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The normal modes, i.e., the eigensolutions to the dispersion relation equation, are the most fundamental
properties of a plasma. The real part indicates the intrinsic oscillation frequency while the imaginary part
the Landau damping rate. In most of the literature, the normal modes of quantum plasmas are obtained by
means of small damping approximation, which is invalid for high-k modes. In this paper, we solve the exact
dispersion relations via the analytical continuation scheme, and, due to the multi-value nature of the Fermi-Dirac
distribution, reformation of the complex Riemann surface is required. It is found that the topological shape
of the root locus in quantum plasmas is quite different from classical ones, in which both real and imaginary
frequencies of high-k modes increase with k steeper than the typical linear behavior in classical plasmas. As a
result, the time-evolving behavior of a high-k initial perturbation becomes ballistic-like in quantum plasmas.
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I. INTRODUCTION

The study of quantum plasmas has important applications
in the fields of, e.g., astrophysics [1], nanophysics [2,3], warm
dense matter [4], and inertial confinement fusion [5–8], and
thus received widespread attention in recent years. However,
some of its fundamental properties have rarely been seri-
ously discussed. For example, the exact eigensolution of a
degenerate quantum plasma. In this paper, we solve the Lan-
dau damping rate by means of analytical continuation (AC)
method, and avoid the branch cut discontinuity by extend-
ing the Riemann surface of the one-dimensional Fermi-Dirac
distribution function (1DFDDF). The AC method is a crucial
step to comprehend the damping normal modes of plasmas,
proposed by Landau a long time ago [9,10], which is widely
used in the field of classical plasmas, but rarely discussed
for quantum plasmas. The AC method is able to solve the
exact dispersion relation of normal modes (in our case, the
Langmuir wave) with arbitrarily high wave numbers, which
are important when microscale quantum kinetic effects are
involved.

The electrons in metals or semiconductors are the most
common and well-known example of quantum plasma. How-
ever, the behavior of electrons in such condensed matter
systems are often very complex due to lattice structures of the
ions and strong correlations among electrons. In this paper,
we consider extremely dense quantum plasmas, in which the
electron correlations are so weak that the random phase ap-
proximation [11] (RPA) can be appropriately adopted. Such
a dense, degenerate electron environment is ubiquitous in
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the universe. For example, the electrons in the core of main
sequence stars are partially degenerate, and fully degenerate
in a white dwarf. On earth, some inertial confinement fusion
experiments also produce degenerate quantum plasmas, such
as the fast ignition [6,12] and the double-cone ignition [5]
schemes. In addition, some of the energetic cosmic rays are
assumed to be related to waves and instabilities of dense plas-
mas [13,14]. In the aforementioned physical environments,
high-k quantum kinetic effects may have a significant impact
on microscale physics.

In most literature, the dispersion relation is often obtained
using the small damping approximation (SDA), which is only
valid for small wave numbers at which the damping rate is
very small (about two orders smaller than the frequency).
Solving the exact dispersion relation of quantum plasmas, on
one hand, can yield the exact frequencies and lifetimes of the
intrinsic mode; on the other hand, it also enables quantitative
analysis of some nonlinear processes. A typical example of
a nonlinear process would be three-wave interaction. Specif-
ically, in order to obtain the energy-momentum matching
condition of a three-wave interaction: ω1 = ω2 + ω3, k1 =
k2 + k3, the exact dispersion relation ω(k) of each wave is
required. An important three-wave process such as parametric
decay [15], two-plasmon decay [16–18], and stimulated Ra-
man scattering [19,20], are all related to at least one Langmuir
wave. Therefore, it is essential to obtain the exact dispersion
relation for the whole k region of our interest.

The theoretical basis of this paper is the so-called collision-
less quantum kinetic theory (QKT), which is, mathematically
speaking, a Wigner-Poisson system (WPS) of equations.

The RPA scheme is actually equivalent to the linearized
WPS [21]. In this paper, nonlinear effects will not be
considered, and the ions are treated as an immobile back-
ground (namely, we adopt the jelium model [22]). The main
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objective is to solve the exact dispersion relation of the quan-
tum Langmuir wave. Meanwhile, some interesting properties
of the complex quantum dielectric function will be discussed.

