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Melting curve of two-dimensional Yukawa systems predicted by isomorph theory
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The analytical expression for the conditions of the solid-fluid phase transition, i.e., the melting curve, for
two-dimensional (2D) Yukawa systems is derived theoretically from the isomorph theory. To demonstrate that
the isomorph theory is applicable to 2D Yukawa systems, molecular dynamical simulations are performed under
various conditions. Based on the isomorph theory, the analytical isomorphic curves of 2D Yukawa systems are
derived using the local effective power-law exponent of the Yukawa potential. From the obtained analytical
isomorphic curves, the melting curve of 2D Yukawa systems is directly determined using only two known
melting points. The determined melting curve of 2D Yukawa systems well agrees with the previous obtained
melting results using completely different approaches.
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I. INTRODUCTION

The isomorph theory [1–6] refers to the theory of the
hidden scale invariance [6], which is widely investigated in
various liquids and solids [7–13]. Specifically, the isomorph
theory suggests that various liquids and solids exhibit quasi-
invariant curves, i.e., isomorphic curves or isomorphs, along
which some properly reduced structural and dynamical quan-
tities are approximately invariant in the thermodynamic phase
diagram [5,6]. Usually, the isomorph theory applies to the
Roskilde-simple (R) systems [12], where there are strong cor-
relations between the virial and potential energy equilibrium
fluctuations [6]. Previous investigations suggest that most van
der Waals bonded, metallic, as well as weakly ionic or dipolar
systems exhibit the isomorphic curves, while most directional
bonded systems, such as water, do not [1,6–8]. Furthermore,
it is found that the model systems with the interactions of
the inverse power law [8,10], the Lennard–Jones [1–3,5], the
Buckingham [8], etc., also exhibit the isomorphic curves.

Dusty (complex) plasma [14–21] consists of many micron-
size dust particles in the plasma environment, which exhibit
collective behaviors. Under the typical laboratory conditions,
these dust particles are highly charged to ∼− 104 elementary
charges, so that they interact with each other through the
Yukawa repulsion [22]

φY(r) = Q2

4πε0r
exp

(
− r

λD

)
, (1)

where λD is the Debye screening length and Q is the charge on
each dust particle. The potential energy between neighboring
dust particles is significantly higher than their kinetic energy,
i.e., these dust particles are strongly coupled, exhibiting the
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solidlike or liquidlike properties [23–45]. Due to the gravity
effect, these dust particles are able to self-organize into a
single layer [15], i.e., a two-dimensional (2D) suspension, in
the plasma sheath [24–33,46]. The individual particle motion
can be directly captured by video imaging and then analyzed
by particle tracking [47], so that dusty plasma provides an
excellent model to study various fundamental physical proce-
dures, including melting [44,48–51], at the individual particle
kinetic level [52].

To quantitatively investigate the properties of dust plasmas
under various conditions, the Yukawa systems are usually
used in simulations and theories [53–55]. Dusty plasmas
and Yukawa systems are traditionally characterized by the
coupling parameter � = Q2/4πε0akBT and the screening pa-
rameter κ = a/λD [17,19,20,23]. Here, kB is the Boltzmann
constant, T is the kinetic temperature of particles, and a is
the Wigner-Seitz radius, which is a = (1/πn)1/2 [23] for 2D
systems, where n is the particle number density.

The conditions of the solid-fluid phase transition, i.e., the
melting curve for 2D dusty plasmas, have been systemati-
cally investigated in both simulations [56,57] and theories
[51,55]. Based on Lindemann’s melting criterion [55,58] and
the characteristic oscillation frequency [59], the melting curve
of 2D Yukawa systems is derived theoretically in Ref. [55].
Using computer simulations of 2D Yukawa systems under
vast ranges of conditions [56,57], the melting curves of 2D
Yukawa systems are obtained from the empirical formula fit-
ting based on the static structural diagnostics. Recently, the
reduced transverse sound speed in 2D Yukawa systems is
found to be isomorph invariant [60], which can also be used
as a criterion to predict the melting curve [51]. However, it
remains unknown whether it is possible to analytically derive
the melting curve of 2D Yukawa systems entirely on the basis
of the isomorph theory [6], as we study in this paper. In
addition, due to the pure repulsion between dust particles,
dusty plasmas exhibit the typical properties of supercritical

