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We consider a nearly collisionless plasma consisting of a species of “test particles” in one spatial and one
velocity dimension, stirred by an externally imposed stochastic electric field—a kinetic analog of the Kraichnan
model of passive advection. The mean effect on the particle distribution function is turbulent diffusion in velocity
space—known as stochastic heating. Accompanying this heating is the generation of fine-scale structure in the
distribution function, which we characterize with the collisionless (Casimir) invariant C2 ∝ ∫∫

dxdv 〈 f 2〉—a
quantity that here plays the role of (negative) entropy of the distribution function. We find that C2 is transferred
from large scales to small scales in both position and velocity space via a phase-space cascade enabled by both
particle streaming and nonlinear interactions between particles and the stochastic electric field. We compute the
steady-state fluxes and spectrum of C2 in Fourier space, with k and s denoting spatial and velocity wave numbers,
respectively. In our model, the nonlinearity in the evolution equation for the spectrum turns into a fractional
Laplacian operator in k space, leading to anomalous diffusion. Whereas even the linear phase mixing alone
would lead to a constant flux of C2 to high s (towards the collisional dissipation range) at every k, the nonlinearity
accelerates this cascade by intertwining velocity and position space so that the flux of C2 is to both high k and high
s simultaneously. Integrating over velocity (spatial) wave numbers, the k-space (s-space) flux of C2 is constant
down to a dissipation length (velocity) scale that tends to zero as the collision frequency does, even though
the rate of collisional dissipation remains finite. The resulting spectrum in the inertial range is a self-similar
function in the (k, s) plane, with power-law asymptotics at large k and s. Our model is fully analytically solvable,
but the asymptotic scalings of the spectrum can also be found via a simple phenomenological theory whose
key assumption is that the cascade is governed by a “critical balance” in phase space between the linear and
nonlinear timescales. We argue that stochastic heating is made irreversible by this entropy cascade and that,
while collisional dissipation accessed via phase mixing occurs only at small spatial scales rather than at every
scale as it would in a linear system, the cascade makes phase mixing even more effective overall in the nonlinear
regime than in the linear one.

DOI: 10.1103/PhysRevE.109.065210

I. INTRODUCTION

Understanding the nature of turbulent cascades in nearly
collisionless space and astrophysical plasmas is an outstand-
ing problem [1–7] with a diverse range of applications, from
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solving the coronal-heating problem [7] to interpreting radia-
tion emission from accretion disks around black holes [8–10].
A major difficulty distinguishing such turbulence from its
fluid counterparts lies in the fact that fluctuations evolve in
the six-dimensional phase space of single-particle positions
and velocities. Dissipation (in the sense of irreversible entropy
production) occurs via particle collisions [11,12], which in a
nearly collisionless plasma are activated only when the parti-
cle distribution function develops large gradients in velocity
space.

Turbulent dissipation in nearly collisionless plasmas is
often considered from an energetics perspective. This point
of view focuses on the cascade of bulk kinetic and
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electromagnetic energy from large to small spatial scales
(see, e.g., Refs. [4,13–16] and references therein) and the
physical processes, such as magnetic reconnection [17–20]
and wave-particle interactions [1,6], that convert this energy
into the internal energy of the plasma. While energy-cascade
and transfer mechanisms are important, they provide a funda-
mentally incomplete picture of turbulent dissipation. Without
collisions, entropy is formally conserved (along with an in-
finity of Casimir invariants [21]), and any transfer of energy
between particles and fields is formally reversible.

It was realized by Refs. [22,23] that entropy production
in the long-time limit of a nearly collisionless plasma must
remain finite even as the collision frequency ν tends to zero.
This idea crystallized in Refs. [2,24–26], where the notion of
entropy cascade in the context of gyrokinetics was introduced.
Below the Larmor scale, in a phase-space inertial range be-
tween the injection range at large scales and the collisional
dissipation range at small scales, the (negative) entropy of
the perturbed distribution function cascades in both position
and velocity space via a nonlinear perpendicular phase-mixing
mechanism [27]. Because this is a constant-flux cascade, the
turbulent heating rate in a gyrokinetic plasma is finite and
independent of ν even as ν → 0+, analogous to so-called dis-
sipative anomalies [28,29] in hydrodynamics, where viscous
dissipation is finite in infinite-Reynolds-number turbulence.

Entropy cascade outside the gyrokinetic approximation is a
frontier topic just beginning to be explored [30–34]. In this pa-
per, we study turbulent dissipation and entropy cascade via an
analytically solvable model introduced by Ref. [35]. We con-
sider the “1D-1V” electrostatic, full- f Vlasov equation with
a model diffusive collision operator for a test-particle species,
where instead of the electric field being self-consistently de-
termined by Poisson’s equation, it is externally determined to
be a stochastic Gaussian, white-noise source with a specified
spatial correlation function. Physically, this model represents
the evolution of a low-density minority species in a multi-
component plasma whose dielectric response is dominated
by the other, more abundant species. This model is the
plasma-kinetic analog of the Kraichnan [36] model of passive
advection, where a scalar field [37], such as temperature or
concentration of dye, is passively advected by an externally
determined random flow, allowing for analytical calculations
of the passive-scalar statistics. The Kraichnan model has been
dubbed the “Ising model” [38] of fluid turbulence because it
is a solvable model that exhibits many properties also present
in real systems, and so serves as a theoretical laboratory to
study turbulence [39]. It is in this spirit that we investigate our
solvable model of kinetic plasma turbulence.

We decompose the distribution function into its mean and
fluctuating parts, f = 〈 f 〉 + δf , where 〈...〉 denotes ensem-
ble averaging over realizations of the random electric field.
In our model, particles are stochastically accelerated by the
electric field and undergo random walks in velocity space,
resulting in bulk heating of 〈 f 〉 [40]. In the context of mag-
netized plasmas, this phenomenon is often referred to as
stochastic heating [6,41,42]. Accompanying this heating is the
generation of velocity and spatial structure in the perturbed
distribution function δf via linear phase mixing and nonlinear
interactions between particles and the turbulent electric field
[35].

We characterize this structure via the collisionless
(Casimir) invariant C2 = (1/L)

∫∫
dxdv 〈 f 2〉/2, where L is

the system size. C2 has been considered before as a measure
of phase-space structure and as a cascaded quantity in kinetic
plasma turbulence [30,32,35,43–47], and is closely related
to the part of the traditional entropy, S = − ∫∫

dxdv f log f ,
associated with the perturbed distribution function and enter-
ing additively in the free-energy invariant of δf gyrokinetics
[2,22,24,48,49]. The conservation of C2 is broken by particle
collisions, and, in particular, when collisions are modeled as
a linear diffusion operator in velocity space, as they are in
this paper, the collisional dissipation of C2 is negative-definite.
Because the time irreversibility of our system can be tracked
via nonconservation of C2, it can be used as a generalized
(negative) entropy of the distribution function.

The diffusion of 〈 f 〉 by the electric field has the side effect
of injecting δC2 = (1/L)

∫∫
dxdv 〈δf 2〉/2 fluctuations at large

scales. These are then cascaded to small scales in both position
and velocity space, where they are ultimately dissipated by
collisions. This phase-space cascade of δC2 is due to both lin-
ear phase mixing and nonlinear interactions between particles
and the stochastic electric field. We analyze this cascade by
computing the steady-state Fourier spectrum and fluxes of δC2

in both position and velocity space, with dual variables (wave
numbers) k and s, respectively.

In the absence of nonlinearity, linear phase mixing advects
the spectrum from low to high |s|, giving rise to an “inertial
range” in s where there is a constant flux of δC2 from injection
to dissipation scales, at every k [50,51]. The resulting steady-
state spectrum is flat in the inertial range, with an exponential
cutoff at a ν-dependent collisional scale sν .

Under the Kraichnan model, we find that the nonlinear
term in the evolution equation for the Fourier spectrum be-
comes a fractional Laplacian operator [52–54] in k space,
which leads to anomalous diffusion [55,56]. Whereas frac-
tional Laplacians (and fractional derivatives in general) are
usually introduced in an ad hoc manner to model systems with
anomalous diffusion, both in plasma physics [57–59] and a
wide variety of other contexts [60], here it emerges naturally
as a result of our assumptions about the electric field.

The linear phase mixing and the turbulent fractional dif-
fusion intertwine the position- and velocity-space cascades in
such a way that the resulting spectrum is a self-similar func-
tion in the (k, s) plane, with power-law asymptotics at large k
and s. Even though the Kraichnan model is fully analytically
solvable, we can also recover these asymptotic scalings via a
phenomenological theory whose key assumption is that the
cascade is governed by a “critical balance” in phase space
between the linear and nonlinear timescales.

The δC2 flux has components in both k and s directions.
The flow of δC2 occurs along outward unwinding spirals in
(k, s) space. This circuitous route to dissipation scales is due
to the nonlinearity generating modes that can linearly prop-
agate from high to low |s|, called “phase-unmixing” modes
[61], a stochastic generalization of the textbook phenomenon
of plasma echo [62,63]. The net result after adding together
contributions to the flux from the phase-mixing and phase-
unmixing modes is that δC2 is cascaded to both high s and
high k simultaneously, and collisional dissipation only occurs
at scales comparable to, or smaller than, the dissipation length
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and velocity scales, both of which tend to zero when the
collision frequency ν does. Integrating over velocity (spatial)
wave numbers, the flux of δC2 in k (s) space is constant down
to these dissipation scales, beyond which perturbations are
thermalized by collisions. The rate of collisional dissipation is
finite and independent of the collision frequency as ν → 0+—
a clear analytical example of a “dissipative anomaly” in a
kinetic system. This turbulent dissipation ultimately mediates
the irreversibility of the stochastic heating.

The rest of this paper is organized as follows. In Sec. II, we
introduce the Vlasov-Kraichnan model. In Sec. III, we con-
struct a phenomenological theory that captures the asymptotic
scalings of the Fourier spectrum of δC2. Then, in Sec. IV, we
directly calculate the 1D phase-space fluxes of δC2 in Fourier
space in a statistical steady state. In Sec. V, we calculate
the inertial-range Fourier spectrum and its corresponding 2D
fluxes in (k, s) space. Finally, in Sec. VI, we conclude our
results and discuss their implications. Supplementary calcula-
tions and discussions are exiled to Appendices A–E.

II. KRAICHNAN MODEL FOR A 1D-1V
ELECTROSTATIC PLASMA

We consider a test-particle species composed of particles
with charge q and mass m in a 1D periodic box of length L,
and subject to an external electric field E . At t = 0, we assume
the particle distribution function f to have no spatial variation,
but we keep its velocity dependence generic, only assuming
that f is square-integrable and has finite kinetic energy. We
denote the number density of the distribution function as n0

and the initial thermal velocity as vth,0 = √
2T0/m, where T0

is the initial temperature of the particles. An example initial
condition with these properties is a Maxwellian,

f (x, v, t = 0) = n0√
πvth,0

e−v2/v2
th,0 ≡ FM (v). (1)

The Vlasov equation for the particle distribution function
is

∂ f

∂t
+ v

∂ f

∂x
+ E

∂ f

∂v
= C[ f ], (2)

where C[ f ] is the collision operator, and we have absorbed q
and m into the definition of E , denoting qE/m → E .

We assume E to be a Gaussian white-noise field, with zero
mean and correlation function

〈E (x, t )E (x′, t ′)〉 = 2 D(x, x′) δ(t − t ′), (3)

where 〈...〉 denotes ensemble averaging over realizations of E
and δ is a Dirac delta distribution. We assume E to be statisti-
cally homogeneous and isotropic in space, so D(x, x′) = D(r),
where r = |x − x′|. We choose

D(r) =
∑

k

eikrD̂(k), (4)

where k ∈ (2π/L)Z and

D̂(k) = D
e−(ηk)2(

k2 + L−2
E

)(α+1)/2 . (5)

Here, D is a constant diffusion coefficient with dimensions
(length1−α ) × (time−3), 0 < α � 2, and LE and η represent

the integral length scale and dissipation scale, respectively, of
the stochastic electric field.

The electric field is chosen so that its correlation function
(3) has a power-law spectrum ∝ |k|−(α+1) in the inertial range
1/LE 
 k 
 1/η; note that Eq. (5) is defined in a similar
way to the velocity field in the fluid passive scalar Kraichnan
model [39,64]. We identify two distinct regimes: α < 2 and
α = 2. When α < 2, the field is multiscale, reminiscent of
turbulent fields in fully developed turbulence. When α = 2,
the spectrum is sufficiently steep that the field is effectively
single-scale. This case is known as the Batchelor regime
[65]. While there are important differences between the two
regimes [39], some of which we will discuss, many of the
properties of the model considered in this paper will be quali-
tatively the same in both regimes.