This paper is organized as follow. In Sec. II, we intro-
duce the complex structure of the Fermi-Dirac distribution
function, then briefly review the collisionless QKT and the
corresponding linear response theory, which is the theoreti-
cal basis of this paper. In Sec. III, we discuss the complex
structure of the dielectric function of quantum plasmas. And
thus the exact linear dispersion relation of quantum Langmuir
wave is solved by means of the aforementioned methods.
Numerical simulations are also presented to verify the re-
sults. Further discussion and main conclusion are presented
in Sec. IV.

II. THEORIES AND METHODS

We define a quantum parameter

ˆ̄h ≡ h̄ωp

2EF
, (1)

sometime is referred to as the normalized Planck’s constant.
Here, ωp =

√
4πe2n/me is the plasma frequency, and the

Fermi energy EF = h̄2(3π2n)2/3/2me. It seems strange that ˆ̄h
is proportional to n−1/2, since we expect that quantum effects
should be stronger for higher density. However, quantum ef-
fects are also stronger for lower temperature, while ˆ̄h is solely
dependent on n. Hence, to measure the importance of quantum
wave effects, a more appropriate choice would be

˜̄h ≡ h̄ωp

2kBT
, (2)

and once the degeneracy � = kBT/EF (the inverse of which
measures the importance degeneracy) is fixed, decreasing ˆ̄h
means increasing ˜̄h.

In this paper, we adopt the natural unit system, where
h̄ = me = e = kB = 1. And the frequency, number density,
velocity, length, and energy, are normalized to ωp, ne (elec-
tron density), vF (Fermi velocity), λF = vF/ωp, and EF

respectively.

A. Analytical structure of the 1DFDDF

The equilibrium state of electron obeys the 3D Fermi-Dirac
distribution (3DFDDF)

f3d(v) = 3

4π

1

e(v2−μ)/� + 1
, (3)

where the value of the chemical potential μ = μ(�) is chosen
such that

∫
f3d(v)d3v = 1.

As a fundamental study, we only consider the interaction
of electrons to a plane wave field, hence we can integrate over
the dimensions perpendicular to the wave, namely, we only
care the about the 1D Fermi-Dirac distribution (1DFDDF)
f1d(v‖) = ∫

dv⊥2πv⊥ f3d(v‖, v⊥). It is easy to prove that (see
the Appendix),

f1d(v) = 3
4� ln

[
e(μ−v2 )

/
� + 1

]
. (4)

FIG. 1. (a) Real (b) Imaginary part of the 1DFDDF (� = 0.1).
The dashed lines are the hyperbolae of Eq. (6), and the white dotted
lines are the branch cuts of Eq. (5).

Let v be a complex variant v = vr + ivi, then the 1DFDDF is
a multivalue function, the branch cuts of which are

vrvi = ±π

2
��, � ∈ 2Z, (5)

and the branch points are located at the hyperbola:

v2
r − v2

i = μ. (6)

The structure of the 1DFDDF is also thoroughly discussed
in Ref. [23]. The density of the branch points on the hyper-
bola increases with decreasing �. In Fig. 1, we plotted the
1DFDDF in complex-v plane, one can see that its imaginary
part is discontinued at the branch cuts. These discontinuities
are equal to the height of a Riemann leaf, which is 3π�/2
here, and they exist because we considered only a single leaf
the Riemann surface, see Fig. 2(a). We refer to the 1DFDDF
with an imaginary part of the form as in Fig. 2(a) as the
“non-extended” 1DFDDF. However, the logarithmic multi-
value analytic function has infinite leaves of Riemann surface.
Figure 2(b) presented seven leaves of them. From these seven
leaves, we extract out a surface that is continuous across the
branch cuts, see Fig. 2(c). The 1DFDDF with an imaginary
part of the form as in Fig. 2(c) is referred to as the “extended”
1DFDDF. Noticing that, after this operation, the discontinu-
ities do not vanish, but are moved from the branch cuts to the
hyperbola.

B. The Linearized WPS

The electrons in a collisionless quantum plasma obey the
Wigner equation [21]

∂t f + v · ∂x f + iϑi ˆ̄h∂p
[φ(x)] f = 0. (7)
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FIG. 2. (a) A single leaf (b) Seven leaves (c) Extended single leaf of the 1DFDDF (� = 0.1) Riemann surface.

