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Shock wave formation in radiative plasmas

F. Garcia-Rubio *

Laboratory for Laser Energetics, Rochester, New York 14623, USA
and Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627, USA

V. Tranchant , E. C. Hansen, and A. Reyes
Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA

R. Tabassum
Preston University, Islamabad 44000, Pakistan

H. U. Rahman, P. Ney, and E. Ruskov
Magneto-Inertial Fusion Technology Inc., Tustin, California 92780, USA

P. Tzeferacos
Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA

and Laboratory for Laser Energetics, Rochester, New York 14623, USA

(Received 13 December 2023; revised 17 April 2024; accepted 21 May 2024; published 10 June 2024)

The temporal evolution of weak shocks in radiative media is theoretically investigated in this work. The
structure of radiative shocks has traditionally been studied in a stationary framework. Their systematic clas-
sification is complex because layers of optically thick and thin regions alternate to form a radiatively driven
precursor and a temperature-relaxation layer, between which the hydrodynamic shock is embedded. In this work
we analyze the formation of weak shocks when two radiative plasmas with different pressures are put in contact.
Applying a reductive perturbative method yields a Burgers-type equation that governs the temporal evolution
of the perturbed variables including the radiation field. The conditions upon which optically thick and thin
solutions exist have been derived and expressed as a function of the shock strength and Boltzmann number.
Below a certain Boltzmann number threshold, weak shocks always become optically thick asymptotically in
time, while thin solutions appear as transitory structures. The existence of an optically thin regime is related to
the presence of an overdense layer in the compressed material. Scaling laws for the characteristic formation time
and shock width are provided for each regime. The theoretical analysis is supported by FLASH simulations, and
a comprehensive test case has been designed to benchmark radiative hydrodynamic codes.
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I. INTRODUCTION

The Z-pinch concept typically relies on the use of a pulsed-
power generator to magnetically compress a target load onto
the axis in which the current flows [1,2]. The compression of
the material is mediated by one or successive shock waves
propagating in a collisional plasma, followed by weaker com-
pressional waves. The structure of such waves is determined
by the nature of the dissipative mechanisms in play. Among
the different applications to fusion energy [3,4], the staged
Z-pinch approach [5–8] seeks to exploit the radiative nature
of shocks that develop in high-atomic-number liners. Under-
standing the structure of said compressional waves becomes
important for the design of such configurations.

*Currently at Pacific Fusion Corporation, Fremont, California
94538, USA.

Radiation and other dissipation mechanisms compete to
conform the shock structure in an intricate manner. In unmag-
netized plasmas, composed of ions and electrons of disparate
masses mi and me, respectively, the thermal conductivity
of the electrons is larger than that of the ions by a fac-
tor (mi/me)1/2 [9]. However, since electrons carry little bulk
kinetic energy due to their small mass, most of the shock
heating comes from the kinetic energy of the incoming ion
flow. The plasma density jump takes place in a length scale
of the order of the ion mean-free path λ, where ion heat
conduction and viscosity operate similarly [10]. The elec-
trons, on their part, equilibrate with the ions in a wider layer
of thickness (mi/me)1/2λ in which the compression shock
is embedded [11]. The structure of radiative shock fronts is
somewhat more complex since the mean-free path of the pho-
tons lp generally introduces a larger scale where the radiation
is emitted and absorbed [12]. Ions and electrons are therefore
compressed in a thin hydrodynamic shock embedded between
a precursor upstream and a relaxation region downstream.
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FIG. 1. Schematic of (a) subcritical and (b) supercritical shock fronts. Flow is moving from left to right. Matter temperature is in black,
and radiation temperature is in gray. The temperature jump T+ − T− satisfies Rankine-Hugoniot conditions. The Boltzmann number Bo is
based on the flow conditions downstream. In the subcritical shock, one can estimate O(T−/T1) ∼ O(Bo−1). The supercritical shock sketched
is characterized by Bo � 1, resulting in T− ≈ T1.

The difficulty in modeling radiative shock fronts stems
from the fact that their characteristic length L depends on
the regime in which matter and radiation interact, while, re-
ciprocally, this regime is dictated by how L compares to the
mean-free path of the photons, i.e., its optical depth τ = L/lp.
In optically thick regions, τ � 1, matter and radiation are
in local thermal equilibrium, and the radiation effect on the
hydrodynamics possesses the structure of radiation heat con-
duction. In optically thin regions, τ � 1, radiation energy
density is homogeneous, and the radiant heat exchange acts
as a cooling function for the flow.

