for that
sample). However, for the hardest 20 samples, represented by
the small rectangles at the top of each bar, the probability of
finding ground states is much less than 0.2. As was the case in
comparing the schedules by p, the friction tensor schedule
performs best and the constant S-step schedule worst. All
algorithms improve in going from 1000 to 3000 sweeps and
the difference between the algorithms diminishes. The most
dramatic differences are found for the probability of finding
the ground state for the 20 hardest samples using 1000 sweeps.
The average probability per sample of finding the ground state
is 0.16 for the friction tensor schedule, 0.09 for the fixed
culling schedule, and 0.06 for the constant 8-step schedule.

065301-12



OPTIMAL SCHEDULES FOR ANNEALING ALGORITHMS

PHYSICAL REVIEW E 109, 065301 (2024)

V. SUMMARY AND DISCUSSION

We have developed a formalism for quantifying the perfor-
mance of annealing schedules that is applicable to population
annealing and annealed importance sampling. This formalism
applies to annealing schedules that are sufficiently slow that
the system remains near equilibrium throughout the process.
In this setting the performance metric for annealing algo-
rithms, py is formally equivalent to the friction tensor metric
introduced by Sivak and Crooks [22] for optimal control of
thermodynamic systems. In the usual case of annealing in
a single parameter (inverse temperature) an explicit equa-
tion determines the rate of change of the parameter during
the anneal. The result is that the velocity (typically Monte
Carlo sweeps per unit time) is proportional to the inverse of
the square root of the friction tensor. The friction tensor itself
is the product of the variance of the energy and the energy
autocorrelation time.

In the interesting case of annealing in a multidimen-
sional parameter space the optimal annealing path is a
geodesic in the metric defined by the friction tensor [22].
Identifying geodesics or approximate geodesics in realis-
tic multiparameter annealing situations is a topic for future
work. Multidimensional annealing schedules could play an
important role in constrained optimization where annealing
parameters can be used to control the penalties associated with
constraints.

In addition to near-equilibrium annealing, we also consid-
ered the common situation of ergodicity breaking associated
with first-order transitions or temperature chaos. In these sit-
uations, the friction tensor formalism must be supplemented
by a term associated with traversing the ergodicity-breaking
region. In a first-order transition, there are two (or more)
local minima in the free energy landscape and the transition
occurs where the global minimum changes from a single “high
temperature” local minimum to one (or more) “low temper-
ature” minima. At some point in parameter space before the
transition, ergodicity breaking generally occurs. In the context
of a simple two-state model, we calculated that contribution
to py is equal to the inverse of the probability of being in the
low-temperature minima when ergodicity breaking occurs. In
addition, we proposed a modified version of the correlation
time matrix to include the presence of broken ergodicity.
Overall, optimizing a multidimensional annealing path in-
volves minimizing the sum of the friction tensor contributions
from the continuous path segments and the contribution of
the ergodicity-breaking transitions. It is left for future work to
study how to deploy these ideas to find good annealing paths
for a realistic multiparameter optimization problem.

Although the formalism applies to smooth annealing
schedules that remain near equilibrium except at sharp
ergodicity-breaking transitions, we expect it to be useful in
more realistic settings. To explore the practical validity of
these ideas, we carried out numerical simulations on the
three-dimensional Ising spin glass using population annealing
with inverse temperature as the sole annealing parameter. We
found that an annealing schedule based on the friction tensor
(modified for ergodicity breaking) outperformed schedules
based on either a fixed culling fraction or constant steps in
inverse temperature. The constant S-step schedule performed

very poorly related to the other two schedules because it
allocates too much work to the Metropolis algorithm at low
temperatures where both the variance of the energy and the
modified autocorrelation time are small. However, the fixed
culling fraction schedule, which has been employed in pre-
vious population annealing studies, performs almost as well
as the friction tensor schedules. These two schedules turn
out to be closely related. The difference is that the friction
tensor includes a factor of the energy autocorrelation time and
the culling fraction does not. The good performance of the
fixed culling fraction schedule results perhaps from the small
variation of the energy autocorrelation time when modified
for ergodicity breaking. Given the simplicity of determining
the culling fraction on the fly, a fixed culling fraction schedule
is useful in practice. It may be that a fixed culling fraction
schedule will also prove useful in the context of multiparam-
eter annealing.
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APPENDIX: PAIRWISE RESIDUAL RESAMPLING

To carry out pairwise residual sampling (PRR), the set of
replicas is divided into two subsets, ST and S~ according
to whether the replica weight is greater or less than one,
ST = {rlw, > 1} and S~ = {r|w, < 1}. (It may be the case
that some replicas have w = 1. These replicas are untouched
by PRR.) We define the total positive and negative residual
weights Wtand W~ associated with ST and S™, respectively,

as
WE =" |w, — 1.

reS*

(AL)

We make the assumption that the total residual weight is
less than one (WT + W ™) < 1, which will hold when dt is
sufficiently small. Individual residual weights are then also
less than one and since the sum of all w’s is R we must have
that Wt = W~ = W. Note that the expected value of W/R is
the culling fraction [see Eq. (16)].