Here f = f (x, v, t ) is the Wigner quasidistribution function,
which is the quantum counter part of the classical distribution
function, and the pseudodifferential operator ϑ is defined by

ϑy[O(x)] ≡ O
(

x + y
2

)
− O

(
x − y

2

)
. (8)

Noticing that when y � x, ϑy[O(x)] � y · ∇O, then Eq. (7)
reduces to the Vlasov equation, thus the Wigner equation is
also called the quantum Vlasov equation.

And we need the Poisson equation

−∇2φ = nb − e
∫

f dv, (9)

where nb stands for the background ion density, to close the
system. Let f = f0 + δ f , φ = φ0 + δφ, and consider only
the direction parallel to the wave vector, the linear evolution
of the perturbed field can be formally written as [24]

δφ(t, k) = i

k2

∫∫
dv‖

dω

2π

δ fk0(v‖)e−iωt

(ω − kv‖)ε(ω, k)
, (10)

where δ fk0(v) is the initial perturbation, and the dielectric
function (DF) is defined as

ε(ω, k) = 1 + 1

k2
W ( ˆ̄hω, ˆ̄hk), (11)

where

W (ω, k) =
∫

dv
ϑk[ f (v)]

ω − kv
(12)

is the Lindhard response function [25]. As � → ∞, f (v)
tends to the Maxwellian, namely, in the classical limit, it
reduces to

W (ω, k) = 2

�

1√
2π

∫
dv

ve− v2

2

v − ω/k�

= − 2

�
Z ′

(
ω

k�

)
, (13)

where k� = k
√

�/2, and Z is the famous plasma dispersion
function. It is evident that in quantum plasma, the linear re-
sponse function is dependent on both ω and k, but in classical
plasma, it depends only on the ratio of ω to k. The response
function then does not depend on ˆ̄h, which means that when
� is large enough, the system naturally returns to classical, no
matter the value of ˆ̄h.

The roots of the eigenequation

ε(ω, k) = 0 (14)

yield the dispersion relation of the normal modes. Here,
ω = ωr + iωi is a complex number. To calculate the DF (11)
exactly with negative value of ωi and solve Eq. (14), AC is
needed for ωr = 0 is a branch cut, namely, when ωi < 0, the
response function (12) should be modified to

W (ω, k) =
∫

dv
ϑk[ f (v)]

ω − kv
− 2π iϑk

[
f
(ω

k

)]
, (15)

where the 2π i term stems from the residue of the integrand of
Eq. (12). In the classical limit, it is

�

2
W (η) = 1 −

√
2ηF

(
η√
2

)
+ i

√
π

2
ηe− η2

2 , (16)

where η = ω/k�, and

F (x) = e−x2
∫ x

0
et2

dt (17)

is the Dawson integral.

III. QUANTUM LANGMUIR WAVE

A. Analytical structure of the quantum dielectric function

The Landau damping rate is the negative imaginary part of
the eigenfrequency. To calculate the DF with negative imagi-
nary frequency, analytical continuation is needed. Notice that
for extremely degenerate plasmas, analytical continuation is
not needed when k < kF = vF = ωpλ

−1
F , since the dielectric

function has an analytic solution when � → 0:

εr (ω, k) = 1 + 3

2k2

[
1 + 1

2ˆ̄hk

(
1 − b2

−
)

ln

∣∣∣∣1 + b−
1 − b−

∣∣∣∣
− 1

2ˆ̄hk

(
1 − b2

+
)

ln

∣∣∣∣1 + b+
1 − b+

∣∣∣∣
]
, (18)

εi(ω, k) = 3π2

4 ˆ̄hk3
ln

1 + exp[(b2
+ − μ)/�]

1 + exp[(b2− − μ)/�]
, (19)

where ε = εr + iεi, and

b± = ω

k
±

ˆ̄hk

2
. (20)
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FIG. 3. [(a),(b)] Real and imaginary part of the dispersion
function without analytical continuation, and (c), (d): with analyt-
ical continuation. The dashed lines are mappings of the branch
cuts. The red lines stand for Re[ε(ω, k)] = 0, and blue lines for
Im[ε(ω, k)] = 0.