Traditionally, radiative shock studies have considered a sta-
tionary flow and and an optically thick medium far upstream
and downstream [13–15]. In Zel’dovich and Raizer [16] the
shock-front phenomenology is divided into subcritical and
supercritical cases, shown in Fig. 1. Although not explicitly
stated, this classification is based on the Boltzmann number
(Bo) of the compressed gas (downstream), which accounts
for the ratio between enthalpy and radiative fluxes, Bo ∼
pcs/σT 4. In the former case, matter and radiation are out
of equilibrium across the shock front, its width being of the
order of the photon mean-free path, τ ∼ O(1). The supercrit-
ical shock presents a richer structure, as an optically thick
layer follows the nonequilibrium heating region leading the
precursor [Fig. 1(b)]. Beyond the hydrodynamic shock, the
heated matter cools in an optically thin layer (Zel’dovich
spike) until matter and radiation come to equilibrium forming
the relaxation region. In spite of this complexity, the density
profile is monotonic and matter is not compressed beyond
what Rankine-Hugoniot conditions dictate.

Several efforts to provide a systematic classification of
radiative shocks can be found in the literature. Bouquet
et al. [17] considered optically thick shocks retaining radiation
pressure effects and based their analysis on the Mach num-
ber and radiation-to-thermal pressure ratio α. Later Michaut
et al. [18] proposed to simultaneously use three dimensionless
parameters related to Bo, τ , and α. Falize et al. [19] identified
five different cases when deriving scaling laws for optically
thin shocks. In a similar spirit, Lie group theory has been
used to derive scaling laws for radiating fluids encompassing
optically thin and thick regimes [20,21].

In this paper we complement the current understanding of
radiative shocks by investigating the temporal evolution of
weak shocks in radiative media. We specifically analyze the
shock formation process after two radiative plasmas with a
small pressure imbalance are put in contact. In the weak limit,
the thickness of a shock scales inversely proportional to its
strength [16]. This represents a significant simplification, as
different species have time to equilibrate across the shock. We
have identified the regimes where radiative effects dominate
over thermal conduction and assessed the conditions for which
the shock develops an optically thin or thick structure. These
conditions are expressed in terms of the Boltzmann number of
the medium and the shock strength. Our analysis is strongly
influenced by the seminal work of Hu [22,23] and Grad and
Hu [24], where the formation of weak plasma shocks in the
presence of a magnetic field including all possible dissipation
mechanisms was systematically investigated. Similar analysis
has been performed thereafter in various scenarios related to
plasma physics [25–28] and magnetic flux transport in staged
Z-pinch implosions [29]. To the authors’ knowledge, however,
this is the first time that radiative effects have been considered.
We therefore disregard the presence of magnetic fields and
focus on the interaction between matter and radiation.

This paper is organized as follows. In Sec. II the governing
equations are presented. In Sec. III the perturbation method
is applied and the formation of weak shocks is discussed.
The theoretical analysis is compared to numerical simula-
tions using the radiation-magnetohydrodynamic code FLASH

in Sec. IV. Finally, in Sec. V conclusions are drawn, and the
application of the theory to the design of Z-pinch implosions
is discussed.

II. GOVERNING EQUATIONS

We consider a hydrodynamic description of an unmagne-
tized plasma coupled to radiation. We assume a quasineutral
plasma with same ion and electron temperatures, and neglect
the radiation pressure terms. In order to analyze the physics
of interest, we propose Cartesian coordinates and assume that
all quantities depend exclusively on time t and (streamwise)
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spatial coordinate x. The only nonzero fluid velocity compo-
nent is in the streamwise direction v = u(t, x)ex.

With these assumptions, the equations governing the
plasma mass density ρ, temperature T , and velocity u
correspond to continuity, momentum, and internal energy con-
servation, reading

∂ρ

∂t
+ ∂

∂x
(ρu) = 0, (1)

ρ
∂u

∂t
+ ρu

∂u

∂x
= −∂ p

∂x
, (2)

(Z + 1)ρ

(γ − 1)mi

(
∂T

∂t
+ u

∂T

∂x

)
= −p

∂u

∂x
+ ∂

∂x

(
χ

∂T

∂x

)
− φeR.

(3)

Here Z refers to the ionic charge, γ is the adiabatic index,
mi is the ion mass, and χ the electron thermal conductivity.
For the last, we follow the formulation and notations used in
Braginskii [9]. The thermal pressure p satisfies the equation of
state p = (Z + 1)ρT/mi, and the temperature T is expressed
in energy units. The term φeR refers to the variation of electron
internal energy due to the total emission and absorption of
radiation:

φeR = cKP(UP − UR). (4)

Here c is the speed of light, KP refers to the Planck mean
opacity, UP is the Planckian radiation energy density, UP =
4σT 4/c, with σ the Stefan-Boltzmann constant, and UR stands
for the radiation energy density. For convenience, we express
it in terms of the radiation temperature TR as UR = 4σT 4

R /c.
In order to close the system of equations, the radiative

transfer equation is used under the assumptions of a steady
state, and isotropic and elastic scattering. It relates the radia-
tion energy flux S to the emission and absorption of radiation,

∂S

∂x
= cKP(UP − UR). (5)

Within the framework of the diffusion approximation assumed
in this analysis, we can express the radiation energy flux as

S = − c

3KR

∂UR

∂x
, (6)

where we have taken a constant Eddington factor equal to
1/3, corresponding to an isotropic angular distribution of the
radiation. The coefficient KR stands for the Rosseland mean
opacity. For simplicity, we will assume both KP and KR to
be equal to the inverse of the photon mean-free path, lp, and
denote them as K = 1/lp hereinafter.