It will be useful to decompose the distribution function into
its mean and fluctuating parts:

f = 〈 f 〉 + δf . (6)

We make no assumption of δf being small compared to 〈 f 〉.
The effect of collisions will be to wipe out fine-scale

velocity-space structure in the distribution function. To model
this in the simplest possible way, we ignore collisions between
our test-particle species and the other species in the plasma,
and represent collisions within the test species as a linear
diffusion in velocity space acting only on δf , viz.,

C[δf ] = ν
∂2δf

∂v2
, (7)

where ν is the collision frequency (multiplied by v2
th,0), which

we consider to be vanishingly small, taking ν → 0+. It is not
a problem that Eq. (7) does not conserve energy or vanish on
a Maxwellian because collisions will only matter for the parts
of δf with sharp gradients in v [66].

A. Stochastic heating

We first work out the effect of the turbulent electric field on
the mean distribution function. Ensemble averaging (2) over
realizations of the stochastic electric field, we get

∂〈 f 〉
∂t

+ v
∂〈 f 〉
∂x

+
〈
E

∂δf

∂v

〉
= 0. (8)

The equation for δf is then

∂δf

∂t
+ v

∂δf

∂x
+ E

∂δf

∂v
−

〈
E

∂δf

∂v

〉

= −E
∂〈 f 〉
∂v

+ ν
∂2δf

∂v2
. (9)

To compute the ensemble average of the nonlinear term in
Eq. (8), we apply the Furutsu-Novikov theorem [67,68] for
splitting correlators. For a Gaussian field E that depends on
variables q, this theorem states that

〈E (q)F [E ]〉 =
∫

dq′〈E (q)E (q′)〉
〈
δF [E ]

δE (q′)

〉
, (10)
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where F [E ] is a differentiable functional of E . Formally inte-
grating Eq. (9) with respect to time, we have that

δf = −
∫ t

dt ′′
[
v
∂δf

∂x
+ E

∂δf

∂v
−

〈
E

∂δf

∂v

〉

+ E
∂〈 f 〉
∂v

− ν
∂2δf

∂v2

]
(t ′′). (11)

Combining Eqs. (10) and (11), we have

〈E (x, t )δf (x, t )〉

=
∫

dt ′
∫

dx′〈E (x, t )E (x′, t ′)〉
〈
δ[δf (x, t )]

δE (x′, t ′)

〉

= −
∫

dx′D(x − x′)δ(x − x′)
∂〈 f 〉
∂v

= −D(0)
∂〈 f 〉
∂v

. (12)

Therefore, Eq. (8) becomes

∂〈 f 〉
∂t

= D0
∂2〈 f 〉
∂v2

, (13)

where D0 = D(0) is the “turbulent collisionality.” We have
dropped the streaming term in Eq. (8) because our initial
condition is spatially homogeneous, so 〈 f 〉 at future times
does not depend on x. The solution to Eq. (13) is

〈 f 〉 =
∫

dv′ f (v′, t = 0)
1√

4πD0t
e−(v−v′ )2/4D0t . (14)

The mean kinetic-energy density 〈K〉 of this distribution func-
tion is

〈K〉 ≡
∫

dv
mv2

2
〈 f 〉 = K0 + mn0D0t, (15)

where K0 is the initial kinetic-energy density. For the
Maxwellian initial condition (1), Eq. (14) becomes simply

〈 f 〉 = n0√
πvth

e−v2/v2
th , (16)

with a growing thermal speed:

vth =
√

v2
th,0 + 4D0t . (17)

As particles get stochastically accelerated by the electric
field, they undergo Brownian random walks in velocity space,
leading to bulk heating of the distribution function [40], with
secularly growing kinetic energy (15). In magnetized plasmas,
this phenomenon is usually referred to as stochastic heating
[6,41,42].

B. C2 budget: Injection and dissipation

Because the stochastic electric field continuously heats the
distribution function, viz., Eq. (15), energy is not a conserved
quantity in our system. However, what is conserved in the
absence of collisions is the quadratic quantity

C2 = 1

L

∫∫
dx dv

1

2
〈 f 2〉 = C2,0 + δC2, (18)

where

C2,0 = 1

L

∫∫
dx dv

1

2
〈 f 〉2, (19)

δC2 = 1

L

∫∫
dx dv

1

2
〈δf 2〉. (20)

C2 can only change via collisions. Using Eqs. (2) and (7), we
have

dC2

dt
= 1

L

∫∫
dx dv 〈δf C[δf ]〉

= − ν

L

∫∫
dx dv

〈∣∣∣∣∂δf

∂v

∣∣∣∣
2
〉
. (21)

Thus, when collisions are approximated as a linear diffusion
in velocity space, they provide negative-definite dissipation of
C2. Because −C2 is conserved in the absence of collisions and
positive-definitely increased by collisions, we can interpret it
as a “generalized entropy” of the distribution function. We
will henceforth refer to −C2 and entropy synonymously.

Stochastic heating, which is a collisionless process, is ac-
companied by the decrease of C2,0. Indeed, using Eq. (13) and
integrating by parts, we have

dC2,0

dt
= −D0

L

∫∫
dxdv

∣∣∣∣∂〈 f 〉
∂v

∣∣∣∣
2

= −D0

∫
dv

∣∣∣∣∂〈 f 〉
∂v

∣∣∣∣
2

� 0 (22)

generically, and for a Maxwellian in particular,

dC2,0

dt
= −n2

0

√
m

8
√

π

1

T 3/2

dT

dt
, (23)

where T = mv2
th/2, with vth given by Eq. (17). To work out

the δC2 budget, we can combine Eqs. (18) and (21), giving

dδC2

dt
= D0

∫
dv

∣∣∣∣∂〈 f 〉
∂v

∣∣∣∣
2

− ν

L

∫∫
dx dv

〈∣∣∣∣∂δf

∂v

∣∣∣∣
2
〉
. (24)

Thus, without collisions, as C2,0 decreases as a result of
the stochastic heating of 〈 f 〉, δC2 increases to maintain en-
tropy balance. Once δf has developed sharp enough gradients,
collisions dissipate δf , increasing the total entropy. The ir-
reversibility of stochastic heating therefore hinges on the
collisional dissipation of δf .

If the δC2 fluctuations evolve faster than the mean C2,0 and
reach a quasi-steady state (as we shall argue that they do), then
Eq. (24) becomes

D0

∫
dv

∣∣∣∣∂〈 f 〉
∂v

∣∣∣∣
2

= ν

L

∫∫
dx dv

〈∣∣∣∣∂δf

∂v

∣∣∣∣
2
〉
. (25)

In the case where the initial condition is Maxwellian, com-
bining Eqs. (23) and (22) and substituting this expression into
Eq. (25) yields a direct balance between the heating rate of
〈 f 〉 and the collisional dissipation of δf .

The velocity-space gradients of 〈 f 〉 inject δC2 at large
scales, and collisions dissipate δC2 at small scales. As in any
prototypical turbulent system, the steady-state balance (25)
between injection and dissipation at such disparate scales can
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hold if there is a constant-flux cascade bridging them. This
is precisely what we will find in the following sections, viz.,
a phase-space cascade of δC2 in both position and velocity
space. This cascade will be our focus for the rest of this paper.

Before continuing, we note that in Appendix A, we discuss
alternative formulations of the thermodynamics of our system
in terms of other collisionless invariants, and why in this work
we have chosen to study C2 over those other invariants.

C. Evolution of Fourier spectrum

We analyze how δC2 is partitioned between scales in phase
space via its Fourier spectrum. We define

δ f̂ (k, s) = 1

2πL

∫∫
dx dv e−i(kx−sv) δf (x, v), (26)

ˆ〈 f 〉(s) = 1

2π

∫
dv eisv 〈 f 〉(v), (27)

and

Ê (k) = 1

L

∫
dx e−ikx E (x), (28)

where k and s are dual variables to x and v, respectively.
Fourier transforming (9), we get that δ f̂ (k, s) satisfies

∂δ f̂

∂t
+ k

∂δ f̂

∂s
− is

∑
p

[Ê (p)δ f̂ (k − p) − 〈Ê (p)δ f̂ (k − p)〉]

= is Ê ˆ〈 f 〉 − νs2δ f̂ . (29)

We define the Fourier spectrum as

F̂ (k, s) = 1
2 〈|δ f̂ (k, s)|2〉, (30)

which satisfies Parseval’s theorem,

δC2 = 1

L

∫∫
dx dv

1

2
〈δf 2〉 = 2π

∑
k

∫
ds F̂ (k, s), (31)

has the budget equation (equivalent to Eq. (24) in spectral
space)

dδC2

dt
= 2π

[∑
k

∫
ds Ŝ − 2ν

∑
k

∫
ds s2F̂

]
, (32)

and satisfies the evolution equation

∂F̂

∂t
+ k

∂F̂

∂s
+ κ s2(−	k )α/2F̂ = Ŝ − 2νs2F̂ . (33)

Equation (33) is important, and its analysis will be the focus of
the rest of this paper. There are several steps required to derive
Eqs. (32) and (33) from Eq. (29), primarily using Eq. (10)
to calculate correlation functions involving the electric field.
These steps are technical, so we detail them in Appendix B.

The source term in Eqs. (32) and (33) is

Ŝ(k, s) = D̂(k)s2〈 f̂ 〉2, (34)

which for a Maxwellian initial condition evaluates to

Ŝ(k, s) = n2
0

(2π )2
D̂(k) s2 e−s2v2

th/2, (35)

where vth is given by Eq. (17).

In Eq. (33), (−	k )α/2 is a fractional Laplacian [52–54]
of order α/2 (in k space), and κ is a turbulent diffusion
coefficient ∝ LD, for which the exact expression is given in
Appendix B. To obtain this term, we have taken the limit η →
0+ in Eq. (5), which is analogous to taking the zero-viscosity
limit in hydrodynamic turbulence, and kLE � 1, which is
a convenient limit to take to focus on how the distribution
function is stirred in the “inertial range” of the stochastic
electric field.

The fractional Laplacian is a nonlocal integral operator,
generalizing the Laplacian to noninteger order. Its Fourier
transform satisfies

L

2π

∫
dk eikr (−	k )α/2F̂ (k, s) = |r|αF (r, s), (36)

where

F (r, s) = L

2π

∫
dk eikrF̂ (k, s). (37)

Note that we have converted sums over k into integrals (mul-
tiplied by the inverse step size L/2π ).

Mathematically, the fractional Laplacian describes abstract
‘particles’ with coordinates (k, s) undergoing random jumps
in k space, so-called Lévy flights, which leads to superdif-
fusion [55,56]. In the limit α → 2−, the fractional Laplacian
becomes (minus) a regular Laplacian [52], corresponding to
regular Brownian motion. This limit, the Batchelor regime,
was studied before in Ref. [35], although we shall present
some new conclusions about it below.

In the following sections, we will solve for steady-state
solutions of Eq. (33). To this end, we further assume that the
source is localized at small (k, s) and injects δC2 at a constant
rate,

L
∫∫

dk ds Ŝ(k, s) = ε > 0. (38)

These assumptions may appear questionable in view of
Eqs. (24) and (22) (is the source really constant in time?) and
of Eqs. (34) and (5) (is it really local?). Before continuing, we
address these concerns.

Regarding the constancy of the source, we observe that in
Eq. (24), the injection rate of δC2 via the stochastic heating of
〈 f 〉, using Eq. (22) and dimensional analysis, scales as

ε = −dC2,0

dt
∝ D0n2

0

v3
th

= D0n2
0(

v2
th,0 + 4D0t

)3/2 . (39)

This scaling is particularly obvious, from Eq. (23), for the case
of a Maxwellian initial condition. Comparing Eqs. (39) and
(38), we see that the injection rate is, in fact, time-dependent,
∝ t−3/2, even though in our calculations we would like to
treat ε as a constant. However, if the cascade of δC2 is set up
quickly compared to the decay of the source (which, as will
be discussed in Sec. VI B, it is on a ν-independent timescale
when α < 2 and a timescale ∝ | log ν| when α = 2), then it
is reasonable to treat the source as approximately constant on
the timescale of the δf evolution and then solve for the steady-
state spectrum. This becomes an ever-better approximation at
long times, because the rate of change of Eq. (39) is a de-
creasing function of time. Also note that, as long as ε > 0, its
actual value is not important; because the spectrum-evolution
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equation (B8) is linear, it has no special amplitude scale, and
so the size of ε is just a global modifier of the spectrum’s
amplitude.