2470-0045/2024/109(6)/065212(8) 065212-1 ©2024 American Physical Society

https://orcid.org/0000-0003-1904-5498
https://ror.org/05t8y2r12
https://ror.org/01rxvg760
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.109.065212&domain=pdf&date_stamp=2024-06-20
https://doi.org/10.1103/PhysRevE.109.065212


NICHEN YU, DONG HUANG, AND YAN FENG PHYSICAL REVIEW E 109, 065212 (2024)

FIG. 1. Scattering plot of the calculated instantaneous virial W
and potential energy U for the 2D Yukawa system of κ = 2 and � =
395.5. The dashed line corresponds to the standard linear-regression
slope of γ ≈ 1.512. The calculated R value 0.997 is larger than 0.9,
clearly indicating that this 2D Yukawa system is a typical R system.
The inset shows the time series of the normalized fluctuations of
virial 	W and potential energy 	U , clearly indicating that W and
U are strongly correlated. Note that σW and σU correspond to the
standard deviation of W and U , respectively.

fluids at higher temperatures and their supercritical transition
points between the liquidlike and gaslike states are studied in
Ref. [61].

The rest of the paper is organized as follows. In Sec. II,
we briefly review the isomorph theory and then introduce our
simulation methods. In Sec. III, we demonstrate that the iso-
morph theory is still applicable to 2D Yukawa systems using
our simulation data. We also report our derived analytical
isomorphic curves of 2D Yukawa systems, which are later
used to determine the melting curve of 2D Yukawa systems.
In Sec. IV, a brief summary of our findings is provided.

II. ISOMORPH THEORY REVIEW

The isomorph theory [1–5] originates from the discovery
of a number of model liquids exhibiting strong correlations
between the virial and potential energy equilibrium fluctu-
ations [1,7]. These strong correlations, as in Fig. 1(a) of
Ref. [7], are presented through the time series of the nor-
malized fluctuations of virial and potential energy which are
nearly synchronized. These correlations are usually quantified
using the Pearson correlation coefficient R [2] defined as

R = 〈	W 	U 〉√
〈(	W )2〉〈(	U )2〉

, (2)

where 	 denotes the deviation from the corresponding av-
erage. Traditionally [2], a system can be considered as a
Roskilde-simple (R) system when its Pearson correlation co-
efficient R is larger than 0.9. Another important property of
these strong correlations is that the instantaneous virial and
potential energy nearly exhibit the linear relation, as shown in

Fig. 1(b) of Ref. [7]. Therefore, as an important characteristic
quantity, the density-scaling exponent γ [1,5] is defined using
standard linear-regression slope as

γ = 〈	W 	U 〉
〈(	U )2〉 . (3)

For R systems, the existence of the hidden scale invariance,
i.e., the isomorphic curves, has been demonstrated in their
thermodynamic phase diagram [3,5,6]. From the definition
[6], the hidden scale invariance refers to the reduced physical
quantities, i.e., those normalized by macroscopic thermody-
namic quantities, for example, n−1/d , m1/2(kBT )−1/2n−1/d ,
and kBT as the units of the length, time, and energy, respec-
tively [62,63], where d is the dimensionality of the studied
system. While expressed in the reduced units, some physical
quantities are approximately invariant along the isomorphic
curves, which are called isomorph invariants [5,6]. A number
of physical quantities in the reduced units are found to be
isomorph invariant, such as the excess entropy, the viscosity,
the transverse sound speed, the radial distribution function,
and the mean-squared displacement [6,60,64].