Thus one can see than only when |b±| > 1, namely,

−k ±
ˆ̄hk2

2
< ω < k ±

ˆ̄hk2

2
, (21)

the DF has finite imaginary part. The area enclosed by (21) is
referred as to the electron-hole excitation continuum (EHEC),
in which a plasmon delay into an electron and a hole. The

above formula is obtained based on the SDA:

lim
y→0

1

x ± iy
= P 1

x
∓ iπδ(x), (22)

which is incorrect when ωi is finite. In the following, we
directly solve the Eq. (15) without any approximation scheme.

In Fig. 3, the numerical results of dispersion function with
or without AC are presented (� = 0.1, ˆ̄h = 0.6), where the
wave number k = 0.3. The upper two panels (a) and (b) are
the real and imaginary parts of the DF without AC, while the
lower two are with AC. It is shown that the discontinuity of
the 1DFDDF is explicitly mapped from the complex v plane
to the complex ω plane by the ϑ operator, since in the calcula-
tion, we used the non-extended 1DFDDF, i.e., the single leaf
Riemann surface of Fig. 2(a). The series of pairs of black dots
in the lower half plane are located at two hyperbolas, whose
vertices are μk ± ˆ̄hk2/2, respectively.

In the rest of this paper, the imaginary part of the DF
would not be presented, but we still keep the Im[ε(ω, k)] = 0
lines in the real DF diagrams. And the color bar will also be
neglected since the absolute values of the DF are irrelevant in
the context.

Take an example of a degenerate plasma, say, with density
n = 3 × 1026 cm−3, and temperature T = 300 eV. Then we
have the quantum parameter ˆ̄h = 0.2 and � = 0.2. The real
DF of such parameters in complex frequency plane are plotted
In Fig. 4, where the real root loci are indicated by red lines
and the imaginary loci by blue lines. Noticing that the real
and imaginary loci have multiple intersections, which stand
for multiple solutions of the normal modes. Generally, we
only care about the least damping mode, i.e., the intersec-
tion point with maximum ωi, which we indicated by black
crosses in Fig. 4 and labeled its value. In Figs. 4(a)–4(e), we
used the single leaf 1DFDDF, the discontinuities occur at the
branch cuts. One can see that there are no intersections in
Fig. 4(e), so we have to use the extended 1DFDDF to move the

FIG. 4. Complex frequency plane of dispersion function, with � = 0.2, ˆ̄h = 0.2.
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FIG. 5. Complex frequency plane of dispersion function, with � = 0.006, ˆ̄h = 0.06.

discontinuities to the hyperbolas, as is seen in Fig. 4(f), in
which a damping mode is obtained.

For another example of extremely degenerate plasma,
we choose density n = 3 × 1029 cm−3, and temperature T =
103 eV, which could be the interior of a typical small white
dwarf. Then we have the ˆ̄h = 0.06 and � = 0.005. The DF
results are presented in Fig. 5. One finds that, at such small
�, the distance among each branch cuts are extremely small.
All the modes with finite damping rate are located between
the two hyperbolas (a gap opened by quantum wave effect).
Hence the extend 1DFDDF is indispensable in this case. From
Fig. 5, one also finds that when ωi is finite,

ωr � μk +
ˆ̄hk2

2
, (23)

and since μ → 1 when � → 0, this is upper bound of the
EHEC.

Now we briefly discuss the topological features of the root
loci. Generally, the imaginary locus starting from ∞ + 0i,
passing through every pair of branch point, while the real
locus start from one of the branch points and end with another.
If the starting and ending points are a pair, and the locus
is above the line joining the two branch points, we refer to
this topological shape as “classical”, for it is topologically
identical to the classical solution, see Fig. 6 (The classical
thumblike figure is very common in the field of classical
plasma instabilities, e.g., see Ref. [26]). Otherwise it is a
“quantum” shape. For example, the (a)–(d) panels in Fig. 4
are classical, while (d)–(f) are quantum. And in an extremely
degenerate case like Fig. 5, the classical shape does not exist at
all. Furthermore, a quantum shape means that the least damp-
ing mode is most likely located within the two hyperbolas.

FIG. 6. The DF complex frequency plane of classical and almost-
classical plasmas.