Regarding the locality of the source, it is easily satisfied in
s space, as the velocity derivatives of 〈 f 〉 become ever smaller
over time as the distribution function stochastically heats. This
is clearly seen in the case of a Maxwellian initial condition,
where the source (35) is a Gaussian in s, with a width ∼1/vth.
In k space, the source is not, in fact, truly localized, since D̂(k)
is a power law, viz., Eq. (5), so fluctuations are injected at all
scales where the electric field exists. However, this turns out
not to be fatal to our formalism: we will neglect the source in
our solving for the inertial-range spectrum in Secs. III and
V and argue a posteriori in Sec. V B that this choice was
justified.

III. PHENOMENOLOGICAL THEORY
OF PHASE-SPACE CASCADE

In Secs. IV and V, we perform a detailed analysis of
Eq. (33). However, the key results of those sections can, in
fact, be intuited via a much simpler route, which we follow
here first.

As discussed in Sec. II B, stochastic heating can only truly
be made irreversible by particle collisions. For collisions to
be relevant even in the limit ν → 0+, we conjecture that
δC2 undergoes a cascade in both position and velocity space.
Analogously to phenomenological theories of hydrodynamic
turbulence [28,69], we assume that there exists an inertial
range in phase space, whereby the flux ε is processed be-
tween scales, from the injection to dissipation range. Under
this assumption, our task is then to ascertain the form of the
spectrum F̂ in (k, s) space in the inertial range.

Fluctuations of δf develop fine-scale structure in velocity
space via linear phase mixing, which manifests in Eq. (33) as
advection of F̂ in s at the rate k. Dimensionally, the phase-
mixing time is, therefore,

τp ∼ s

k
. (40)

Likewise, δf develops fine-scale structure in position space
via nonlinear mixing by the stochastic electric field, which
manifests in Eq. (33) as fractional diffusion of F̂ in k with the
diffusion coefficient κs2. Dimensionally, using Eq. (36), the
turbulent-diffusion time is, therefore,

τd ∼ kα

κs2
. (41)

The ratio of these timescales [taken to the power 1/(α + 1)
for analytical convenience and in anticipation of the results of
Sec. V] is

ξ =
(

τd

τp

)1/(α+1)

= k

(κ s3)1/(α+1)
. (42)

We conjecture that the structure of F̂ in (k, s) space is gov-
erned by the parameter ξ . In particular, we assume that the
spectrum is a product of power laws in k and s, with different
scaling exponents depending on whether ξ is small or large:

F̂ (k, s) ∝
{

kas−b, ξ 
 1,

k−csd , ξ � 1.
(43)

When ξ 
 1, the turbulent-diffusion time is much shorter
than the phase-mixing time, so we expect the inertial-range
spectrum to satisfy, to lowest order in ξ ,

κs2 (−	k )α/2F̂ = 0, (44)

and therefore, to be independent of k. Consequently, a = 0 in
Eq. (43).

When ξ � 1, the phase-mixing time is much shorter than
the turbulent-diffusion time. Then, to lowest order in 1/ξ , we
expect the spectrum to satisfy

k
∂F̂

∂s
= 0, (45)

and, therefore, to be independent of s, the same as in the linear
regime [50,51]. Consequently, d = 0 in Eq. (43).

To find b and c, we invoke our initial assumption of a
constant-flux cascade. As in any Kolmogorov-style theory,
we need a prescription for the cascade time τc, which is
the typical time for δC2 to be transferred across phase-space
scales (, u), where  ∼ 1/k and u ∼ 1/s. We conjecture that
the cascade time is set by the phase-mixing and turbulent-
diffusion timescales (40) and (41), and that the latter two must
balance along the path of the cascade:

τc ∼ τp ∼ τd

⇒ τc ∼ κ−1/3(2−α)/3 ∼ κ−1/(α+1)u(2−α)/(α+1). (46)

In wave number space, this condition is satisfied when ξ ∼ 1,
i.e.,

s ∼ κ−1/3k(α+1)/3. (47)

This is a kinetic, phase-space analog of the critical-balance
conjecture in magnetohydrodynamic turbulence [70,71].

Assuming a constant flux of δC2 in position space, using
the  scaling in Eq. (46), and using Eq. (31) to relate fluctua-
tions in real space and wave-number space, we get

vthδf 2


τc
∼ ε ⇒ vthδf 2

 ∼ ε κ−1/3(2−α)/3

⇐⇒ L
∫

dsF̂ ∼ ε κ−1/3k−(5−α)/3, (48)

where δf is the characteristic amplitude of δf at spatial scale
. Let us compare this result to the 1D k spectrum that follows
from Eq. (43). We assume (and verify a posteriori) that b > 1,
so that the integral of F̂ over s is dominated by the region
ξ � 1, i.e.,

s � κ−1/3k(α+1)/3. (49)

This gives

∫
ds F̂ ∝

∫ κ−1/3k(α+1)/3

0
ds k−c ∝ k−c+(α+1)/3. (50)

Requiring consistency between Eqs. (50) and (48) yields
c = 2.
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We can now perform the same exercise in velocity space,
viz.,

vthδf 2
u

τc
∼ ε ⇒ vthδf 2

u ∼ εκ−1/(α+1)u(2−α)/(α+1)

⇐⇒ L
∫

dkF̂ ∼ ε κ−1/(α+1)s−3/(α+1), (51)

where δfu is the characteristic amplitude of δf at velocity scale
u. On the other hand, using Eq. (43) and assuming that the
integral over k of F̂ is dominated by the region ξ � 1, or

k � κ1/(α+1)s3/(α+1), (52)

we have∫
dk F̂ ∝

∫ κ1/(α+1)s3/(α+1)

0
dk s−b ∝ s−b+3/(α+1). (53)

Requiring consistency between Eqs. (53) and (51) yields b =
6/(α + 1).

Assembling the scalings that we have surmised above, we
find that the spectrum (43) is

F̂ (k, s) ∼ εL−1

{
κ−2/(α+1) s−6/(α+1), ξ 
 1,

k−2, ξ � 1.
(54)

For α = 2, this was derived, by means of a formal solution,
in Ref. [35], but the phenomenological argument and physical
interpretation presented here are new. Note that the dimen-
sional factors in Eq. (54) come from using Parseval’s theorem
(31) together with demanding that the integrals of the spec-
trum in Eqs. (50) and (53) satisfy the constant-flux relations
in position and velocity space, respectively, viz., Eqs. (48) and
(51). As an example, we plot the spectrum (54) for α = 2 in
Fig. 1.

In summary, we have constructed a phenomenological
theory according to which δC2 undergoes a phase-space
cascade in both position and velocity space. At large k
(ξ � 1), the spectrum is phase-mixing-dominated and has a
power-law scaling in k. At large s (ξ 
 1), the spectrum is
turbulent-diffusion-dominated and has a power-law scaling
in s. These two regimes are separated in phase space by the
critical-balance region ξ ∼ 1, where the linear and nonlinear
timescales are comparable. The 1D k and s spectra are domi-
nated by contributions from this critical-balance region.

Since the collision operator is diffusive in velocity space
and ν is assumed to be small, collisional dissipation must
necessarily occur at fine velocity-space scales (large s). It
is therefore unsurprising that a kinetic system with injection
of a quadratic invariant exhibits a constant-flux cascade of
that invariant in velocity space. However, there is no a priori
scale in position space where the dissipation must happen,
so it is nontrivial that there also exists a cascade in position
space. This inertial range in position space emerges due to
the nonlinear field-particle interactions in Eq. (33), which mix
position and velocity space [35].

A reader interested in how the above results are obtained
more rigorously should read Secs. IV and V, where we solve
Eq. (33) properly for the spectrum and fluxes of δC2. A reader
interested only in the big picture can skip straight to Sec. VI.

FIG. 1. Cartoon contour plot of log L2
0 v

6/(α+1)
th F̂ (kL0, svth ) vs

(kL0, svth ), for α = 2, using the piecewise scalings (54). We use
normalized units svth and kL0, where L0 is defined in Eq. (91) (see
the discussion at the beginning of Sec. V B). The black line is the
critical-balance line (47), svth ∼ kL0. In the τp 
 τd (ξ � 1) region,
the spectrum scales as k−2, and in the τd 
 τp (ξ 
 1) region, the
spectrum scales as s−2.

IV. PHASE-SPACE FLUXES

We now verify the phenomenological theory presented in
Sec. III by solving Eq. (33). It is useful to write this equa-
tion in flux-gradient form:

∂F̂

∂t
+ ∇ · �̂ = Ŝ − 2νs2F̂ , (55)

where ∇ = (∂/∂k, ∂/∂s) is a gradient operator in the (k, s)
space, and the flux �̂ = (�̂k, �̂s) has components

�̂s = kF̂ , (56)

which is clear from Eq. (33), and

�̂k = i κs2 1

L

∫ +∞

−∞
dr e−ikr |r|α

r
F (r, s). (57)

The latter expression can be derived using Eq. (36), viz., by
writing the Fourier transform of the nonlinear term as

κs2 |r|αF (r, s) = −ir

[
iκs2 |r|α

r
F (r, s)

]
. (58)

Inverse-Fourier transforming the term in brackets in Eq. (58)
yields Eq. (57) [53]. In steady state, Eq. (55) reads

∇ · �̂ = k
∂F̂

∂s
+ κ s2(−	k )α/2F̂ = Ŝ − 2νs2F̂ . (59)

In Secs. IV A and IV B, we compute �̂k and �̂s integrated
over s and k, respectively. Then, in Sec. V, we compute the
spectrum F̂ (k, s) and analyze the full flux �̂ in (k, s) space.
This order of presentation may seem awkward, but is, in fact,
necessary. This is because the integrated fluxes inform us of
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the nature of the solution of Eq. (59). This solution is in turn
needed to compute the 2D flux in (k, s) space.

A. Constant flux in k

Let us integrate Eq. (59) over all s. The s flux vanishes
at s → ±∞, and we are left with an equation for ĝ(k) =∫ +∞
−∞ ds s2F̂ , which satisfies

κ (−	k )α/2ĝ = Ŝ − 2νĝ, (60)

where Ŝ (k) = ∫ +∞
−∞ ds Ŝ(k, s). This integrated source Ŝ in-

jects ĝ, which is diffused by the nonlinear term and dissipated
by collisions.

The source (34) is peaked at low k, with characteristic
width L−1

E . To analyze the behavior of ĝ(k) in the region
kLE � 1, we approximate Ŝ (k) ≈ (ε/L) δ(k). Fourier trans-
forming (60) and solving for g(r), the Fourier transform of
ĝ(k), yields

g(r) = ε

2πκ

1

|r|α + α
ν

, (61)

whence

ĝ(k) = 1

L

∫
dr e−ikrg(r) = ε

2πκL

∫
dr

e−ikr

|r|α + α
ν

, (62)

where we have defined the “Kolmogorov” (dissipation) scale
as

ν ≡
(

2ν

κ

)1/α

. (63)

For α = 2, Eq. (62) simplifies to

ĝ(k) = ε

2πκL

∫
dr

e−ikr

r2 + 2
ν

= εν

4νL
e−|k|ν . (64)

For α < 2, Eq. (62) does not have a simple closed-form ex-
pression, but it can be manipulated into an integral where the
exponential in the integrand is decaying rather than oscilla-
tory:

ĝ(k) = εν

2πνL

∫ ∞

0
dz

sin(πα/2) zα

z2α + 2zα cos(πα/2) + 1
e−|k|νz.

(65)
This will be useful in what follows. Deriving Eq. (65) from
Eq. (62) requires some work, which is done in Appendix C.

The solution Eq. (62) implies that the rate of δC2 injection
by the source equals the rate of δC2 dissipation by collisions.
Indeed, using Eqs. (32) and (62), and converting the sums over
k into integrals, the collisional dissipation can be written in
terms of ĝ:

2νL
∫

dk ĝ(k) = 2ν

∫
dk

ε

2πκ

∫
dr

e−ikr

|r|α + α
ν

= ε α
ν

∫
dr δ(r)

1

|r|α + α
ν

= ε = L
∫∫

dk ds Ŝ, (66)

as expected. Since Eq. (62) is a Green’s function solution
to Eq. (60), it is straightforward to show that this balance
also holds for arbitrary Ŝ (k). Importantly, Eq. (66) applies
even in the limit ν → 0+; emergence of such finite collisional
dissipation in the collisionless limit is known as a dissipative

anomaly [29]. This result, although perhaps obvious from
the steady state of Eq. (32), demonstrates constructively that
the steady-state solution to Eq. (55) is well defined in the
collisionless limit.