Normalization

In order to derive a governing equation for weak nonlinear
waves, we start by normalizing Eqs. (1)–(3) and (5) with a
characteristic length L, density ρ0, temperature T0, and speed
of sound c0 = √

γ (Z + 1)T0/mi. Pressure is normalized with
p0 ≡ ρ0c2

0/γ . Next, we stretch the coordinates as

x′ = ε

(
x

L
+ v0

c0t

L

)
, t ′ = ε2 c0t

L
, (7)

where the small parameter ε � 1 characterizes the strength of
the nonlinearity, and v0 represents its phase velocity, eigen-
value to be determined during the resolution. The scaling
proposed for the dimensionless time t ′ is such that unsteady,
dissipative, and nonlinear convective effects are equally im-
portant [23].

Keeping, for simplicity, the same name for the dimen-
sionless quantities as their non-normalized counterpart, the
dimensionless governing equations become

ε
∂ρ

∂t ′ + (u + v0)
∂ρ

∂x′ + ρ
∂u

∂x′ = 0, (8)

ερ
∂u

∂t ′ + ρ(u + v0)
∂u

∂x′ + 1

γ

∂

∂x′ (ρT ) = 0, (9)

ε

γ − 1
ρ

∂T

∂t ′ + 1

γ − 1
(u + v0)ρ

∂T

∂x′ + ρT
∂u

∂x′

= ε
∂

∂x′

(
κ

∂T

∂x′

)
− 1

ε

τ

Bo

(
T 4 − T 4

R

)
, (10)

ε
∂

∂x′

(
1

3τ

∂T 4
R

∂x′

)
= −τ

ε

(
T 4 − T 4

R

)
, (11)

where we have introduced the optical thickness τ = KL, and
the normalized conductivity κ = χmi/(Z + 1)ρ0c0L. They
can be expressed in terms of the photon mean-free path,
lp, and a characteristic length related to electron thermal
conductivity, lc, as τ = L/lp and κ = lc/L, respectively. The
Boltzmann number Bo accounts for the ratio between en-
thalpy and radiative fluxes

Bo = p0c0

4σT 4
0

. (12)

For practical purposes, numerical expressions of Bo, lc, and
lp are provided below. The latter has been taken to be equal
to the Planck mean-free path for the case of a fully ionized
gas with absorption only by bremsstrahlung [Eq. (5.23) in
Zel’Dovich and Raizer [16]]:

Bo ≈ 2.30γ 1/2

(
Z + 1

A

)3/2
ρ0

1 g/cm3

(
T0

100 eV

)−5/2

, (13)

lc
1 cm

≈ 1.03 × 10−6 γ0A

Z (Z + 1)

10



√
A

γ (Z + 1)

×
(

ρ0

1 g/cm3

)−1( T0

100 eV

)2

, (14)

lp

1 cm
≈ 7.35 × 10−4 A2

Z3

(
ρ0

1 g/cm3

)−2( T0

100 eV

)7/2

. (15)

Here A refers to the mass number,  stands for the Coulomb
logarithm, and γ0 is a coefficient given by Braginskii [9] that
depends exclusively on Z . It ranges from 3.1616 for Z = 1 to
12.471 for Z → ∞.

III. PERTURBATION ANALYSIS FOR WEAK SHOCKS
IN RADIATIVE PLASMAS

We study solutions of the system of Eqs. (8)–(11) driven by
a downstream overpressure. Such solutions develop a shock-
type structure of thickness ∼L/ε in a timescale ∼L/c0ε

2.
The scaled thickness L must be determined self-consistently
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and is given by the dissipation mechanisms present in the
system: conduction and radiation. However, we anticipate the
existence of three characteristic lengths. Thermal conduction
introduces lc, but radiation effects result in an optically thin
dissipation length lthin = lpBo and an optically thick dissipa-
tion length lthick = lp/Bo. The last two regimes do not operate
simultaneously, but rather arise depending on how the Boltz-
mann number scales with the strength of the perturbation ε.
The analysis differs in this sense with that of Grad and Hu [24]
and Hu [22], since there is a dimensionless number, the optical
thickness τ = L/lp, whose order of magnitude needs to be
estimated a priori. This estimation must be verified after the
resolution of the system.