In Fig. 6, the classical sub-figure is calculated via Eq. (16),
and the other two are quantum results with � = 4, which is
almost Maxwellian, it is shown that the normal modes in these
there sub-figure are fairly close to one another. As � → ∞,
all the branch points going to −i∞, and we know that the
value of ˆ̄h (or ˜̄h) only effects the distance between a pair of
branch points. This diagrammatically demonstrated that the
larger � is, the less important the value of ˆ̄h (or ˜̄h) is.

B. Exact solution of the normal modes

It is worth mentioning that, ε(ω, k) = 0 has multiple roots
in a finite region of the complex ω plane, as one can see from
Fig. 3, but we only care about the lowest damping mode.
Hence, to solve the full dispersion relation of the QLW, we
can start from k � 0+, and calculate a small region centered at
ω0 = 1 + 0+i to find the first root ω1 and record the difference
ω1 = ω1 − ω0. Then we increase k with a small value and
calculate a next region centered at ω1 + ω1 to find the sec-
ond root. Repeating this procedure, then a continuous curve
of the complex frequency of the QLW as a function of k is ob-
tained. The full solutions of normal modes ω(k) with different
densities are plotted in Fig. 7. In Fig. 7(a), where ˆ̄h = 0.4 is
corresponding to electron number density n = 4 × 1024 cm−3,
and � = 0.2, 0.4, and 0.8, are corresponding to the temper-
ature T = 19, 37, and 74 eV. In Fig. 7(b), where ˆ̄h = 0.2
corresponds to electron number density n = 3 × 1026 cm−3,
and � = 0.1, 0.2, and 0.4, correspond to the temperature T =
170, 340, and 680 eV. In Fig. 7(c), all the curves are calculated
with � = 0.02, since the shape of the curves hardly change
when � further decreases, we annotated they as � < 0.02,
or, one can simply treat them as zero-temperature results. The
dashed lines attached to each solid line are the corresponding
upper bounds of the EHEC. One can see that the solid lines
are slightly lower than the dashed lines only in a very small
region, which means that the EHEC predicted by Eq. (21) is
incorrect when k is large. This is because the derivation of
Eq. (21) is based on the SDA, which is incorrect for finite
damping rate.

C. Numerical benchmark of the normal modes

The WPS, i.e., Eqs. (7) and (9), can be solved numerically
[27–29] as a initial value problem. We thus perform a 1D1V
simulation of the WPS, i.e., we consider only one dimension
in both real space and velocity space (a 2D phase space). In
the simulation, we set the initial perturbation as

f (x, v, 0) = [1 + A cos (k0x)] f1d(v), (24)
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FIG. 7. Dispersion relations calculated via the SDA and AC method. Solid lines: AC results. Dotted lines: SDA results. Circled/triangular
markers: frequencies/damping rates measured from Wigner-Poisson simulations. Dashed lines in (c): the damping-undamping boundary from
Eq. (21).

and let it evolve, then measure the frequency and damping rate
of the perturbation. The factor A is chosen to be very small
to avoid nonlinear effects. When the initial perturbation is set,
the time-dependent behavior of the perturbed field δφ consists
of a ballistic mode and an infinite number of normal modes,
and this can be shown by rewriting Eq. (10) as

δφ(t, k) = 1

k2

∫
dvδ fk0(v)

×
[

e−ikvt

ε(kv, k)
+

∑
n

e−iωnt

(ωn − kv)∂ωnε

]
, (25)

where the first term in the bracket stands for the ballistic mode
while the second is the normal modes.

Some results are presented also in Fig. 7, where the colored
circles stand for real frequency measured from simulation
result, and the triangles for damping rate. In addition, there is
a dotted line attached to each colored line, which is calculated
by SDA scheme, where the real part of the frequency ωr is the
root of the equation

εr = 1 + 3

2k3
[g(b+) − g(b−)] = 0. (26)

with [30]

g(x) =
∫ ∞

0

ydy

e(y2−μ)/� + 1
ln

∣∣∣∣x + y

x − y

∣∣∣∣, (27)

and the imaginary part is

ωi = − εi

∂εr/∂ω

∣∣∣∣
ω=ωr

. (28)