Using the solution (61), we can now compute the 1D k flux
of δC2, viz., from Eq. (57),

L
∫

ds �̂k = iκ
∫ +∞

−∞
dr e−ikr |r|α

r
g(r). (67)

For α = 2, this flux reduces to

L
∫

ds �̂k = −L κ
∂ ĝ

∂k
= sgn(k)

ε

2
e−|k|ν , (68)

where we used the solution (64). For α < 2,

L
∫

ds �̂k

= sgn(k)
ε

π

∫ ∞

0
dz

sin(πα/2) zα−1

z2α + 2zα cos(πα/2) + 1
e−|k|νz.

(69)

The derivation of Eq. (69) can be found in Appendix C. When
kν 
 1, both Eqs. (68) and (69) are constant and equal to
sgn(k) ε/2 (in this limit, the integral over z in Eq. (69) is π/2,
which is also shown in Appendix C). This result, one of the
most important of this paper, means there is a constant-flux
cascade in position space, viz., there exists an inertial range,
1/LE 
 k 
 1/ν , unaffected directly by forcing or colli-
sions, where δC2 is transferred from larger to smaller scales.

At kν � 1, collisions become relevant. The dissipation
rate at scales � 1/k is

D̂(k) = 2νL
∫ +k

−k
dk′ĝ(k′). (70)

Substituting Eq. (64) or Eq. (65) into Eq. (70) gives, for α = 2,

D̂(k) = εν

2

∫ +k

−k
dk′ e−|k′ |ν = ε(1 − e−kν ) (71)

or, for α < 2,

D̂(k) = 2ε

π

∫ ∞

0
dz

sin(πα/2) zα−1

z2α + 2zα cos(πα/2) + 1
(1 − e−kνz ).

(72)
From Eqs. (71) and (72), we see that the collisional dissipation
is only order-unity when kν � 1, i.e., below the Kolmogorov
scale (63), which, therefore, deserves the name that we have
given it. Past kν � 1, the dissipation balances the δC2 in-
jected by the forcing (D̂(k) � ε when kν � 1; derived in
Appendix C). As discussed at the end of Sec. III, because
the collision operator is diffusive in velocity space, there is
no a priori scale in position space where the dissipation must
happen. Rather, this dissipation range in position space forms
because of the collisionless dynamics. Note that ν → 0 as
ν → 0, so arbitrarily fine-scale structure in position space
can be generated in the collisionless limit. Because of the
constant-flux cascade, all of the δC2 injected at large scales
reaches the dissipation range, no matter how small ν is.
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B. Constant flux in s

Let us now integrate (59) over all k. The k flux vanishes at
k → ±∞, resulting in the following equation for the s flux:

∂

∂s

∫
dk �̂s =

∫
dk Ŝ − 2νs2

∫
dk F̂ . (73)

Unfortunately, unlike Eq. (60), this equation is not closed and
cannot be explicitly solved without knowing the spectrum
itself. However, we can still learn a key lesson from it. In
view of Eqs. (34) and (35), the characteristic width over which∫

dk Ŝ falls off in s is 1/vth. But for small ν, collisions can
only be relevant when s is large. Balancing the phase-mixing
term with the collision term in Eq. (59) tells us that collisions
will start to matter when

k

s
∼ νs2. (74)

We know from Sec. IV A that collisional dissipation will start
to occur around kν ∼ 1, so taking k ∼ 1/ν in Eq. (74) gives
us the collisional velocity scale

uν ∼
(

να+1

κ

)1/3α

. (75)

When suν 
 1, we expect that we can drop the collision
term in Eq. (73). Integrating the remaining terms in the equa-
tion from −s to s, where 1/vth 
 s 
 1/uν , yields, using
Eq. (38), ∫

dk �̂s(s) −
∫

dk �̂s(−s)

=
∫ +s

−s
ds′

∫ +∞

−∞
dk Ŝ(k, s′) ≈ sgn(s)

ε

L
. (76)

Because the distribution function is real, the Fourier spectrum
satisfies

F̂ (k,−s) = F̂ (−k, s). (77)

Together with the definition (56) of �̂s, this implies that∫
dk �̂s(−s) = − ∫

dk �̂s(s), and so Eq. (76) becomes

L
∫

dk �̂s(s) = sgn(s)
ε

2
(78)

for 1/vth 
 s 
 1/uν . There is, therefore, also an inertial
range in s where there is a constant flux of δC2 from small to
large |s|. Because the collision operator can only be relevant
at large |s| when ν is small, the existence of a forced steady
state does indeed require such a constant-flux inertial range
in s.

We note that this result holds even in the absence of non-
linearity. Linear phase mixing can lead to the development
of arbitrarily fine scales in velocity space, albeit at the price
of a diverging δC2 as ν → 0+ [51]. However, nonlinearity
is required for there to be a cascade in position space: note
from Eq. (63) that ν → ∞ as κ → 0. Indeed, the solution of
Eq. (60) for κ = 0 is simply ĝ = Ŝ (k)/2ν. The Vlasov equa-
tion is linear in this limit, so the spatial Fourier components of
the distribution function are uncoupled from one another, and
the k dependence of the Fourier spectrum is then simply set
by the source.

V. PHASE-SPACE SPECTRUM

We now compute the spectrum in Eq. (59). From
Secs. IV A and IV B, we know that our model exhibits a
phase-space entropy cascade in which the rate of δC2 injec-
tion by the forcing at large scales is balanced by collisional
dissipation at small scales, with the distribution function de-
veloping arbitrarily small scales in phase space in the limit
ν → 0+. This results in an inertial range in k (s) where the
flux of δC2 integrated over velocity (position) wave numbers
is constant. Therefore, in this inertial range, viz., for 1/LE 

k 
 1/ν and 1/vth 
 s 
 1/uν , we can meaningfully con-
sider (59) in the absence of the forcing and collisional terms,
viz.,

k
∂F̂

∂s
= −κs2(−	k )α/2F̂ , (79)

and seek a solution for the spectrum that supports constant
fluxes in k and s.

A. Self-similar inertial-range solution

Because of the reality condition (77), we only need to solve
Eq. (79) for F̂ (k, s) on half of the (k, s) plane. We choose to
solve for the spectrum in the upper half-plane, −∞ < k < ∞
and s � 0 [72].

To deal with the fractional Laplacian, we Fourier transform
this equation in k space. Using Eq. (36), we find that F (r, s)
satisfies

∂

∂r

∂

∂s
F = −iκs2|r|αF. (80)

Because F (r, s) is the Fourier transform of F̂ (k, s), which
is purely real, F (r, s) must satisfy the reality conditions
F (−r, s) = F ∗(r, s). We therefore only have to solve Eq. (80)
for r > 0, for which |r| = r.

The inertial-range solution to Eq. (80) that does not depend
on details of the forcing or dissipation ranges is a similarity
solution [73]:

F = ε κ−1/(α+1)s−βφ(y), y = (κs3)1/(α+1) r, (81)

where β can be constrained by the fact that the flux L
∫

dk �̂s

must be constant in the inertial range, as per Eq. (78):

L
∫

dk �̂s

= ε s−β+3/(α+1)
∫ +∞

−∞
dξ ξ

∫ +∞

−∞
dy e−iξyφ(y) = ε

2
,

⇒ β = 3

α + 1
. (82)

The integration variable dual to y,

ξ = k

(κ s3)1/(α+1)
, (83)

has previously appeared in Eq. (42) as the ratio of the
turbulent-diffusion and phase-mixing timescales.

Substituting Eq. (81) into Eq. (80) gives us an ordinary
differential equation for φ:

d2φ

dy2
+ i

(α + 1)

3
yα−1φ = 0. (84)
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To solve this equation, consider the transformation

φ = √
y g(z), z = 2√

3(α + 1)
e−iπ/4y(α+1)/2. (85)

Then, Eq. (84) becomes a modified Bessel equation [74]:

z2 d2g

dz2
+ z

dg

dz
−

[
z2 + 1

(α + 1)2

]
g = 0. (86)

Therefore, the solution to Eq. (84) that vanishes at y → ∞ is

φ(y) = �
√

y K1/(α+1)

(
2√

3(α + 1)
e−iπ/4y(α+1)/2

)
, (87)

where y > 0, K is the modified Bessel function of the sec-
ond kind, and � is a constant. The reality condition φ(y) =
φ∗(−y) constrains us to pick the phase of � so that the real
part of φ is even in y and the imaginary part is odd. This is
accomplished by setting

� = σ (e−iπ/4)1/(α+1), (88)

where σ > 0 is real and determined by the constraint (82). For
generic α, we are unable to evaluate the integrals in Eq. (82)
analytically, to compute σ , although it is straightforward to
see that σ is finite. For α = 1, σ is easily computed: this
calculation can be found in Appendix D.

Using the solution (87) for φ, we inverse-Fourier transform
back to k space to obtain,

F̂ (k, s) = 2 ε L−1κ−2/(α+1)s−6/(α+1) Re
∫ ∞

0
dy e−iξyφ(y),

(89)

where ξ is given by Eq. (83), and we have used the reality
condition for φ. As we stated at the beginning of this calcu-
lation, this expression is valid only for s � 0; the spectrum
for negative s can be found by combining Eqs. (77) and (89).
For generic α, we are unable to simplify Eq. (89) further.
For α = 1, Eq. (89) has a simple closed form, derived in
Appendix D. For α = 2, the spectrum can be written in terms
of incomplete Gamma functions; see Ref. [35]. In our terms,
Eq. (87) for α = 2 reduces to

φ(y) = σπ
√

3Ai(e−iπ/6y), (90)

where Ai is the Airy function. This is clear by the fact that for
α = 2, Eq. (84) is an Airy equation.

B. 2D spectrum

To show what Eq. (89) looks like, we present contour plots
of the normalized spectrum L2

0 v
6/(α+1)
th F̂ (kL0, svth ) for α = 1

(for which an explicit expression can be found in Appendix D)
in Fig. 2. We use normalized units svth and kL0, where

L0 =
(

v3
th

κ

)1/(α+1)

. (91)

This length scale is a natural choice, because the similarity
variable (83) in these units is

ξ = k

(κ s3)1/(α+1)
= kL0

(svth )3/(α+1) , (92)

FIG. 2. Contour plot of log L2
0 v

6/(α+1)
th F̂ (kL0, svth ) vs (kL0, svth ),

for α = 1. Note that the spectrum for s < 0 is given by the reality
condition (77), F̂ (k, s) = F̂ (−k,−s). The black lines are the critical-
balance lines (47), svth = ±|kL0|2/3. In order to use logarithmic axes,
we do not plot the spectrum along the k = 0 and s = 0 axes. We have
also not plotted the spectrum near the (k, s) origin, as the similarity
solution (89) diverges there.

and, therefore, the spectrum, up to its amplitude, is indepen-
dent of κ .

For ξ ∼ 1, the spectrum is a nontrivial function of k and
s. For ξ small or large, it has asymptotics given by Eq. (54)
(computed below), confirming the phenomenological theory
presented in Sec. III. As discussed in Sec. III, the distinction
between ξ small and large can be understood in terms of
competition between the phase mixing and turbulent diffusion
for control of the phase-space cascade.

To compute the asymptotics (54) from the full solution
(89), the ξ 
 1 limit can be found by simply setting ξ = 0 in
Eq. (89). For the ξ � 1 limit, we use the following result from
Fourier analysis. Suppose u(y) is a function that is smooth
for y > 0 and has the scaling u(y) ∼ yλ−1 as y → 0+, where
λ > 0. Then ∫ ∞

0
dy e−iξyu(y) = �(λ)

(iξ )λ
+ o(ξ−λ) (93)

as ξ → ∞ [75]. Note that Eq. (87) has the series

φ(y) = A − B(e−iπ/2)1/(α+1)y + O(yα+1) (94)

as y → 0+, where A and B are real and positive constants.
Combining Eqs. (93) and (94), one finds that the contribution
to the integral in Eq. (89) from the constant part of Eq. (94) is
purely imaginary and so vanishes. The next-order term from
the linear part of Eq. (94) has a real component; the integral
is therefore O(ξ−2) (since λ = 2), hence F̂ (k, s) ∝ k−2 as
ξ → ∞.

Note that, the 1D k and s spectra, which can be found by
integrating out the similarity variable ξ in Eq. (89), agree with
Eqs. (48) and (51).

Before continuing, it is instructive to assess the region
of validity of Eq. (89) in the (k, s) plane. This spectrum is
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infrared-divergent and thus breaks down as (k, s) → (0, 0);
information about the functional form of the source (34),
which would regularize the spectrum at long wavelengths,
is lost by construction in the similarity solution [however,
Eq. (89) does contain information about the flux from the
source via the constraint (82)]. Of course, the inertial-range
spectrum is no longer valid in the region where the source (34)
is concentrated, viz., when svth � 1 and kLE � 1. For these
reasons, we have not plotted the spectrum near the origin in
the (k, s) plane in Fig. 2, and likewise for the fluxes plotted in
the following sections [76].