Using the thermodynamic theories, the previously discov-
ered isomorphic properties can be derived analytically [5,9].
Based on the Maxwell relations and the canonical ensemble
theory, previous investigation [5] shows that Eq. (3) can be
rewritten as

γ =
(

∂ ln T

∂ ln n

)
Sex

, (4)

where Sex is the excess entropy defined following the devia-
tion from the entropy of the ideal gas. As a thermodynamic
quantity, Eq. (4) indicates the change rate of temperature with
number density of constant excess entropy, i.e., the change
rate along an isomorphic curve. In addition, for R systems,
when Sex and n are chosen as state parameters [9], the temper-
ature kBT is described as

kBT = f (sex)h(n). (5)

Here, sex = Sex/kBN , which is the reduced excess entropy
[63], while f (sex) and h(n) are the thermodynamic func-
tions corresponding to the contribution of the reduced excess
entropy sex and number density n to the temperature kBT ,
respectively. Since the reduced excess entropy sex is an iso-
morph invariant, from Eq. (5), it is reasonable to describe an
isomorphic curve [9] as

h(n)

kBT
= K, (6)

where K is an arbitrary constant. Taking Eq. (6) into Eq. (4),
the density-scaling exponent γ [9] can be expressed as

γ (n) = d ln h(n)

d ln n
. (7)

Equation (7) implies that, along an isomorphic curve, the
density-scaling exponent γ is only dependent on the number
density n.

From the statistical mechanics [6,65], the isomorph theory
can be conveniently described using

U (R) ∼= h(n)�̃(n1/2R) + g(n). (8)
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Here, �̃ is the potential energy normalized by h(n) under the
reference density, g(n) is the function of number density, and
R is the collective 2N-dimensional position vector defined by
R = (r1, . . . , rN ) for 2D systems. Physically, Eq. (8) indicates
that the potential-energy surface U (R) approximately under-
goes a linear affine transformation when the number density n
changes [6]. Based on Eq. (8), nearly all important properties
of R systems can be analytically derived, as presented in
details in Refs. [6,64,65].

Aside from the results above, the inverse power law (IPL)
potential φI(r) ∝ r−α is usually used to study the isomorphic
properties in the previous investigations [1,2]. As derived in
[2,3,6], the system with the IPL particle interaction exhibits
the perfect correlation with R = 1 and the corresponding
isomorphic curves can be directly derived analytically. Fur-
thermore, various thermodynamic quantities [3,66] are always
able to be described exactly using simple analytical expres-
sions based on the excess Helmholtz free energy [3]. As a
result, it is convenient to use the IPL potential to fit other
interparticle interactions, so that the isomorphic properties of
various R systems can be described easily using analytical
expressions. As demonstrated in Refs. [2,10], a better choice
to fit other interaction potentials is the extended inverse power
law (eIPL) potential [2], where one linear term and one con-
stant term are added to the IPL potential. The traditionally
used eIPL potential is defined as

φe(r) = A(r/a)−α + Br/a + C, (9)

where α is the power-law exponent and the coefficients A, B,
and C are all constants to be determined.

The previous investigations [1–12,64,65,67–69] have
demonstrated that the isomorph theory is applicable to var-
ious 3D systems with different interactions. Recently, the
approximate isomorphic curves �/�m = const are discovered
in 2D Yukawa fluids based on the structural and dynamical
diagnostics [60], where �m is the coupling parameter at the
solid-fluid phase transition point for 2D Yukawa systems in
Refs. [55–57]. However, it remains unknown whether the iso-
morph theory still works in 2D dusty plasmas or 2D Yukawa
systems. To systematically investigate the applications of the
isomorph theory to 2D dusty plasma or 2D Yukawa systems,
we perform equilibrium molecular dynamical (MD) simula-
tions of 2D Yukawa systems under various conditions. Our
specified κ values vary between 0.5 and 5.0, while the relative
coupling parameter �/�m values are chosen between 0.1 and
2.0. Other simulation details are the same as Refs. [60,70,71].