A. Resolution method

We consider at zeroth order a plasma at rest and in ther-
modynamic equilibrium with the radiative flow. We therefore
expand the normalized variables as

ρ(t ′, x′) = 1 +
i=∞∑
i=1

εiρi(t
′, x′),

u(t ′, x′) =
i=∞∑
i=1

εiui(t
′, x′),

T (t ′, x′) = 1 +
i=∞∑
i=1

εiTi(t
′, x′), TR(t ′, x′)

= 1 +
i=∞∑
i=1

εiTRi (t
′, x′), (16)

respectively. The structure of Eqs. (8)–(11) admits for a scal-
ing of the Boltzmann number and optical depth as

Bo ∼ O(εr/2), τ ∼ O(εs/2) (17)

with r, s integers. We remark that the first scaling in Eq. (17)
is an input to the problem, as it characterizes the Boltzmann
number of the medium in which the wave develops with re-
spect to its strength. The second scaling is an estimation of the
optical depth of the wave, to be verified a posteriori. Without
loss of generality, we can assume the normalized conductivity
κ in Eq. (10) to be of order unity at most. Effectively, if
conduction dominates, κ ∼ O(1) by definition, whereas in the
opposite case, radiation would impose a larger length scale
and, consequently, κ � 1. Inserting the ansätze of Eq. (16)
into Eqs. (8)–(11) and gathering alike terms in powers of ε

allows one to obtain a recursive system of equations.
We first illustrate the solution procedure neglecting radia-

tion effects. The first order in ε of continuity, momentum, and
energy equations yields the following system:⎛

⎜⎝
v0 1 0

1/γ v0 1/γ

0 1
v0

γ − 1

⎞
⎟⎠

︸ ︷︷ ︸
A

· ∂

∂x′

⎧⎨
⎩

ρ1

u1

T1

⎫⎬
⎭ =

⎧⎨
⎩

0
0
0

⎫⎬
⎭, (18)

which admits nontrivial solutions when det(A) = 0. This
occurs for v0 = 1, corresponding to weak shocks traveling
towards the −x direction at the isentropic speed of sound.

The perturbed variables are then related to one another as
u1 = −v0ρ1, T1 = (γ − 1)ρ1. Taking this into account, the
order ε2 gives⎛

⎜⎜⎝
v0 1 0

1/γ v0 1/γ

0 1
v0

γ − 1

⎞
⎟⎟⎠ · ∂

∂x′

⎧⎨
⎩

ρ2

u2

T2

⎫⎬
⎭

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−∂ρ1

∂t ′ + 2v0ρ1
∂ρ1

∂x′

v0
∂ρ1

∂t ′ − 2
γ − 1

γ
ρ1

∂ρ1

∂x′

−∂ρ1

∂t ′ + γ v0ρ1
∂ρ1

∂x′ + κ (γ − 1)
∂2ρ1

∂x′2

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (19)

By construction, v0 = 1 is an eigenvalue of the left-hand
side of Eq. (19). Hence, the eigenvector qs = {1,−γ , γ − 1}T

satisfying A|Tvo=1 · qs = 0 is a left annihilator of the system.
Left multiplying by qT

s and taking v0 = 1 yields a governing
equation for the perturbed density,

∂ρ1

∂t ′ − γ + 1

2
ρ1

∂ρ1

∂x′ = (γ − 1)2

2γ
κ

∂2ρ1

∂x′2 . (20)

Introducing now the variables

t∗ = t ′ γ (γ + 1)2

4(γ − 1)2κ
, x∗ = x′ γ (γ + 1)

2(γ − 1)2κ
(21)

transforms Eq. (20) into

∂ρ1

∂t∗ − ρ1
∂ρ1

∂x∗ = 1

2

∂2ρ1

∂x∗2
, (22)

which corresponds to the well-known Burgers equation. It can
be seen that the procedure to derive the first-order perturbed
field has been formally closed at order ε2, with higher orders
providing corrections as higher-order terms.

We study the shock formation problem arising from a
Heaviside-step initial condition

ρ1 =
{−1 for x∗ < 0,

1 for x∗ > 0.
(23)

This choice for initial condition is relatively unusual because
ρ1 refers to the first-order density perturbation, which we set
to be nonzero upstream. This choice, however, is motivated by
the fact that the solution to Eq. (20) satisfying Eq. (23) takes
the compact form [23]

ρ1(t∗, x∗) =
[

1+erf
(

t∗+x∗√
2t∗
)]

exp(2x∗ )−1−erf
(

t∗−x∗√
2t∗
)[

1+erf
(

t∗+x∗√
2t∗
)]

exp(2x∗ )+1+erf
(

t∗−x∗√
2t∗
) , (24)

shown in Fig. 2. The error function is defined as usual,

erf(t ) = 2√
π

∫ t

0
exp(−τ 2)dτ. (25)

It can be seen that the density profile approaches a steady
shock structure asymptotically in time, given by

ρ1|t∗→∞ = tanh(x∗). (26)
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FIG. 2. Shock formation process as given by Eq. (24). Flow
moves from left to right. The times depicted are t∗ = 0, 0.1, 0.5, 1,
and 3. The shock is essentially fully developed for t∗ > 3.

Returning to dimensional variables, the following density
profile is therefore established to the first order in ε:

ρ(t, x)cond. = ρ0

{
1 + ε tanh

[
γ (γ + 1)

2(γ − 1)2

ε

lc
(x + c0t )

]}
.