In addition to the solution (89) lacking an outer scale, the
approximation that the nonlinear term is a fractional Laplacian
to lowest order also breaks down when kLE � 1. This is
clear in the derivation of the nonlinear term in Appendix B 4,
where the fractional Laplacian emerges as the lowest-order
term when kLE � 1. Yet, away from s = 0, Eq. (89) is, in
fact, continuous across k = 0. By dropping the finite-kLE

corrections in Eq. (33), we have shrunk the boundary layer
kLE � 1 to the point k = 0 [77].

We can also now address the concern of the lack of locality
in k space of the source term (34) and whether dropping this
term in the inertial range was justified, as discussed at the end
of Sec. II C. Consider the two asymptotic regions, ξ 
 1 and
ξ � 1 (assuming also svth � 1, suν 
 1, and kν 
 1). In
the former region, the nonlinear term is dominant over the
phase-mixing term, as per Eq. (44). Balancing the nonlinear
term with Eq. (34) yields an inhomogeneous contribution to
F̂ ∝ 〈 f̂ 〉2. Since svth � 1, this term is strongly suppressed,
e.g., exponentially so in the case of a Maxwellian initial con-
dition [see Eq. (35)], so this term is negligible compared to
the ξ 
 1 asymptotic in Eq. (54). In the latter region (ξ � 1),
the phase-mixing term is dominant over the nonlinear term, as
per Eq. (45). Balancing the phase-mixing term with Eq. (34)
yields an inhomogeneous contribution to F̂ ∝ D̂(k)/k, which
is ∝ k−(2+α) when kLE � 1. This contribution is subdominant
to the homogeneous part of the spectrum, which scales like
k−2 when ξ � 1, viz., Eq. (54). We cannot explicitly estimate
the inhomogeneous contribution to the spectrum from the
source in the ξ ∼ 1 region, but the above analysis suggests
it should be subdominant to Eq. (89). Therefore, even though
the source is multiscale in k, there is still an inertial range in
the position space.

Finally, we observe that the inertial-range solution (89)
extends to infinity, consistent with kν ∼ 1/ν → ∞ and sν ∼
1/uν → ∞ as ν → 0+, viz., Eqs. (63) and (75). A finite ν

will introduce finite collisional scales kν and sν , such that
collisions cut off the spectrum when k � kν and s � sν .

C. 2D flux: Phase-space circulations

To gain insight about the pathways in phase space taken
by F̂ from injection to dissipation scales, it is informative to
examine the vector flux �̂, which, in terms of the similarity
solution (89), has the components (57),

�̂k (k, s) = −2 ε L−1s−1 Im
∫ ∞

0
dy e−iξyyα−1φ(y), (95)

and (56),

�̂s(k, s) = 2 ε L−1κ−1/(α+1)s−3/(α+1)ξ Re
∫ ∞

0
dy e−iξyφ(y).

(96)

To obtain Eq. (95), we used Eq. (81) and changed variables
from r to y in the integral. Note that these expressions are
valid only for s � 0. For s < 0, combining Eqs. (56), (57),
and (77), we have that

�̂(k,−s) = −�̂(−k, s). (97)

As was the case for the Fourier spectrum, the flux is a
nontrivial function of k and s for ξ ∼ 1, but can be simplified
when ξ is small or large. The asymptotics of the k and s
components of the flux, which we derive below, are

�̂k (k, s) ∼ ε L−1

×
⎧⎨
⎩

−s−1, ξ 
 1,

sgn(k) κα/(α+1)|k|−αs(2α−1)/(α+1), ξ � 1, α < 2,

κ k−3s2, ξ � 1, α = 2.

(98)

and

�̂s(k, s) ∼ ε L−1

{
κ−2/(α+1) k s−6/(α+1), ξ 
 1,

k−1, ξ � 1,
(99)

respectively. Here, we have retained the signs of terms as well
as dimensional factors in Eqs. (98) and (99), but not order-
unity constants. To evaluate the asymptotics of the fluxes for
s < 0, these expressions must be combined with Eq. (97).

We can derive these results in the same way as we did the
asymptotics of the spectrum in Sec. V B. The asymptotics (99)
for �̂s come directly from combining Eqs. (56) and (54). For
�̂k , the ξ 
 1 expansion in Eq. (98) comes from evaluating
Eq. (95) at ξ = 0 (note that the integral is positive). For ξ �
1, we can combine Eqs. (93), (94), and (95). This gives, to
lowest order, as ξ → ∞,

�̂k � 2 ε L−1s−1A �(α) sin
(πα

2

)
sgn(k) |ξ |−α. (100)

The lowest-order k flux vanishes when α = 2, so Eq. (100)
only gives the ξ � 1 limit in Eq. (98) for α < 2. We need to
go to next order for α = 2, which yields

�̂k � 2 ε L−1s−1B �(3) sin
(π

3

)
sgn(k) |ξ |−3, (101)

giving the ξ � 1, α = 2 asymptotic in Eq. (98).
We first discuss the Batchelor case (α = 2), where

(�̂k, �̂s) =
(

−κs2 ∂F̂

∂k
, kF̂

)
. (102)

To work out by what physical mechanism the phase-space
cascade is enabled in different parts of the (k, s) plane, it is
useful to compare the ratio of the k and s fluxes. Using the
normalizations from Sec. V B, we have that the ratio of the
dimensionless fluxes is

R = L4
0�̂

k (kL0, svth )

L2
0v

2
th�̂

s(kL0, svth )
= −1

ξ

Im
∫ ∞

0 dy e−iξyyφ(y)

Re
∫ ∞

0 dy e−iξyφ(y)
, (103)
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FIG. 3. The ratio (103) versus ξ for α = 2, calculated by numer-
ically integrating Eq. (89). The point where R vanishes, ξ = ξ2 �
0.747, corresponds to �̂k = 0.

which is a function solely of ξ . It has the asymptotics

R ∼
{−ξ−1, ξ 
 1,

ξ−2, ξ � 1.
(104)

Thus, when ξ 
 1, the flux is diffusion-dominated (dom-
inated by its k component), and when ξ � 1, the flux is
phase-mixing-dominated (dominated by its s component).
When ξ ∼ 1, the two fluxes are comparable; this can be seen
in the plot of R in Fig. 3. The regions of the dominance of
the two fluxes are, therefore, separated in phase space by the
critical-balance line (47), the same as the phase-mixing and
turbulent-diffusion timescales, viz., Eq. (42).

We plot the (nondimensionalized) vector flux (102) in
Fig. 4(a). Using the asymptotics (104) and noting the signs of
the fluxes in Eqs. (98) and (99), we see that in the diffusion-
dominated region (ξ 
 1), �̂k is negative when s > 0 and
positive when s < 0, and in the phase-mixing-dominated re-
gion (ξ � 1), �̂s is positive when k > 0 and negative when
k < 0. The flux therefore gives rise to counterclockwise cir-
culation of δC2 in (k, s) space. The sign changes in the
components of the flux that enable this circulation occur at
ξ = ξ2 � 0.747, where R has a zero (as can be seen in Fig. 3),
and at ξ = 0, below (above) which R diverges positively (neg-
atively). The first point corresponds to �̂k changing sign in the
top right and bottom left quadrants, while the second point
corresponds to �̂s changing sign from positive to negative be-
tween the top right and top left quadrants, as well as between
the bottom left and bottom right quadrants. This latter effect
occurs because, when sgn(ks) = −1, perturbations are phase
unmixed rather than phase mixed, being advected to low |s|
rather than high |s| [35,61]. The phase-unmixing modes are a
stochastic instantiation of the plasma-echo effect [62,63].

While the phase unmixing does undo the phase mixing, we
will see in Sec. V E that the flux of the phase-mixing modes
outweighs that of the phase-unmixing ones, thus enabling the
constant-flux cascade. In Fig. 4(a), this manifests in the fact
that the circulation swirls outward. Indeed, in the top right
(bottom left) quadrant, below (above) the line ξ = ξ2 where
�̂k = 0, there is a flux of δC2 to both high |k| and high |s|

simultaneously, toward the dissipation wave numbers kν ∼
1/ν and sν ∼ 1/uν .

D. Nonlocal transport

We now examine the α < 2 cases. The important differ-
ence compared to the Batchelor regime is that the k flux is now
nonlocal in k space. Note that �̂k can be written as [53,78]

�̂k = κs2 cα

α

∫ ∞

0
d p

F̂ (k − p, s) − F̂ (k + p, s)

pα
, (105)

where cα is given by Eq. (B19). The derivation of this expres-
sion is given in Appendix B 5. The interpretation of Eq. (105)
is that “particles” (parcels of δC2) cross the point (k, s) from
points (k ± p, s), with cumulative probability ∝ p−α . The par-
ticles undergo Lévy flights in k space, so the flux at a point
(k, s) receives contributions not just from nearby particles
taking small jumps but also from faraway ones taking large
jumps.

The net effect is an enhancement of �̂k compared to �̂s.
For these cases, the ratio R of the nondimensionalized fluxes
is

R = L4
0�̂

k (kL0, svth )

L2
0v

6/(α+1)
th �̂s(kL0, svth )

= −(svth )(2−α)/(α+1) 1

ξ

Im
∫ ∞

0 dy e−iξyyα−1φ(y)

Re
∫ ∞

0 dy e−iξyφ(y)
. (106)

Since �̂k is positive when ξ � 1 and negative when ξ 
 1,
viz., Eq. (98), there is always an order-unity ξα at which
�̂k = 0. Unlike the Batchelor case (103), the ratio of fluxes
(106) is not a function solely of ξ . Therefore, Eq. (106)
implies that along curves of constant ξ ∼ 1 �= ξα , the flux is
always diffusion-dominated as svth → ∞. Furthermore, in the
asymptotic region ξ � 1 (which for α = 2 was the phase-
mixing-dominated region), we show in Appendix E that, as
α gets smaller, the region where the flux is asymptotically
phase-mixing-dominated shrinks. In fact, for α < 1/2, there
is no asymptotic region at all where the flux is phase-mixing-
dominated (except along the curve ξ = ξα).

As an example, we plot the (nondimensionalized) vector
flux for α = 1 in Fig. 4(b) (explicit expressions for the compo-
nents of the flux in this case can be found in Appendix D). In
this case, apart from along the curve ξ = ξ1 where �̂k = 0, the
flux is phase-mixing-dominated only in the region |svth| � 1
(irrespective of k), which in Fig. 4(b) we indicate with gray
lines.

These results do not mean that there is no effective phase
mixing for these cases. The ratio (42) of nonlinear and linear
timescales gives the relative local transport of δC2 in s ver-
sus k space. While the nonlocal transport of δC2 in k space
dominates over its flux in s, locally, the phase-mixing time
(40) of F̂ is still shorter than the diffusion time (41) when
ξ � 1. This dominant local phase mixing is what sets up the
lowest-order, constant-flux-in-s spectrum in the ξ � 1 region,
viz., Eqs. (45) and (54).

The fluxes also obey critical balance. It is straightforward
to show, using Eqs. (98) and (99) with calculations analogous
to Eqs. (50) and (53), that the 1D fluxes (69) and (78) are
dominated by contributions from the critical-balance region
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FIG. 4. (a) 2D nondimensionalized flux for α = 2, with k component L4
0�̂

k (kL0, svth ) and s component L2
0v

6/(α+1)
th �̂s(kL0, svth ), calculated

by integrating Eq. (89) numerically. For emphasis, we specify the magnitude of the flux by both the length and color of the vectors. The black
lines are the critical-balance lines (47) for these parameters, svth = ±kL0/ξ2, where the slope ξ2 � 0.747 is chosen so that �̂k vanishes along
the line in the top right and bottom left quadrants. (b) The same as panel (a) but for α = 1. Analytical expressions for the components of the
flux in this case can be found in Appendix D, viz., Eqs. (D6) and (D5). The black curves are the critical-balance lines (47) for these parameters,
svth = ±|kL0/ξ1|2/3, where ξ1 = 1/

√
3 is chosen so that �̂k vanishes along the curve in the top right and bottom left quadrants [as can be seen

in Eq. (D6)]. The gray lines are svth = ±1, bounding the only region, |svth| 
 1, where the flux is phase-mixing-dominated (apart from the
critical-balance curve).

(47) (ξ ∼ 1). Even though the 2D s flux is subdominant to the
k flux, the fact that L

∫
dk �̂s is constant in the s inertial range

implies that phase mixing still provides an effective route to
dissipation scales in velocity space.