Because the positive and negative residual weights are
equal, we are allowed to resample in pairs, making an extra
copy of a replica in S* and culling a replica in S~ so that
the population size stays fixed. Furthermore, in the limit W <
1 < R, no changes to the population are made with proba-
bility 1 — W/R or one pair is copied/culled with probability
W/R. Resampling involving more than one pair is suppressed
by an extra factor of W/R and can be ignored in the large
R limit. In the case that the culling/copying event is cho-
sen, the culled replica r_ is chosen from S~ with probability
(1 — w,_)/W and the copied replica r, chosen from S+ with
probability (w,, — 1)/W. It is straightforward to verify that
requirement for the copy numbers, Eq. (6), is satisfied and
that, like nearest integer resampling, for every replica in S+,
n, is either 1 or 2 while for every replica in S7, n, is either O
or 1.

We now show that PRR is well-defined for arbitrarily small
dt and that the overall contribution of resampling to the
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variance of observables is negligible. Consider the vari-
ance of the population-averaged conjugate forces, X. These
variances, through the Schwarz inequality, bound the con-
tributions to the growth of p. Our aim is to show that the
contribution to the growth of these variances due to resam-
pling is negligible in the small d¢ and large R limit.

In a single resampling step, X; is modified according to

_ 1 .
Xty =2 Z n X/ (t), (A2)
which can be rewritten as
y g 1 .
Xty = Xe(t) + = Z(nr — DX/ (). (A3)

These equations can now be used to analyze the evolution of
var(X;(¢)) in the absence of MCMC dynamics.
Using the Law of Total Variance we have that

var(X, (1)) = var(E(X () |{X"(1)}))

+ (varKe (X @)D) A (A4)
where the conditional expectation and conditional variance
are carried out holding the population at time ¢ fixed but
allowing randomness in the choice of copy numbers, {n,}
given the weights {w,}. The unconditioned variances are with
respect to the full nonequilibrium distribution induced by PA.
Using Eq. (A2) and the fact that the expection of n, is w,, the
first term on the RHS of Eq. (A4) can be written as

- 1
var(EX ¢ HHX 0)})) = ﬁvar(z w,X,f), (AS)

where in this equation and henceforth in the Appendix, a
variable without a time argument will assumed to be at the
time immediately before the resampling event 7.

In the small dt limit we can use Eq. (11) and expand to
leading order in dt to obtain

var(EX ¢ DX )= I%var(Z (1 —dthi(X] — )?,-))X,{).

(A6)

If the population is close to equilibrium and uncorrelated, then
we can obtain the approximate expression,

var(E (X ()X ()])

- 2 .
= var(Xy) + Edt)\,'Cov(aXiXk, Xi), (A7)
where the covariance is respect to the Gibbs distribution at
parameter values A(z). We will show below that the second
term in the decomposed variance Eq. (A4) is of negligible
magnitude compared to var(Xj). This enables us to rewrite

the above relation as the differential equation
dvar(Xy) 2.

—A
dt R
which describes the change in variances due to the change in
the parameters of the Gibbs distribution. This equation is not
exact because of correlation in the population but it reveals
the order in R dependence. The 1/R behavior of var(X,(t)) is
expected since X; is an average over a population of size R.
The second term on the RHS of Eq. (A4) contains the
contribution to var(X;) arising from resampling. Our goal is
to show that this term can be integrated in the dt — 0 limit
and is higher order in 1/R. From Eq. (A3) and noting that
Xi(t) is fixed by the conditioning we have

N 1
(varZ ¢ HIX D) A = F<var(2(n, — l)Xk’|{X’}>> .

A
(A9)

iCov(XiXk, X), (A8)

The argument of the variance on the RHS of this equation is a
random variable that is equal to zero with probability 1 — W/R
and equal to (X;* — X/ ) with probability W/R. Note that the
argument of the variance involves at most two terms in the
sum over the population. The culling probability [see Eq. (16)]
is an infinitesimal given by

) (A10)

dt . o
W/R = EZPW(Xi - Xi)

and near equilibrium can be approximated by dr (|A;8X;|) A)-

These observation lead to the conclusion that the resam-
pling contribution to the increase in variance is order dt so
it can be integrated and is well-defined in the dt — O limit.
Furthermore, the contribution from resampling is order 1/R?,
whereas var(X;) is order 1/R so the resampling contribution
is negligible in the large R limit.
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