Noticing that the SDA result has an unphysical cutoff:
when k is beyond a certain value, ωr has no solution and
ωi goes to minus infinity. The simulation results and the AC

numerical results of normal modes match up perfectly. How-
ever, the simulation results of high-k modes are not shown,
especially in Fig. 7(c), where the damping rates of the sim-
ulation points with the largest k are one order lower than
the real frequency. We do not present the result of high k
because it is found that those high-k modes have uncertain
frequency, or, do not damp exponentially, it is impossible to
measure the real frequency or the damping rate. The reason
for this non-exponential behavior is, as we have mentioned
previously, in degenerate plasmas, when k is large enough,
the topological shape of the real locus become nonclassical,
which results in the frequency and the damping rate of normal
modes increase faster than linear with k. Hence, beyond a
critical value of k, the normal mode damps faster than the
ballistic mode, the time-dependent behavior can then be domi-
nated by the ballistic mode. We surmise that this phenomenon
occurs for two reasons: (1) The damping rate increases with k
faster in quantum plasmas than in classical plasma, hence the
damping rate in quantum plasmas is more likely higher than
the normal modes; (2) In our simulation, the initial shape of
the perturbation is the same as the equilibrium shape, thus the
perturbation possesses a steep edge at the Fermi surface. It is
well known that an initial shape with a sharp edge results in
ballisticlike time-asymptotic responses [24].

The proof of the above statement is represented in Fig. 8,
where the red lines are the pure ballistic evolution obtained by
integrate the first term in Eq. (25). In Fig. 8(a), where � = 0.2
and ˆ̄h = 0.6, when k = 1.3, the ballistic mode damps faster
than the normal mode, hence the simulation result shows a
clear normal mode with ωi = −0.185 (the dotted line stands
for e−0.185t ). However, when k = 2.1, the normal mode should
give ωi = −0.944, while the simulation curve damps slower
than e−0.944t and is almost identical to the ballistic mode, and it
confirms our conclusion. Also notice that the simulation curve
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FIG. 8. Temporal evolution of linear perturbations calculated by
numerical simulation (the blue lines), and the ballistic evolution
(the red lines): (a) � = 0.2, ˆ̄h = 0.6, (b) � = 0.02, ˆ̄h = 0.05. The
dotted-lines indicate the damping rate calculated by the eigenequa-
tion (14).

does not have a clear real frequency. Similarly, in Fig. 8(b),
where � = 0.02 and ˆ̄h = 0.05, a clear normal mode with
ωi = −0.0957i is measured for k = 2.1, but for k = 2.9 the
long time behavior is interfered by ballistic mode, hence no
clear normal mode can be seen.

IV. DISCUSSION AND CONCLUSION

In this paper, we adopt the analytical continuation scheme
to solve the dispersion relation of degenerate plasma.
Compared to the SDA scheme, the AC scheme can solve

the normal modes of a dielectric system with arbitrarily high
k, which is crucial when small-wavelength quantum kinetic
effects are encountered. We find that in degenerate plasmas,
the normal mode frequency and its damping rate increase
with k steeper than linear, which is related to the “quantum”
topological shape of the root locus. As a result, the temporal
evolution of a high-k perturbation in quantum plasmas is
dominated by ballistic mode. Especially, the exact solution of
the linear dispersion relation is the basis of the quantitative
analysis of noninear effects such as parametric decay, two-
plasmon decay, Raman scattering, and etc., in dense plasmas.
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APPENDIX: 1D DIRAC-FERMI DISTRIBUTION
FUNCTION

In light of the properties of the polylog functions:

Li0(z) = z

1 − z
, (A1)

Li1(z) = − ln(1 − z), (A2)

and

dLin(ex )

dx
= Lin−1(ex ), (A3)

the 3DFDDF Eq. (3) can be written in the form of

f3d(v) = − 3

4π
Li0

[−e(v2−μ)/�
]
. (A4)

Then the 1DFDDF is

f1d(v‖) = −3

2

∫ ∞

0
Li0

[ − e(μ−v2
‖ )/�ev2

⊥/�
]
v⊥dv⊥

= −3

4
�

∫ ∞

0
Li0

[−e(μ−v2
‖ )/�e−x

]
dx

= −3

4
�Li1

[−e(v2
‖−μ)/�

]
= 3

4
� ln

[
e(μ−v2

‖ )/� + 1
]
. (A5)
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