E. Shell-averaged flux

To understand the net effect of having both phase-mixing
modes that propagate from low to high |s| and phase-unmixing
modes that propagate from high to low |s|, it is useful to
consider the flux shell-averaged in k,

�̄ ≡ (
�̂k (k, s) − �̂k (−k, s), �̂s(k, s) + �̂s(−k, s)

)
. (107)

Note that in 1D, shell averaging amounts simply to adding
together contributions from +k and −k. The flux (107) is
defined so that the shell-averaged spectrum F̄ ≡ F̂ (k, s) +
F̂ (−k, s) satisfies the equation

∂F̄

∂t
+ ∇ · �̄ = 2 Ŝ − 2νs2F̄ . (108)

While the components of Eq. (107) depend on α, their
(nondimensionalized) ratio does not (up to a prefactor). Note
that, using Eq. (84) and integrating by parts, Eq. (95) can be
rewritten as

�̂k (k, s) = 2 ε L−1s−1 3

α + 1
Re

×
[
φ′(0+) + ξ 2

∫ ∞

0
dy e−iξyφ(y)

]
, (109)

where the derivative of φ is taken at y → 0+. Using Eqs. (96)
and (109), we get

R̄ = L4
0[�̂k (kL0, svth ) − �̂k (−kL0, svth )]

L2
0v

6/(α+1)
th [�̂s(kL0, svth ) + �̂s(−kL0, svth )]

= 3

α + 1

kL0

svth
. (110)

Remarkably, this expression is valid everywhere in the (k, s)
plane, independent of ξ being small or large. The flux is radial
at both large svth and large kL0. We plot �̄ for α = 1 in Fig. 5,
which clearly exhibits this feature.

Note that the components of the shell-averaged flux are
positive-definite. We are only able to show directly that this
property holds for α = 1; this calculation can be found in
Appendix D. An argument as to why the fluxes are positive-
definite for the general case is as follows. Since Eq. (110) is
positive, the components of Eq. (107) are either both posi-
tive or both negative for all (k, s) in the inertial range [no
sign reversals are possible, otherwise the flux would not be
divergence-free in the inertial range; see Eq. (59)]. If the
components were negative-definite, then there would be a sink
at the origin. However, there is a source at the origin, so the
shell-averaged fluxes must therefore be positive-definite.

This positive definiteness is important. The circulatory na-
ture of the fluxes in Fig. 4 is due to phase-mixing modes [with
sgn(ks) = 1] and phase-unmixing modes [with sgn(ks) =
−1] propagating in opposite directions in s. Since the s
component of Eq. (107) is equal to k[F̂ (k, s) − F̂ (−k, s)],
the shell-averaged flux being positive-definite means that the
spectral amplitudes of the phase-mixing modes are greater
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FIG. 5. 2D nondimensionalized shell-averaged (in k) flux (107)
for α = 1, with k component L4

0�̄
k (kL0, svth ) and s component

L2
0v

6/(α+1)
th �̄s(kL0, svth ). For emphasis, we specify the magnitude of

the flux by both the length and color of the vectors. The black
curve is the critical-balance curve (47) for these parameters, svth =
(kL0/ξ1)2/3, where ξ1 = 1/

√
3.

than those of the phase-unmixing modes. Therefore, by
adding together the fluxes of the two modes, we are left with
a net flux that points outward to both high k and high s
toward the dissipation scales, in agreement with our analysis
in Secs. V C and V D.

VI. CONCLUSION

A. Summary

In this paper, we have presented a solvable model of kinetic
plasma turbulence, in which the electric field is decoupled
from the particle distribution function and taken to be an
externally imposed Gaussian field, white-noise in time and
power-law in k space.

The effect of this stochastic electric field on the mean
distribution function is diffusion in velocity space, often
referred to as stochastic heating [6,40–42]. The resulting
energization of particles is a collisionless process. Indeed,
the heating rate is set by the turbulent collisionality and
is independent of ν [see Eq. (15)]. However, the irre-
versibility of stochastic heating hinges on the presence of
collisions. As 〈 f 〉 heats, δf fluctuations are excited, trans-
ferring the minus “entropy” C2,0 = (1/L)

∫
dxdv 〈 f 〉2/2 into

δC2 = (1/L)
∫

dxdv 〈δf 2〉/2, which then cascades to small
scales in both position and velocity space simultaneously. This
cascade is then cut off by collisions at fine phase-space scales,
thereby rendering the heating irreversible. The irreversibil-
ity of stochastic heating is therefore enabled by the entropy
cascade.

We have analyzed this cascade in the Fourier-transformed
(k, s) space, where an ‘inertial range’ forms to bridge the
injection and dissipation scales of δC2. Integrated over k or
s, the flux of δC2 is constant in this inertial range. Importantly,
there is no collisional dissipation at scales much larger than

the dissipation scale (ν, uν ) [see Eqs. (63) and (75)], which
tends to (0,0) as the collision frequency does.

In the 2D (k, s) space, the Fourier spectrum of δC2 has
a self-similar profile, with power-law asymptotics at high k
and s, respectively. We find that these asymptotic scalings
can be deduced by a phenomenological theory whose gov-
erning principle is that the cascade satisfies a critical balance
in phase space between the timescales of linear phase mix-
ing and turbulent diffusion. Because there is nothing in our
phenomenological theory that is unique to 1D-1V, we also
expect these ideas to apply in 2D-2V and 3D-3V. While the
one-dimensional |k| and |s| spectra (48) and (51) should be
the same, the two-dimensional |k|-|s| spectrum (integrated
over angles) will not be the same as Eq. (54) because of the
wave number Jacobian being different from unity in higher
dimensions.

B. Fast cascade and the effectiveness of phase mixing

In a linear system, phase mixing acts as a route to col-
lisional dissipation at every spatial scale [50,51], but in the
model presented here, collisional dissipation is only nonnegli-
gible below the dissipation scale ν . Following the commonly
held intuition that the effect of phase mixing (and Landau
damping) on turbulent systems is that it steepens the spectrum
(of, e.g., electromagnetic energy) at every scale by an amount
set by the Landau-damping rate [27,79–84], one may be led to
conclude from our results that phase mixing is less effective
in a nonlinear system than in a linear one. However, in fact,
phase mixing is even more effective in a nonlinear system.
This is because the presence of nonlinearity produces fine
structure in position space and thus enhances the rate at which
the distribution function develops fine phase-space gradients,
reducing the time that it takes collisions to activate, τν .

To see this, note that in a steadily driven system, as consid-
ered in this paper, the total δC2 in steady state divided by the
injection rate ε gives a reasonable estimate for τν . For a linear
system, restricting ourselves to a single k and noting that the
spectrum is flat in s [85] up to a collisional cutoff sν ∝ ν−1/3

given by the balance (74) [50,51], we find [86]

τν ∼ δC2

ε
∝

∫ sν

ds ∝ ν−1/3. (111)

For smaller and smaller ν, it takes longer and longer for
collisions to dissipate the velocity-space structure of the dis-
tribution function, and in the collisionless limit, the amount
of δC2 stored in phase space diverges [51]. This is consistent
with a constant cascade time, set by the phase-mixing time,
viz., τc ∼ (k vth )−1 (with k fixed).

In the presence of nonlinearity, when α = 2, the 1D spectra
(48) and (51) scale like k−1 and s−1, respectively [35], the
former scaling in agreement with the classical Batchelor [65]
spectrum of a passive scalar advected by a single-scale flow.
Integrating the 1D spectrum up to the collisional cutoff (63)
gives

τν ∼ δC2

ε
∝

∫ 1/ν

dk k−1 ∝ | log ν|. (112)
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Although formally also divergent as ν → 0+, Eq. (112) is
asymptotically shorter than Eq. (111). In this case, the cas-
cade time is also constant, viz., τc ∼ κ−1/3, as can be seen in
Eq. (46), even though many k’s are involved.

When α < 2, the phase-space cascade is even more effi-
cient. From Eq. (46), we have that τc goes to zero as k and
s go to infinity, so fluctuations “turn over” faster to finer
phase-space scales the deeper they are in the inertial range
(compared to the constant cascade times in the linear and
Batchelor regimes). As a result, the 1D spectra (48) and (51)
are steeper than k−1 and s−1, so the total steady-state δC2 and
τν are independent of ν.

Thus, the presence of nonlinearity reduces the collision
time from a (negative) fractional power of ν (111) in the
linear regime to a timescale that is only logarithmic with ν

(112) when α = 2, or one that is independent of ν when
α < 2. To interpret this shortening of τν in the nonlinear
regime, note that linear phase mixing still processes δC2 from
injection to dissipation scales in the inertial range, but so
does, simultaneously, nonlinear mode coupling, in a critically-
balanced fashion. The net result is fast dissipation, but only at
wave numbers k � kν ∼ 1/ν and s � sν ∼ 1/uν , which, by
construction, satisfy the critical-balance condition (47). The
nonlinear cascade ensures that all the injected δC2 flux at
large phase-space scales is rapidly dissipated at small scales
via collisions, no matter how small is ν. This reduction of τν

is also an a posteriori justification of the assumption (25) of
there being a separation of timescales between the time that it
takes δC2 to reach quasi-steady state and the time that it takes
for the injection rate ε to decay due to the stochastic heating
of 〈 f 〉 [87].

C. Implications and outlook

As discussed in Sec. VI B, these results provide a concep-
tual understanding of the role of phase mixing in turbulent
plasmas. Recent theoretical [35,61] and numerical [88,89]
studies have suggested a statistical “fluidization” of turbulent,
collisionless plasmas by stochastic plasma echoes suppressing
phase mixing in the (spatial) inertial range. This might have
seemed to be at odds with Landau damping [90] clearly be-
ing identified in turbulent settings numerically [84,91–95] in
several works, as well in Magnetospheric Multiscale (MMS)
mission observations of the turbulent plasma in the Earth’s
magnetosheath [96,97]. While our model is quite simplified
and does not include self-consistent electric fields and hence
Landau damping, insofar as Landau damping and phase mix-
ing are intimately related processes, our results indicate that
these two seemingly contradictory sets of results can in fact
be compatible.

This work also has implications for the relaxation of mean
distribution functions in nearly collisionless plasmas. The
existence of the entropy cascade implies that collisions will
dissipate fine-scale structure in the distribution function, even
when ν is vanishingly small, but it does not necessarily imply
that the rate by which the distribution function relaxes toward
a Maxwellian is enhanced. This is clear in our model from the
fact that, whereas δf develops sharp phase-space gradients,
〈 f 〉 does not, so Coulomb collisions are never activated for
it. Mean distributions in space plasmas can be highly non-

Maxwellian, e.g., in the solar wind [1,6,98]. Developing a
theoretical formalism to predict the form of such nonequi-
librium distribution functions is an outstanding problem. A
direct consequence of entropy cascades is that theories of
relaxation that assume phase-volume conservation [99–103]
may not apply to nearly collisionless plasmas that are strongly
turbulent. An alternative approach is to examine how the tur-
bulent phase-space correlations of δf drive the evolution of the
mean distribution function [43,104].

There is much opportunity to understand phase-space en-
tropy cascades in nearly collisionless plasmas better, with
theory, numerical simulations, laboratory experiments, and
spacecraft data. With regards to the latter two, the works
[30,105–107] suggest that measuring entropy cascades in real
plasmas is a realizable endeavor just beginning to be possible.
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APPENDIX A: INVARIANTS ALTERNATIVE TO C2

In this Appendix, we discuss invariants of the Vlasov equa-
tion alternative to C2. It is straightforward to show that Eq. (2)
conserves an infinite number of invariants, so-called Casimir
invariants [21]. Indeed, focusing on invariants defined in the
averaged sense, for any smooth g( f ), the functional

G[ f ] = 1

L

∫∫
dxdv 〈g( f )〉 (A1)

satisfies, using Eq. (7) for the collision operator,

dG

dt
= 1

L

∫∫
dxdv 〈g′( f )C[ f ]〉

= − ν

L

∫∫
dxdv

〈
g′′( f )

(
∂〈 f 〉
∂v

+ ∂δf

∂v

)
∂δf

∂v

〉

� − ν

L

∫∫
dxdv

〈
g′′( f )

∣∣∣∣∂δf

∂v

∣∣∣∣
2
〉
, (A2)

where the term with two derivatives on δf dominates when
ν → 0+. Note that while in this paper 〈...〉 denotes ensemble
averaging with respect to the stochastic electric field, the ar-
guments in this section hold for any averaging procedure for
which one can decompose f = 〈 f 〉 + δf , where 〈δf 〉 = 0.
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When ν = 0, every G[ f ] is formally conserved. Further-
more, if g( f ) is convex, i.e., g′′( f ) � 0 everywhere, then
the corresponding Casimirs are negative-definitely dissipated
by collisions. We label Casimirs with positive-definite time
evolution (which are minus the convex functionals of f ) as
“generalized entropies” (cf. entropy functions in hyperbolic
partial differential equations [108]). This set includes −C2, as
well as the traditional entropy S = − ∫∫

dxdv f log f .
We define the relative entropy as

R[ f ] = G[ f ] − G[〈 f 〉], (A3)

which has the budget

dR[ f ]

dt
+ dG[〈 f 〉]

dt
= − ν

L

∫∫
dxdv

〈
g′′( f )

∣∣∣∣∂δf

∂v

∣∣∣∣
2
〉
. (A4)

Using Eq. (13), G[〈 f 〉] satisfies

dG[〈 f 〉]
dt

= −D0

∫
dv g′′(〈 f 〉)

∣∣∣∣∂〈 f 〉
∂v

∣∣∣∣
2

, (A5)

which is negative-definite if g( f ) is convex. Therefore, we can
interpret Eq. (A4) analogously to Eq. (24). In the absence of
collisions, as G[〈 f 〉] decreases via stochastic heating, R[ f ]
increases to maintain the G[ f ] balance. Once δf has developed
sharp enough gradients, collisions dissipate the total G[ f ].