(27)
This is the shock structure generated by a pressure imbal-
ance �p/p0 = 2γ ε or the impulsive motion of a piston with
velocity u/c0 = 2ε. In the absence of radiative effects, the
characteristic shock width is Lcond. = lc/ε, and the shock
structure is developed in a characteristic time Tcond. = lc/c0ε

2.

B. Weak shocks with radiative effects

We now consider how radiation alters the structure of the
shock. It is first necessary to precondition the system ac-
cording to the scaling of the Boltzmann number and optical
thickness with respect to the shock strength ε. For this pur-
pose, we propose to rewrite it in the following form:(τ

ε

)2
∼ O(εa),

εBo

τ
∼ O(εb), (28)

with a, b integers. The first scaling characterizes the behavior
of the radiative transfer equation (11), while the second mea-
sures the effect of radiation on the energy equation (10).

Positive values of a correspond to optically thin regimes,
as the radiative transfer equation yields

∂2TRj

∂x′2 = 0 for j � a; (29)

that is, radiation temperature remains constant up to the order
εa. Negative values of a correspond to optically thick regimes,
resulting in

Tj = TRj for j � |a|, (30)

which implies that matter and radiation temperatures are in
equilibrium up to the order ε|a|. The radiative transfer equa-
tion also relates in this case temperatures imbalance of higher
orders, (Tj − TRj )| j>|a|, to derivatives of the radiation temper-
ature at orders ε j−|a| and lower.

The integer b assesses the order at which radiation affects
the hydrodynamics through the energy equation (10). More

FIG. 3. Phenomenology of shock structure depending on the
scaling (τ/ε)2 ∼ O(εa) and εBo/τ ∼ O(εb).

precisely, the term (Tb+1 − TRb+1 ) enters the energy equation at
order ε, while (Tb+2 − TRb+2 ) comes in play at order ε2. In
addition, positive values of b imply equilibrium of matter and
radiation temperatures up to order b, since no other term in the
energy equation could support such imbalance.

The phenomenology of solutions is summarized in Fig. 3.
It follows from the analysis of b that radiation does not affect
the shock structure for b � −2, since the procedure is closed
at order ε2 of the governing equations without radiative effects
entering the formulation. The radiative flux is too low in this
case (the Boltzmann number too high) to affect the shock
profile, which is mediated by thermal conduction and given by
Eq. (27). These conduction-dominated solutions are shown in
green in Fig. 3. The optical thickness then becomes τ ∼ lc/lp,
which sets the value of a. Particularly, the physical condition
lc � lp restricts the validity of conduction-dominated shock
solutions to a � −1.

1. Optically thick solutions

We next evaluate the possibility of radiation-dominated,
optically thick solutions (a < 0). The radiative transfer equa-
tion establishes that the term ∂2TRj /∂x′2| j=b+1−|a| appear in
the order ε of the energy equation. Therefore, if b = |a|,
such order does not conform a homogeneous system in the
first spatial derivatives of the perturbed variables, and the
eigenvalue v0 cannot be retrieved. Physically, this entails that
perturbations are not of a wave-traveling type and should not
be sought under the stretching proposed in Eq. (7). This case
is depicted in gray in Fig. 3. Following a similar logic, the
term ∂2TRj /∂x′2| j=b+2−|a| appears in the order ε2 of the energy
equation. It follows then that, if b � |a| − 2, radiation does
not contribute to this order, and we fall again in conduction-
dominated solutions.

A plausible option for optically thick shocks is b = |a| − 1,
painted in orange. In this case, perturbations travel at the isen-
tropic speed of sound, since the order ε yields the same system
as Eq. (18). First-order perturbations satisfy the same rela-
tion conditions, that is, u1 = −v0ρ1, T1 = TR1 = (γ − 1)ρ1.
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FIG. 4. Analytical profiles for (a) optically thick and (b) optically thin radiation-dominated weak shocks. Flow is moving from left to right.
The value γ = 5/3 has been assumed. The first nonvanishing term in temperature perturbation is shown for each case.

Radiation manifests as a heat-conduction dissipative process,
modifying the Burgers-type equation derived from order ε2,
which becomes

∂ρ1

∂t ′ − γ + 1

2
ρ1

∂ρ1

∂x′ = (γ − 1)2

2γ

(
κ + 4

3τBo

)
∂2ρ1

∂x′2 . (31)

We notice that b = |a| − 1 implies τ ∼ 1/Bo, hence the new
term introduced in Eq. (31) is of the order of unity. Comparing
then the two dissipative processes, we obtain

κ

4/(3τBo)
∼ Bo

lc
lp

, (32)

which we assume to be small since positive b values imply a
somewhat moderate Bo at most. These shocks are therefore
radiation-dominated, and the following density profile is es-
tablished in a timescale Tthick = lp/Boc0ε

2,

ρ(t, x)thick = ρ0

{
1 + ε tanh

[
3γ (γ + 1)

8(γ − 1)2

εBo

lp
(x + c0t )

]}
.