III. RESULTS

A. Isomorph theory demonstration in 2D Yukawa systems

From the analyzed results of our simulation data, we find
that the virial W and potential energy U for 2D Yukawa sys-
tems are strongly correlated. For the studied conditions of κ =
2.0 and � = 395.5 in Fig. 1, obviously, the obtained instanta-
neous virial W and potential energy U results nearly exhibit
a linear relation, with the standard linear-regression slope of
γ ≈ 1.512, which is also termed as the density-scaling expo-
nent [1,5]. To visualize these strong correlations more clearly,
we also plot the time series of the normalized fluctuations of

FIG. 2. Calculated density-scaling exponent γ from Eq. (3) for
2D Yukawa systems under different conditions. Clearly, the obtained
γ values nearly exhibit a monotonic universal scaling with κ , no mat-
ter how �/�m varies. The dashed curve corresponds to the analytical
γ of Eq. (16) with determined � ≈ 0.957 for �/�m = 1.0. Note that,
for �/�m = 0.1, the obtained γ values at larger κ values are slightly
lower than those for higher �/�m values.

virial 	W and potential energy 	U in the inset of Fig. 1.
Using Eq. (2), the calculated R value is ≈0.997, significantly
larger than 0.9, further indicating that this 2D Yukawa system
is one typical R system. In fact, besides the conditions of
Fig. 1, we confirm that, for 2D Yukawa systems under all
simulated conditions studied here, the obtained R values are
always >0.9, i.e., W and U are always strongly correlated.

From Fig. 2, we find that the obtained density-scaling
exponent γ exhibits a monotonic universal scaling for 2D
Yukawa systems under different conditions. As shown in
Fig. 2, the γ value is almost independent of the relative cou-
pling parameter �/�m, almost only varying with the κ value,
or equivalently the number density n as in [5,60,64], when
assuming the Debye screening length λD is an environment
length scale. In addition, from Fig. 2, we also find that the γ

value gradually deviates from the universal scaling as the rel-
ative coupling parameter �/�m decreases to the lower value
of 0.1. From our understanding, this may be attributed to the
effect of the higher temperature. As mentioned in [60], the
isomorphic curve of �/�m = const is only an approximate
expression, which is more accurate at lower temperatures.
For the much higher temperatures such as �/�m = 0.1, their
accuracy diminishes slightly. As also found in [6,60], the iso-
morph theory gradually becomes unreliable when the system
gradually approaches the gaslike state [61]. The temperature
of our studied condition of �/�m = 0.1 is about half of the
transition point between the liquidlike and gaslike states [61],
probably slightly higher for the isomorph theory.

In Fig. 3, we present the sketch of using the eIPL potential
to fit the Yukawa potential under the conditions of κ = 2 and
� = 395.5. From Ref. [2], the fitting region should contain
nearly all information within the first peak of the radial dis-
tribution function g(r). To include nearly all information of
the first peak of g(r), we choose the lower and upper limits
as the first nonzero value of g(r) and the first minimum of
g(r), respectively, as presented in Fig. 3(b). For our studied
2D Yukawa systems under κ = 2 and � = 395.5, our choice
of the fitting region is just 1.37 � r/a � 2.60 from Fig. 3(b).
Note that the fitting regions are slightly different for different
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FIG. 3. (a) Sketch of using the eIPL potential to fit the Yukawa
potential and (b) the corresponding radial distribution function g(r)
of the 2D Yukawa system under κ = 2.0 and � = 395.5. As in
Ref. [2], the fitting region contains nearly all information within the
first peak of g(r). For the information of the first peak of g(r), we
choose the region of 1.37 � r/a � 2.60, just corresponding to the
locations of the first nonzero value of g(r) and the first minimum
of g(r), respectively, as two dot-dashed lines shown. Note that the
criterion to identify the first nonzero value of g(r) corresponds to the
first data point of g(r) � 10−2, as shown in the magnified version in
the inset of (b).

conditions, since the locations of the first nonzero value of
g(r) and the first minimum for g(r) shift slightly as the system
conditions vary.