We have shown that C2 is anomalously dissipated as ν →
0+ and is cascaded, i.e., exhibits an inertial range unaffected
directly by collisions or forcing. In principle, invariants other
than C2 can also have these properties. A system mathe-
matically similar to Eq. (2) in which this happens is the
advection-diffusion equation for a scalar advected by a tur-
bulent flow: Ref. [109] showed that the family of invariants∫

dx θ2n, where θ is a scalar field and n is a positive integer,
satisfy constant-flux cascades; in contrast, for a passive scalar
advected by a smooth, chaotic flow (Batchelor regime), only
the quadratic invariant (n = 1) is cascaded. This is because for
higher-order invariants, logarithmic correlations of the passive
scalar give rise to injection of those invariants by the source at
all scales, preventing the formation of an inertial range.

It is likely that a similar situation happens in the Vlasov-
Kraichan model between the cases α < 2 and α = 2, but such
a calculation is beyond the scope of this work. If it were true,
then for α < 2, the cascade of C2 does not necessarily hold
deeper physical meaning than the cascade of any other convex
functional of f .

However, we still believe that C2 is a particularly useful
quantity in kinetic plasma turbulence. Because it is quadratic
in f , C2 is the only invariant [up to weight functions in the
integrand of Eq. (A1)] that satisfies

G[〈 f 〉 + δf ] = G[〈 f 〉] + G[δf ], (A6)

and so the relative entropy (A3) is a function solely of δf .
This property is useful for conceptualizing the budget (A4) as
a transfer of entropy between 〈 f 〉 and δf , as any other Casimir
invariant involving higher powers of f will necessarily involve
cross terms containing both 〈 f 〉 and δf . Furthermore, C2 is the
only invariant that lends itself to a simple Fourier analysis.
For these reasons, in this paper, we have chosen to analyze
phase-space turbulence using C2 exclusively.

APPENDIX B: DERIVATION OF THE
FOURIER-SPECTRUM EQUATION

In this Appendix, we give a detailed derivation of Eq. (33).
Multiplying Eq. (29) by δ f̂ ∗(k, s), adding to the resulting

equation its complex conjugate, and then ensemble averaging
gives

∂F̂

∂t
+ k

∂F̂

∂s
+ s Im

∑
p

〈Ê (p)δ f̂ (k − p)δ f̂ ∗(k)〉

= Ŝ − 2νs2F̂ . (B1)

Note that the second term in the Fourier sum in Eq. (29)
vanishes under multiplication by δ f̂ ∗(k, s) and ensemble av-
eraging. The source term Ŝ, defined in Eq. (34), comes from
the second term on the right-hand side of Eq. (29). It can be
found via application of the Furutsu-Novikov theorem (10)
and using the fact that Eq. (3) implies

〈Ê (k, t )Ê (k′, t ′)〉 = 2 D̂(k)δk,−k′δ(t − t ′), (B2)

where δk,−k′ is the Kronecker delta.

1. Derivation of Eq. (32)

The δC2 budget (32) in terms of F̂ can be found by taking
the time derivative of Eq. (31) and using Eq. (B1). Assuming
the spectrum goes to zero at s → ±∞, the free-streaming
term vanishes by integration over s. For the nonlinear term,
note that the summand in

Im
∑
k,p

〈Ê (p)δ f̂ (k − p, s)δ f̂ ∗(k, s)〉, (B3)

after taking p → −p and k → k − p, and applying reality
conditions on the electric field, is equal to its own complex
conjugate. Therefore, its imaginary part vanishes. What is left
is injection by the source and dissipation by collisions, viz.,
Eq. (32).

2. Derivation of Eq. (33)

We now close the triple correlator in Eq. (B1). Using
Eq. (10), we have

〈Ê (p)δ f̂ (k − p)δ f̂ ∗(k)〉 =
∫

dt ′ ∑
p′

〈
Ê (p, t )Ê (p′, t ′)

〉

×
〈

δ[δ f̂ (k − p, t )δ f̂ ∗(k, t )]

δÊ (p′, t ′)

〉
.

(B4)

As in Sec. II A, the functional derivative can be computed
by formally integrating the relevant evolution equation. Using
Eq. (29), we can write

δ f̂ (k − p)δ f̂ ∗(k)

=
∫ t

dt ′′
{

is
∑

p′′

[
Ê (p′′)δ f̂ (k − p − p′′)δ f̂ ∗(k)

− Ê (−p′′)δ f̂ ∗(k − p′′)δ f̂ (k − p)

]
+ (...)

}
, (B5)
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where (...) represents terms that will vanish after we take the
functional derivative. Therefore, we get〈

δ[δ f̂ (k − p, t )δ f̂ ∗(k, t )]

δÊ (p′, t ′)

〉

= is

[
〈δ f̂ (k − p − p′, t ′)δ f̂ ∗(k, t ′)〉

− 〈δ f̂ ∗(k + p′, t ′)δ f̂ (k − p, t ′)〉
]

H (t − t ′), (B6)

where H is the Heaviside step function, defined with the
convention that H (0) = 1/2. Combining this expression with
Eqs. (B2) and (B4) yields

〈Ê (p)δ f̂ (k − p)δ f̂ ∗(k)〉 = 2is D̂(p)[F̂ (k) − F̂ (k − p)].
(B7)

Using this expression in Eq. (B1), we get

∂F̂

∂t
+ k

∂F̂

∂s
+ 2s2

∑
p

D̂(p)[F̂ (k) − F̂ (k − p)]

= Ŝ − 2νs2F̂ . (B8)

3. The case of α = 2: Batchelor limit

Let us simplify the nonlinear term in Eq. (B8) further. We
start with the case of α = 2. In the limit kLE � 1, we suppose
(and check a posteriori) that Eq. (5) is sufficiently steep in
wave numbers that we can consider k � p and Taylor-expand
the summand of the wave-number sum in Eq. (B8):

F̂ (k) − F̂ (k − p) � −p
∂F̂

∂k
+ 1

2
p2 ∂2F̂

∂k2
. (B9)

This “Batchelor approximation” was first used for the problem
of passive-scalar mixing in fluids [65,110] and amounts to
approximating the electric field as effectively single-scale.
Substituting Eq. (B9) back into the sum in Eq. (B8), the first
term vanishes because it is odd in p, and we are left with

∑
p

D̂(p)[F̂ (k) − F̂ (k − p)] � D2
∂2F̂

∂k2
, (B10)

where

D2 = 1

2

∑
p

p2D̂(p) = D

2

∑
p

p2e−(ηp)2(
p2 + L−2

E

)3/2 . (B11)

In the limit η → 0+, Eq. (B11) is logarithmically divergent,
being ∝ log(LE/η); without a small-scale cutoff, the approx-
imation (B10) is invalid. This is because the k−3 spectrum in
Eq. (5) is only marginally in the Batchelor regime [35,65].
The Batchelor limit generically applies when the electric field
is spatially smooth, corresponding to a rapidly decaying spec-
trum D̂(k). We choose the particular form of D̂(k) in Eq. (5)
in order to match onto the Batchelor limit and fractional cases
with one functional form of the correlation function, but we
could just as well have picked a steeper Eq. (5) for α = 2
that would not have required a small-scale cutoff. There-
fore, without loss of generality, we keep Eq. (B11) without
modification.

4. The α < 2 cases: Representation in terms
of the fractional Laplacian

For α < 2, it is convenient to manipulate the nonlinear term
in Eq. (B8) in position space and then Fourier transform back
to k space. We start by noting that∑

k

eikr
∑

p

D̂(p)[F̂ (k) − F̂ (k − p)]

= [D(0) − D(r)]F (r). (B12)

We now take the limits η → 0+ and kLE � 1. When η = 0,
note that Eq. (4) is the kernel of the Bessel potential [64,111],
and can therefore be written as

D(r) = LD

2π

21−α/2√πLα
E

�
(

α+1
2

) (
r

LE

)α/2

Kα/2

(
r

LE

)
, (B13)

where K is the modified Bessel function of the second kind,
and � is the Gamma function. For α < 2 and r/LE 
 1,
Eq. (B13) has a series expansion

D(r) = D0 − Dαrα + O
(

r2

L2−α
E

)
, (B14)

where

D0 = LD

2π

�
(

α
2

)√
π

�
(

α+1
2

) Lα
E , (B15)

Dα = LD

2π

√
π

∣∣�(−α
2

)∣∣
2α �

(
α+1

2

) . (B16)

We now Fourier transform back to k space. To lowest order

in (r/LE )2−α 
 1 [equivalently, (kLE )2−α � 1], the rα term
is dominant over the r2 term, which gives

1

L

∫
dre−ikr[D(0) − D(r)]F (r)

� 1

L

∫
dre−ikrDα|r|αF (r) = Dα (−	k )α/2F̂ (k). (B17)

Here (−	k )α/2 is a fractional Laplacian [52–54] of order α/2,
in k space, viz.,

(−	k )α/2F̂ (k) = cα p.v.
∫ +∞

−∞
dp

F̂ (k) − F̂ (k − p)

|p|α+1
, (B18)

where

cα = 2α�( α+1
2 )√

π
∣∣�(−α

2

)∣∣ , (B19)

and p.v. means that the integral is defined in the principal-
value sense.

Thus, using Eqs. (B17) and (B10), we have that Eq. (B8)
becomes Eq. (33), where

κ =
{

2Dα, α < 2,

2D2, α = 2,
(B20)

with Dα given by Eq. (B16) and D2 given by Eq. (B11).

5. Derivation of Eq. (105)

Here, we derive the form (105) of the nonlocal k flux in the
α < 2 cases, as analyzed in Sec. V D.
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We first rewrite Eq. (B18) as an integral over positive p:

(−	k )α/2F̂ (k) = cα p.v.
∫ +∞

−∞
d p

F̂ (k) − F̂ (k − p)

|p|α+1

= cα

∫ ∞

0
d p

2F̂ (k) − F̂ (k − p) − F̂ (k + p)

pα+1
.

(B21)

In Eq. (B21), we can write p−(α+1) = −(1/α)∂p p−α and in-
tegrate by parts. The boundary terms vanish (assuming F̂
vanishes at infinity), and we are left with

(−	k )α/2F̂ (k) = −cα

α

∫ ∞

0
d p

∂F̂
∂ p (k − p) + ∂F̂

∂ p (k + p)

pα

= ∂

∂k

cα

α

∫ ∞

0
d p

F̂ (k − p) − F̂ (k + p)

pα
.

(B22)

Combining Eq. (B22) and the definition ∂k�̂
k =

κs2(−	k )α/2F̂ yields Eq. (105).

APPENDIX C: DETAILED CALCULATIONS FOR SEC. IV A

In this Appendix, we derive the general α < 2 expressions
for ĝ(k) (65) and the k flux integrated over s (69).