(33)
The scaled length of the shock becomes L ∼ lp/Bo, which
verifies the initial estimate τ ∼ 1/Bo. The radiation energy
flux S can be expressed in this case as

Sthick

p0c0
= −ε2 γ (γ + 1)

2(γ − 1)

(
1 − ρ2

1

)
, (34)

which is always negative and vanishes both far upstream and
far downstream. It has been depicted in Fig. 4(a). The radia-
tion emitted from the compressed material is therefore used to
heat up the colder incoming flow.

We emphasize that optically thick, radiation-dominated
shocks can only take place if b � 0, which is equivalent to
Bo � ε−1/2. A lower Boltzmann number results in thicker
shocks. Particularly, for Bo ∼ εr/2, with r � −1, the shock
width scales as Lthick = lp/εBo ∼ lp/ε

1+r/2, and matter and
radiation temperatures are in equilibrium up to the order εr+2.
Contrary to this, a shock of strength ε emitted in a medium
with Bo � ε−1/2 will not be mediated by radiation.

2. Optically thin solutions

We now consider optically thin regimes described by a >

0, in which radiation temperature remains constant up to
the order εa. This implies that T1 must be equal to zero if
b > 0, since the energy equation enforces temperature equi-
librium up to the order εb. The first order in ε of mass and

momentum conservation equations then becomes uncoupled
from the energy equation, resulting in perturbations traveling
at the isothermal speed of sound, v0 = 1/

√
γ . However, not

all values of b are valid. Following a similar reasoning, the
second term of the temperature expansion T2 is also zero when
b > 1. The resulting evolutionary equation for ρ1 can then be
obtained from mass and momentum conservation alone and
lacks a dissipation mechanism: ∂ρ1/∂t = ρ1∂ρ1/∂x. This is
an indication that a too thin optical thickness is estimated a
priori when taking b > 1. This no-dissipation case is extensi-
ble to nonpositive a values as long as a > 1 − b and is marked
in light gray in Fig. 3.

The only option for perturbations to propagate at the
isothermal speed of sound is therefore b = 1, shown in blue in
Fig. 3. The evolutionary equation for density can still be ob-
tained from mass and momentum conservation alone, which
at the order ε2 read

v0
∂ρ2

∂x′ + ∂u2

∂x′ = −∂ρ1

∂t ′ + 2v0ρ1
∂ρ1

∂x′ (35)

and

1

γ

∂ρ2

∂x′ + v0
∂u2

∂x′ = v0
∂ρ1

∂t ′ − 1

γ

∂T2

∂x′ , (36)

respectively. However, now there is a term involving T2, which
can be related to ρ1 using the energy equation at the previous
order ε. The latter balances the compressional pdV work with
radiative cooling, reading

∂u1

∂x′ = − 4τ

Bo
T2 �⇒ T2 = Bo

4τ
v0

∂ρ1

∂x′ . (37)

Bearing this into account, and taking v0 = 1/
√

γ in Eqs. (35)
and (36), a Burgers-type equation can be derived for the per-
turbed density,

∂ρ1

∂t ′ − 1√
γ

ρ1
∂ρ1

∂x′ = Bo

8γ τ

∂2ρ1

∂x′2 . (38)

This equation governs the density profile of optically thin,
radiation-dominated shocks. The assumption b = 1 implies
τ ∼ Bo, hence the right-hand-side term in Eq. (38) is of the
order of unity. The fact that the only dissipative mechanism
present is of a radiative nature is a consequence of the shock
evolving isothermally to the first order. The density profile
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tends asymptotically in time to

ρ(t, x)thin = ρ0

{
1 + ε tanh

[
4
√

γ
ε

lpBo

(
x + c0√

γ
t

)]}
,

(39)
which is established in a characteristic timescale Tthin =
lpBo/c0ε

2. The scaled length L ∼ lpBo verifies the initial
estimate τ ∼ Bo.

We have shown that optically thin, radiation-dominated
shocks can take place only if the Boltzmann number of the
medium in which they propagate satisfies Bo � ε3/2 (equiva-
lent to a � 1 with b = 1). We notice that a small Boltzmann
was also necessary for the formation of an optically thin
relaxation layer in strong stationary shocks; see Fig. 1(b).
Interestingly, in this regime, a lower Bo results in thinner
shocks, since the shock width scales as Lthin = lpBo/ε. In
these shocks, matter is compressed quasi-isothermally, and
higher densities can be achieved for a fixed compression
level. Effectively, one can retrieve �ρ/ρ0 = �p/p0 to the
first order in this regime as opposed to �ρ/ρ0 = (1/γ )�p/p0

in optically thick weak shocks, where matter is compressed
quasiadiabatically.