Next, we are able to describe some physical properties of
2D Yukawa systems directly using the eIPL potential within
our fitting region. As shown in Fig. 3, for the region of r � 3a,
clearly, the eIPL potential is dominated by the linear term
Br/a, leading to the eIPL potential deviating from the Yukawa
potential. However, from Refs. [6,8,64], the contribution of
the linear term Br/a to the fluctuations of virial W or po-
tential energy U is trivial. For the linear term Br/a, when a
particle moves, the distance between some nearest neighbors
decreases, while it may increase for others, leading to the
approximately unchanged summation finally [2,6,64]. It is
also demonstrated in Ref. [8] that the structure and dynamics
of R liquids are given completely by the interactions within
the first coordination shell. Therefore, we are able to describe
the Yukawa systems approximately using the eIPL potential
even for the range of r � 3a.

To further illustrate the accuracy of using the eIPL potential
to fit the Yukawa potential, we calculate the density-scaling
exponent γ of 2D Yukawa systems based on the eIPL po-
tential. Here, we follow Ref. [2] to obtain the density-scaling
exponent results for 2D Yukawa systems using

γ = α/2, (10)

TABLE I. Comparison of the density-scaling exponent γ results
obtained from two different methods for �/�m = 1.0. Here, the γ1

values are calculated from the simulated data using Eq. (3), while
the γ2 values are obtained from the exponent of Eq. (9), i.e., using
the eIPL potential to fit the Yukawa potential as described in Fig. 3.
Clearly, the obtained values of γ1 and γ2 are nearly identical, indicat-
ing the reliability of using the eIPL potential in 2D Yukawa systems.

κ γ1 γ2

0.5 0.600 0.588
1.0 0.833 0.853
1.5 1.150 1.198
2.0 1.512 1.583
2.5 1.913 1.985
3.0 2.333 2.383
3.5 2.754 2.795
4.0 3.185 3.193
4.5 3.610 3.612
5.0 4.008 3.997

where the obtained γ results are labeled as γ2 in Table I. For
comparison, we also calculate the γ results directly from the
simulation data using Eq. (3) directly, which are labeled as γ1

in Table I. Obviously, the obtained γ1 and γ2 results are nearly
identical, with the corresponding relative error less than 4.7%
for �/�m = 1.0. Note that Eq. (10) holds strictly for the IPL
potential, while approximately for the eIPL potential [2,3].

B. Analytical isomorphic curves derivation

To obtain the analytical isomorphic curves of 2D Yukawa
systems, a reasonable approach is to find the analytical expres-
sion of the thermodynamic function h(n) in Eq. (6). Since the
expression of density-scaling exponent γ in Eq. (7) contains
h(n), we are able to derive h(n) directly through γ (n). Com-
paring the different methods described above in obtaining the
γ value, we believe that the choice of Eq. (10) is the most
convenient.

To obtain the expression of γ from Eq. (10), we follow
Refs. [2,64,69] to determine the power-law exponent of the
Yukawa system αY from the so-called local effective power-
law exponent [2,64,69] defined as

α(p)(r) = −r
φ(p+1)(r)

φ(p)(r)
− p. (11)

Here, φ(p)(r) denotes the pth-order derivative of the inter-
particle interaction φ(r), which is the Yukawa repulsion for
our current investigation. However, by directly substituting
the Yukawa repulsion into Eq. (11), the expression of α(p)(r)
is always complicated, no matter how the p value varies. To
determine the most suitable choice of p with the convenient
analytical derivation in the expression of α(p)(r), we replace
the Yukawa potential using the eIPL potential in Eq. (11),
as demonstrated in Fig. 3 and Table I. We find that, for
the eIPL potential of Eq. (9), the right-hand side (RHS) of
Eq. (11) always equals the constant of α when p � 2. To
satisfy the requirement of p � 2, in the latter derivation, we
follow Refs. [2,64,69] to choose p = 2, corresponding the
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lowest derivative of Eq. (11) with the simplest mathematical
derivations.