1. Derivation of Eqs. (65) and (72)

We start with ĝ(k), as given in Eq. (62). As discussed in
Sec. IV A, it is useful to convert this integral into one where
the exponential in the integrand is decaying rather than oscil-
latory. To do this, we perform an auxiliary expansion, taking
|r|α → (r2 + δ2)α/2 and then δ → 0 in the integral (62):

ĝ(k) = ε

2πκL
lim
δ→0

IC1 , (C1)

where

IC1 =
∫
C1

dr
e−ikr

(r2 + δ2)α/2 + α
ν

, (C2)

and C1 is a contour running along the real line. We choose the
branch cuts so that

(r2 + δ2)α/2 = (r + iδ)α/2(r − iδ)α/2

= rα/2
+ eiαθ+/2rα/2

− eiαθ−/2, (C3)

where r± = |r ± iδ|, θ+ ∈ [−π/2, 3π/2], and θ− ∈
[−3π/2, π/2]. Note the branch points are at rbr,± = ∓iδ. We
first treat the case k < 0. We close C1 by making a semicircle
in the upper half of the complex plane and going around the
branch cut with the branch point rbr,−, as depicted in Fig. 6.
By Cauchy’s residue theorem, since the integrand in Eq. (C2)
has no poles, IC1 + IC2 + IC3 + IC4 + IC5 + IC6 = 0. When
the radius R of the contours C2 and C6 is large, the integrands
along these contours are ∝ e−|k| R sin θ R1−α (here θ is the angle
of the contour with respect to the positive real axis). Thus,
IC2 and IC6 tend to zero as R → ∞. Because the integrand is
finite at r = rbr,−, IC4 tends to zero as the radius of C4 shrinks
to zero. Therefore, IC1 = −IC3 − IC5 . Noting that along C3,
θ± = π/2, while along C5, θ+ = π/2 and θ− = −3π/2, we

FIG. 6. Contour used in the derivation of Eq. (65).

have that

− (IC3 + IC5 ) = −i
∫ δ

∞
dz

e−|k|z

(z2 − δ2)α/2eiπα/2 + α
ν

− i
∫ ∞

δ

dz
e−|k|z

(z2 − δ2)α/2e−iπα/2 + α
ν

= 2
∫ ∞

δ

dz e−|k|z

× sin(πα/2)(z2 − δ2)α/2

(z2 − δ2)α + 2(z2 − δ2)α/2 α
ν cos(πα/2) + 2α

ν

, (C4)

where we have changed variables to z = −ir and used the
fact that IC5 = I∗

C3
. Now we can safely take the limit δ → 0.

Using Cauchy’s residue theorem and also redefining z → νz,
we have

ĝ(k) = ε

2πκL
lim
δ→0

IC1 = ε

2πκL
lim
δ→0

[ −(IC3 + IC5 )]

= εν

2πνL

∫ ∞

0
dz

sin(πα/2) zα

z2α + 2zα cos(πα/2) + 1
e−|k|νz,

(C5)

which is Eq. (65). For k > 0, C1 can be closed by making a
contour in the lower half plane, yielding the same expression
(C5). Integrating this expression in k and multiplying by 2νL
immediately yields Eq. (72).

2. Derivation of Eq. (69)

For the k flux, combining Eqs. (61) and (67), we have

L
∫

ds �̂k = iε

2π

∫
dr

|r|α
r

e−ikr

|r|α + α
ν

. (C6)

This integral can be equated to one where the exponential
term is decaying rather than oscillatory by again substituting
|r|α → (r2 + δ2)α/2 and then taking δ → 0. The method from
Appendix C 1 can be applied again, resulting in Eq. (69). The
main difference is that this time, the auxillary expansion in
δ introduces a pole at r = 0 in the integrand of Eq. (C6),
making it necessary to deform the contour along the real line.
However, this residue contribution vanishes when δ → 0, so
whether the contour is deformed below or above the pole does
not change the final answer.

Given the expression (69), we can take its asymptotics for
kν 
 1, as analyzed in Sec. IV A. In this limit, the inertial-
range flux is approximately equal to the rate of δC2 injection.
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Changing variables to u = zα , we have

L
∫

ds �̂k

� sgn(k)
ε sin(πα/2)

πα

∫ ∞

0

du

u2 + 2u cos(πα/2) + 1

= sgn(k)
ε sin(πα/2)

πα

1

sin(πα/2)

πα

2

= sgn(k)
ε

2
, (C7)

where the u integral was done using Ref. [112], formula
3.252(1). Note this result also implies that Eq. (72) approx-
imately satisfies D̂(k) � ε when kν � 1.

3. Expressions for α = 1 case

Finally, we note that when α = 1, ĝ(k), D̂(k), and
L

∫
ds �̂k can all be expressed in terms of known special func-

tions. For the sake of completeness, we give these expressions
here.

For ĝ(k), using Ref. [74], formulas 5.2.7 and 5.2.13, we
have

ĝ(k) = εν

2πνL

∫ ∞

0
dz

z e−|k|νz

z2 + 1

= − εν

2πνL
[cos(|k|ν )Ci(|k|ν ) + sin(|k|ν )si(|k|ν )],

(C8)

where Ci(z) and si(z) are cosine and sine integral functions
[74], respectively.

For D̂(k), using Ref. [74], formulas 5.2.6 and 5.2.12, we
have

D̂(k) = 2ε

π

∫ ∞

0
dz

1 − e−kνz

z2 + 1

= ε

{
1 − 2

π
[sin (kν )Ci(kν ) − cos (kν )si(kν )]

}
.

(C9)

When kν 
 1, Eq. (C9) has the series

D̂(k) = ε

{
2

π
[1 − γ − log(kν )]kν + O((kν )2)

}
, (C10)

which vanishes as kν → 0. Here, γ is the Euler-Mascheroni
constant. Note that the finite-kν corrections are linear and
logarithmic, in contrast to the α = 2 case (71), where the first-
order correction (after Taylor expanding the exponential) is
just linear in kν . When kν � 1, Eq. (C9) has the series

D̂(k) = ε

[
1 − 2

π

1

kν

+ O((kν )−3)

]
. (C11)

Likewise, the integrated k flux (69) is

L
∫

ds �̂k = sgn(k)
ε

π

∫ ∞

0
dz

e−|k|νz

z2 + 1

= sgn(k)
ε

π
[sin (|k|ν )Ci(|k|ν ) − cos (|k|ν )si(|k|ν )].

(C12)

When kν 
 1, this expression has the series

L
∫

ds �̂k = sgn(k)
ε

2

{
1 − 2

π
[1 − γ − log(|k|ν )]|k|ν

+ O((|k|ν )2)

}
, (C13)

in agreement with (C7) as kν → 0.

APPENDIX D: CLOSED-FORM EXPRESSIONS OF
INERTIAL-RANGE SPECTRUM AND FLUXES FOR α = 1

In Secs. V B and V C, we plotted the inertial-range spec-
trum and its corresponding vector flux, respectively, for α =
1. For this value of α, the spectrum and fluxes have simple
closed forms, which we derive in this Appendix.

When α = 1, Eq. (87) reduces to

φ(y) = σ̃ e−(1−i)y/
√

3, (D1)

where we have absorbed all order-unity constants into σ̃ ,
where σ̃ = 31/42−3/4√π σ . In Eq. (89), therefore, we have

2 Re
∫ ∞

0
dy e−iξyφ(y)

= 2σ̃ Re
∫ ∞

0
dy e−y/

√
3e−iy(ξ−1/

√
3)

= 2
√

3 σ̃
1

3ξ 2 − 2
√

3ξ + 2
. (D2)

The constant σ̃ can be found via the flux constraint (82):

1

2
= 2

√
3 σ̃

∫ +∞

−∞
dξ

ξ

3ξ 2 − 2
√

3ξ + 2
= 2

√
3 σ̃

π

3

⇒ σ̃ =
√

3

4π
. (D3)

Therefore, using Eqs. (83) and (89), the spectrum is

F̂ (k, s) = 3ε

2πLκ
s−3 1

3ξ 2 − 2
√

3ξ + 2

= 3ε

2πL

1

3k2 − 2
√

3κ ks3/2 + 2κs3
. (D4)

This expression clearly satisfies the asymptotics given by
Eq. (54), and the results for the 1D spectra (48) and (51) apply.

The s flux (56) is then simply

�̂s = kF̂ = 3ε

2πL

k

3k2 − 2
√

3κks3/2 + 2κs3
. (D5)

The k flux (57), using Eq. (95), is

�̂k = −2 ε L−1s−1 Im
∫ ∞

0
dy e−iξyφ(y).

= −
√

3 ε

2πLs
Im

∫ ∞

0
dy e−y/

√
3e−iy(ξ−1/

√
3)

= 3ε

2πLs

√
3 ξ − 1

3ξ 2 − 2
√

3ξ + 2

= 3ε

2πL

√
3κ ks1/2 − κs2

3k2 − 2
√

3κ ks3/2 + 2κs3
. (D6)
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Finally, we show that the components of the shell-averaged
flux (107) for α = 1 are positive-definite. For the s flux, using
Eqs. (D5) and (107), we have

�̂s(k, s) + �̂s(−k, s)

= 3εk

2πLκs3

(
1

3ξ 2 − 2
√

3ξ + 2
− 1

3ξ 2 + 2
√

3ξ + 2

)

= 3εk

2πLκs3

4
√

3ξ

9ξ 4 + 4
� 0. (D7)

For the k flux, using Eqs. (D6) and (107), we have

�̂k (k, s) − �̂k (−k, s)

= 3ε

2πLs

( √
3 ξ − 1

3ξ 2 − 2
√

3ξ + 2
+

√
3 ξ + 1

3ξ 2 + 2
√

3ξ + 2

)

= 3ε

2πLs

6
√

3ξ 3

9ξ 4 + 4
� 0. (D8)

APPENDIX E: CHARACTERIZATION OF 2D FLUXES
FOR α < 2 CASES

In this section, we characterize the (nonlocal) 2D fluxes for
the α < 2 cases. The asymptotics of the (normalized) ratio of
fluxes (106) are

R ∼
{

−(kL0)−1 (svth )(5−α)/(α+1), ξ 
 1,

(kL0)1−α (svth )(2α−1)/(α+1), ξ � 1.
(E1)

Unlike in the Batchelor regime, the ratios in Eq. (E1) are no
longer functions solely of ξ , and, therefore, the regions where
R is small or large are not necessarily divided by the critical-
balance curve (47). Note that we focus our analysis on the top
right quadrant of the (k, s) plane, but our arguments can be
extended to the whole plane.

For ξ 
 1, above the curve (47), which is the diffusion-
dominated region for α = 2, the s and k flux are comparable
along the curve

svth ∼ (kL0)(α+1)/(5−α). (E2)

At sufficiently large kL0, this curve falls below the critical-
balance curve (47), outside the ξ 
 1 regime, and hence �̂k

is dominant over �̂s when ξ 
 1 for all α.
For ξ � 1, below the curve (47), which is the phase-

mixing-dominated region for α = 2, the s and k flux are
comparable along the curve

svth ∼ (kL0)(α2−1)/(2α−1). (E3)

There are now various regimes with different behaviors.
When 1 < α < 2, the flux is phase-mixing-dominated

(diffusion-dominated) below (above) the curve (E3). At
sufficiently large kL0, the curve (E3) falls below the
critical-balance curve (47), effectively widening the diffusion-
dominated region from the ξ 
 1 region down to the curve
(E3). Note that for this range of α, Eq. (E3) is concave, same
as Eq. (47).

FIG. 7. Cartoon diagram depicting the regions where the flux
is phase-mixing-dominated (labeled “P” and colored blue) versus
diffusion-dominated (labeled “D” and colored red), for α = 3/4. The
black curve is the critical-balance curve (47) for this value of α,
svth ∼ (kL0 )7/12. The gray curve is Eq. (E3) for these parameters,
svth ∼ (kL0 )−7/8. We have colored the region bounded above by the
critical-balance curve and below by Eq. (E3) as purple to emphasize
that it is still a region where phase mixing is locally dominant, viz.,
Eq. (42) is large, despite the flux being diffusion-dominated there.

When α = 1, Eq. (E3) is horizontal in kL0, and so the flux
is only phase-mixing-dominated for svth 
 1, irrespective of
k. We plotted this case in Fig. 4(b).

When 1/2 < α < 1, svth in Eq. (E3) is a decreasing func-
tion of kL0, shrinking the phase-mixing-dominated region
further. As an example, we plot a diagram for the case α =
3/4 in Fig. 7. Note that when α < −1 + √

3 � 0.732, the
dependence of svth on kL0 in Eq. (E3) is steeper than (kL0)−1,
so the area of the phase-mixing-dominated region becomes
finite.

When α = 1/2, the flux is phase-mixing-dominated only
when kL0 
 1, irrespective of s. Note that k must satisfy
kLE � 1 to be in the inertial range (and ξ � 1 for these
asymptotics to hold), so the phase-mixing-dominated region
is likely nonexistent.

When 0 < α < 1/2, the curve (E3) is convex. The phase-
mixing-dominated region is bounded below by Eq. (E3) and
above by Eq. (47), extending from k = 0 to the intersection of
Eqs. (E3) and (47), viz., at kL0 = 1. The region where the flux
is phase-mixing-dominated is not asymptotic, i.e., everywhere
in the ξ � 1 region, in the limit ξ → ∞, either in the limit
kL0 → ∞ and/or svth → 0, the flux is diffusion-dominated.
Therefore, in this case, the only part of the (k, s) plane where
the flux is phase-mixing dominated is along the curve ξ = ξα ,
where the k flux vanishes.
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