The radiation energy flux S plays a key role in the structure
of these shocks. It can easily be proven that optically thin
shocks launched in a medium where Bo ∼ εr/2 have TRj =
const. for j � r − 1. Bearing this into account and after some
algebra, the following expression for S is obtained:

Sthin

p0c0
= ε√

γ
(1 + ρ1). (40)

The radiation energy flux is therefore positive and does
not vanish far downstream in the compressed material; see
Fig. 4(b). The incoming flow essentially radiates away any
internal energy gained during its compression. The radiation
energy flux advects this energy away from the shock, prevent-
ing the heating of the matter.

It should be noted that optically thin shocks cannot be
sustained indefinitely in time, as the outflowing radiation flux
would eventually be absorbed in a larger scale compared to
the shock thickness. These shock solutions should therefore
be understood as transitory, existing in a timescale t � Tthick

before a wider, optically thick shock structure embeds them.
There are some remaining cases that we have not discussed

yet, which concern {b = 0, a � 0}, {b = −1, a � 0}, and
{b = |a| + 1, a � 0}. The former presents a term in T1 in
the order ε of the governing equations, hence we retrieve the
no-wave case since the eigenvalue v0 cannot be determined.
The latter two correspond to perturbations traveling at the
isentropic and isothermal speed of sound, respectively, but the
governing equation for the perturbed density does not possess
a Burgers-type structure. These cases, shown in dark gray
in Fig. 3, might support solutions of a traveling-type nature
different to shock waves, being as such out of the scope of
this paper and left for future analysis.

C. Comprehensive picture of shock formation

We have identified three different solutions for a
shock profile: conduction-dominated, optically thin radiation-
dominated, and optically thick radiation-dominated. Their

FIG. 5. Phenomenology of the formation of weak shocks of
strength ε � 1 in radiative media as a function of its Boltzmann
number. The arrows in magenta represent the temporal growth of the
shock thickness until the main dissipation mechanism is established.
In this chart we have chosen lc/lp ∼ ε7/2, which sets the optical
thickness of conduction-dominated shocks.

optical thicknesses are τcond. = lc/lp, τthin = Bo, and τthick =
1/Bo, respectively. Optically thick solutions can develop for
Bo � ε−1/2, whereas optically thin solutions require Bo �
ε3/2. Therefore, if the latter inequality is satisfied, the three
shock structures are possible but present different formation
time T . We can establish in this case Tcond. � Tthin � Tthick.

We now analyze the formation of a shock structure after
two radiative plasmas with different pressures are put in con-
tact. Three different scenarios are possible depending on the
scaling of the Boltzmann number with the shock strength ε,
as shown in Fig. 5. As the shock starts to form, its optical
thickness increases. First, conduction becomes predominant,
and a density profile given by Eq. (27) is established in a
timescale Tcond.. The optical thickness of this profile is still
very small, and matter and radiation are not in equilibrium
across the shock. However, if Bo � ε−1/2, the compressed
material does not radiate enough to modify the structure of
the shock, which stays conduction-dominated. This is the
case labeled A. For lower Boltzmann numbers, radiative ef-
fects come into play and alter the shock structure. Matter
and radiation tend to equilibrate in a longer timescale Tthick,
resulting in the formation of a thicker, radiation-dominated
shock profile as given by Eq. (33). This is case B in the figure.
For even lower Boltzmann numbers satisfying Bo � ε3/2, an
intermediate regime arises in a timescale Tthin where matter
and radiation are still not in equilibrium, but the shock profile
is mediated by radiation, Eq. (39). As discussed earlier, this
solution cannot be maintained indefinitely, and always degen-
erates into the optically thick structure asymptotically in time.
This is illustrated by case C.

Of similar interest is to evaluate the nature of the structure
developed when the characteristic of the medium is fixed
and one varies the strength of the shock. According to the
phenomenology in Fig. 5, in a medium where Bo � 1, strong
enough shocks satisfying ε � Bo−2 can be mediated only
by thermal conduction. Optically thick, radiation-dominated
shocks develop for weaker shock intensities. The situation
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TABLE I. Parameters of the simulations performed. The upstream conditions ρ0, T0 and shock strength ε are the input quantities, with
the rest of the variables deriving from them. The Boltzmann number Bo, conductivity, and opacity are in accordance with the numerical
formulas (13)–(15). The relative scaling of Bo with respect to ε is shown in brackets. Ma refers to the isentropic Mach number of the incoming
flow. Lc and tc refer to the characteristic length and formation time in each simulation case. They are determined by the main dissipative
mechanism of the regime of interest. The preceding multiplying factors ensure that the corresponding governing equation in dimensionless
form becomes the Burgers equation (22) regardless of the regime. They read f1γ = 2(γ − 1)2/γ (γ + 1), f2γ = 2 f1γ /(γ + 1), g1γ = 4 f1γ /3,
g2γ = 4 f2γ /3, h1γ = 1/(4

√
γ ), h2γ = 1/4.