Next, we substitute p = 2 and the Yukawa potential of
Eq. (1) into the RHS of Eq. (11), while using the α value of
the eIPL potential on the LHS of Eq. (11), leading to a new
equation of the distance r. In fact, the RHS of this new equa-
tion is just a function of r. Since the structure and dynamics
of R liquids are given completely by the interactions within
the first coordination shell [8], the solution of r to satisfy the
new equation described above should be close to the nearest-
neighbor distance labeled as r = �n−1/2, as demonstrated in
[64,69], where � is the reduced nearest-neighbor distance, an
unknown value close to unity. As a result, we are able to obtain
the density-scaling exponent γ for 2D Yukawa systems using
α(2)(r) as

γ (n) = α(2)(r)

2

∣∣∣∣
r=�n−1/2

. (12)

Here, we follow [2,64,69] to choose p = 2 in our derivations,
because the previous investigations [2,64,69] have demon-
strated that the information within the first peak of g(r) can
be well described using α(2)(r) when r = �n−1/2. Note, in
principle, one may also choose p > 2 in derivations, although
the corresponding mathematical procedures would be much
more complicated.

Since the γ (n)’s analytical expression of Eq. (12) for
Yukawa systems is obtained, we are able to derive the ana-
lytical expression of h(n) from Eq. (7) directly. To solve this
differential equation more simply, we follow Refs. [64,69]
to rewrite Eq. (12) as γ (n) = d ln[r2φ(2)(r)/2]/d ln r when
r = �n−1/2. Combining this new expression of γ (n) with
Eq. (7), we obtain

h(n) = Ar2φ(2)(r)|r=�n−1/2 , (13)

where A is an arbitrary constant. Substituting the Yukawa
interaction of Eq. (1) and the relation of n−1/2 = √

πa into
Eq. (13), we obtain

h(κ ) = A
a

(
2√
π�

+ 2κ + √
π�κ2

)
exp (−√

π�κ ). (14)

Although we only study the 2D Yukawa systems here, Eq. (13)
is generally correct for all R systems in principle with different
interaction potentials, which can be fitted by the eIPL poten-
tial [10,69]. Note that, to characterize our studied 2D Yukawa
systems, we always use the screening parameter κ , rather than
the number density n or Wigner-Seitz radius a; as a result, we
rewrite h(n) as the function of κ , as described above.

As the first major result of this paper, we obtain the
analytical isomorphic curves for 2D Yukawa systems by
substituting the h(κ )’s expression of Eq. (14) into Eq. (6).
Since the coupling parameter � = Q2/4πε0akBT , the analyt-
ical isomorphic curves for 2D Yukawa systems can be further
simplified to

� = C� exp (
√

π�κ )

1 + √
π�κ + (

√
π�κ )2/2

, (15)

where C = Q2K/8ε0
√

πA is an arbitrary constant. Moreover,
based on the expression of h(κ ), we are able to derive the

analytical expression of the density-scaling exponent γ from
Eq. (7), which is just

γ = 1

2
+ (

√
π�κ )3/4

1 + √
π�κ + (

√
π�κ )2/2

. (16)

We are able to obtain the specific expression for γ along
an isomorphic curve from either one determined γ value
from simulation or the � value from a determined isomorphic
curve of Eq. (15). In Fig. 2, the dashed curve corresponds to
the analytical density-scaling exponent of Eq. (16) with de-
termined � ≈ 0.957 for �/�m = 1.0, well overlapping with
the data points of �/�m = 1.0. For �/�m = 1.0, the relative
difference of γ between Eq. (16) and the data points from
our simulations in Fig. 2 is less than 5.2%, further confirming
the accuracy of Eq. (16). Note that, from the isomorph theory
[5], the γ value is only dependent on the number density n;
however, our simulation results indicate that the γ value is
also related to the temperature. We believe the temperature-
related γ value is reasonable because the isomorph theory
is only an approximation, so that the � value varies slightly
under different conditions as we discuss in Sec. III C.

C. Melting curve prediction

From the previous investigations [4,5,13,60,65,72], the
melting curve is predicted to be an isomorphic curve for
R systems. We are able to confirm this conclusion through
the definition of the isomorphic state [5]. If two state points
R1 ∈ (n1, T1) and R2 ∈ (n2, T2) are isomorphic, then they
should have the same reduced collective position vector
n−1/2

1 R1 = n−1/2
2 R2 and the proportional configuration Boltz-

mann factors exp[−U (R1)/kBT1] ∼= C12 exp[−U (R2)/kBT2]
[5]. Obviously, the configuration Boltzmann factors of solids
are definitely different from those for liquids, so that the
isomorphic curves cannot cross the melting curve, i.e., the
melting curve is an isomorphic curve [64].

In fact, we find that the previously obtained melting curves
of 2D Yukawa systems also exhibit the isomorphic properties.
From the previous investigations of 2D Yukawa systems rely-
ing on computer simulations under vast ranges of conditions
[56,57], 2D Yukawa liquids with the same effective coupling
parameter �∗ exhibit the same properties using different struc-
tural measures [55–57], clearly indicating the approximately
invariant structure. Furthermore, in Ref. [55], the melting
curve of 2D Yukawa systems derived from Lindemann’s
melting criterion [58] just corresponds to the approximately
invariant dynamics. In fact, by directly substituting the re-
duced nearest-neighbor distance of � = 1 into the isomorphic
curves of Eq. (15) above, we just obtain Eq. (1) of Ref. [55],
further indicating that the melting curve for 2D Yukawa sys-
tems is an isomorphic curve. Additionally, as investigated in
Ref. [60], the dynamics of 2D Yukawa liquids exhibit the
isomorph invariant of the reduced transverse sound speed, in-
dicating that the supercritical transition between the liquidlike
and gaslike states is also an isomorphic curve.

To derive the melting curve of 2D Yukawa systems us-
ing the isomorphic curves of Eq. (15), we only need to
determine the two unknown quantities of � and C there. A
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[55]
[56]
[57]

FIG. 4. Our derived analytical melting curve from the isomorph
theory for 2D Yukawa systems, as well as the melting curves from
the previous investigations of Refs. [55–57]. Clearly, our obtained
melting curve overlaps well with the previously obtained melting
curves in Refs. [55–57], indicating their agreement. Different from
Refs. [55–57], our derived melting curve comes from the isomorphic
curves of Eq. (15), combined with two known melting points of
�m ≈ 177.9 and 395.5 for κ = 1.0 and 2.0, respectively, which can
be further extended to the range of κ > 5.0. Note that the values
of the effective coupling parameter �∗ in the previously obtained
melting curves are 137, 131, and 137 in Refs. [55–57], respectively.

reasonable approach of determining these two unknown quan-
tities is just relying on at least two accurate melting points
from the previous investigations directly. Here, we just choose
two melting points of 2D Yukawa systems from Ref. [56],
which are �m ≈ 177.9 for κ = 1.0 and �m ≈ 395.5 for κ =
2.0, respectively. Substituting these two melting points into
Eq. (15), we determine the values of these two unknown
quantities, i.e., C ≈ 140.936 and � ≈ 0.957. Again, substi-
tuting these determined values of C and � into Eq. (15),
we directly derive the melting curve from the isomorphic
property as

�m = 134.902 exp (1.697κ )

1 + 1.697κ + (1.697κ )2/2
. (17)

Our obtained melting curve of Eq. (17) for 2D Yukawa sys-
tems is just the second major result of this paper. Note that,
while choosing two different melting points under different κ

values in the equation derivation, the obtained expression of
the melting curve may be different from Eq. (17). However,
while plotting these derived melting curves with different
expressions, we find that they are very close and even overlap
together.

In Fig. 4, we present our derived analytical melting curve
of 2D Yukawa systems, i.e., Eq. (17), with the previously
obtained three melting curves in Refs. [55–57], which have
already been widely accepted and validated. Clearly, our
derived melting curve almost completely overlaps with the
previous three melting curves in Refs. [55–57] combined with
�∗ = 137, 131, and 137, respectively, further indicating the

accuracy of our derived Eq. (17). One advantage of our melt-
ing curve of Eq. (17) is that this expression can be further
extended to the range of κ > 5.0 to predict the melting points
there. Note that the slight uncertainties of the coefficients �

and C in Eq. (15) may come from the inaccuracy of the two
chosen melting points, which would lead to an exaggerated
error while extending Eq. (17) into the range far away from
κ � 5.0.

Actually, the concept of the effective coupling pa-
rameter �∗ raised in the previous investigations [73–76]
is similar to the isomorphic properties studied here. In
Refs. [55–57,74–76], it is demonstrated that 2D Yukawa sys-
tems with the same effective coupling parameter �∗ exhibit
nearly the same radial distribution function g(r), just corre-
sponding to the invariant structure, no matter how κ varies.
The concept of �∗ is proposed to use only one single pa-
rameter �∗ to determine a series of similar Yukawa systems
analogous to the coupling parameter of the one-component
plasma system [57], i.e., �∗ is the combination of both �

and κ . For �∗ � 40, �∗(�, κ ) is able to be approximately
expressed using the variable separation [56,57], i.e., the ratio
of �/�∗ is the function of only one variable κ . However,
for smaller �∗ values, �∗(�, κ ) cannot be expressed using
variable separation anymore, i.e., the ratio �/�∗ depends on
both �∗ and κ as shown in Fig. 2(b) of Ref. [56] and Fig. 7 of
Ref. [57].

From our derivation of the isomorphic curves above, we
are able to explain this interesting feature of �∗ � 40 found in
[56,57]. The effective coupling parameter �∗ in Refs. [55–57]
can be expressed as �∗ = C� in our derivation of the isomor-
phic curves, because �∗ is tailored to converge to � as κ goes
to zero [57]. Therefore, we obtain �/�∗ = exp (

√
π�κ )/[1 +√

π�κ + (
√

π�κ )2/2], which depends on both the reduced
nearest-neighbor distance � and the κ value. For lower �∗
values, the location of the first peak of g(r) is a little bit closer
to the zero point, so that the corresponding � value dimin-
ishes slightly. However, for higher �∗ values, the variation
of the location of the first peak of g(r) is negligible. As a
result, the slightly varying � value for �∗ � 40 results in the
complicated expression of �∗ that cannot be expressed using
the variable separation, as found in Refs. [56,57]. In fact,
instead of a constant, � is a variable related to sex from the
generalized isomorphic curves h(n, sex)/kBT = const [69],
obtained from the isomorph invariant of g(r), not the isomorph
theory.

IV. SUMMARY

In summary, we derive the analytical isomorphic curves
and melting curve of 2D Yukawa systems from the isomorph
theory. To confirm that our derivation is reliable, we perform
molecular dynamical simulations under various conditions
to demonstrate that the isomorph theory does work for 2D
Yukawa systems. After verifying that the Yukawa potential is
well fitted by the eIPL potential around the first peak of g(r),
we use the local effective power-law exponent of the Yukawa
potential to obtain the analytical isomorphic curves, as well
as the analytical density-scaling exponent of 2D Yukawa sys-
tems. We find that the melting curve of 2D Yukawa systems
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can be well predicted from our obtained isomorphic curves
of Eq. (15) combined with two known melting points. Our
obtained melting curve of Eq. (17) well agrees with the
previous melting results for 2D Yukawa systems using com-
pletely different approaches [55–57]. Based on the isomorphic
curves of Eq. (15), we also provide our interpretation for the
dependence of the effective coupling parameter �∗ on the
nearest-neighbor distance.
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