ρ0 T0 Conductivity Opacity Lc tc

Figure [mg/cm3] [eV] ε Bo Ma [cm−1s−1] [cm−1] [cm] [s]

6(a) 12.6 10 0.03 33.3 [ε−1] 1.04 6.03 × 1022 678 f1γLcond. = 4.74 × 10−6 f2γTcond. = 2.10 × 10−11

6(b) 20.6 100 0.03 0.17 [ε1/2] 1.04 1.90 × 1025 0.579 g1γLthick = 88.7 g2γTthick = 1.24 × 10−4

6(c), 6(d) 0.107 100 0.03 9 × 10−4 [ε2] 0.80 1.90 × 1025 1.56 × 10−5 h1γLthin = 372 h2γTthin = 8.95 × 10−4

7(a) 1.19 100 0.05 0.01 [ε3/2] 1.07 1.90 × 1025 1.93 × 10−3 h1γLthin = 20.1 h2γTthin = 290 × 10−5

7(b) 1.19 100 0.05 0.01 [ε3/2] 1.07 1.90 × 1025 1.93 × 10−3 g1γLthick = 2.76 × 105 g2γTthick = 0.232

8(a) 12.6 10 0.03 33.3 [ε−1] 1.04 6.03 × 1022 678 g1γLthick = 3.93 × 10−4 g2γTthick = 1.74 × 10−9

8(b) 20.6 100 0.03 0.17 [ε1/2] 1.04 1.90 × 1025 0.579 h1γLthin = 1.93 h2γTthin = 4.65 × 10−6

changes in a strongly radiant medium where Bo � 1, since
all the weak shocks become optically thick asymptotically in
time. In this case, optically thin, radiation-dominated tran-
sitory solutions develop only for a strong enough shock
satisfying ε � Bo2/3. This is the limit of interest to experience
overcompression in Z-pinch liners, and possible applications
are discussed in Sec. V.

IV. NUMERICAL SIMULATIONS

The theoretical analysis has been supported with nu-
merical simulations of shock formation using the radiation-
hydrodynamics code FLASH [30,31]. It is a publicly avail-
able, multiphysics, adaptive mesh refinement, finite-volume
Eulerian hydrodynamics and MHD code, developed at the
University of Rochester by the Flash Center for Computa-
tional Science [32]. The Flash Center has added extensive
high-energy-density physics and extended-MHD capabili-
ties [31] that make FLASH an ideal tool for benchmarking our
results. FLASH has been validated through extensive bench-
marks and code-to-code comparisons [33–36], as well as
through direct application to numerous plasma-physics exper-
iments. [37–45] For pulsed-power experiments, FLASH has
been able to reproduce past analytical models [46], has been
applied in the modeling of capillary discharge plasmas [47]
and staged Z-pinch implosions [48], and is being validated
against gas-puff experiments at CESZAR [49].

Our simulation setup consists of two plasmas with different
pressures put in contact at x = 0. We consider inviscid, fully
ionized hydrogen plasmas satisfying a gamma-law equation of
estate with an adiabatic ratio γ = 5/3. Thermal conductiv-
ity is given by Braginskii, and we have taken a Coulomb
logarithm value equal to 10. Consistently with the theoret-
ical model, diffusion approximation for the radiant flux is
assumed, and we have used gray opacities given by the inverse
of the photon mean-free-path expression in Eq. (15) for both
Rosseland and Planck. Matter and radiation are initially at
equilibrium at each side of the discontinuity. The density jump
is related to the shock strength ε through ρ1/ρ0 = 1 + 2ε,
with the subscripts 1, 0 denoting the compressed and uncom-

pressed regions, respectively. The fluid velocity in the latter
has been chosen so that the shock remains at rest in the simula-
tion domain in each case. Unless otherwise specified, the jump
in the rest of the variables is dictated by the Rankine-Hugoniot
conditions. Table I details the upstream conditions and shock
strength for each of the simulation cases plotted below, as well
as the corresponding dimensionless numbers, characteristic
lengths Lc and formation times tc. The computational domain
in every case spans 20 × Lc, and we have used 720 grid
points. The particular upstream conditions chosen ensure a
large thermal-to-radiation pressure ratio α, required for the
analysis. The most limiting case would be Fig. 6(c), where
α ≈ 5.

The formation of shocks of strength ε = 0.03 in plasmas
with different Boltzmann numbers is shown in Fig. 6. We have
chosen cases A, B, and C conceptualized in Fig. 5, where
Bo scales as ε−1, ε1/2, and ε2, respectively. Each presents
different characteristic lengths and formation times, deter-
mined by the mechanisms of thermal conduction, radiation in
optically thick regime, and radiation in optically thin regime,
respectively. Figures 6(a)–6(c) show the normalized perturbed
density. It can be seen that by t = 5 × tc, the shock profile
has relaxed to a hyperbolic tangent function, demonstrating
excellent agreement with the analytical expressions provided
for each regime, Eqs. (27), (33), and (39). We remark that
we deemed necessary to artificially increase the ion-electron
coupling frequency in Case A due to the fast formation time
of conduction-dominated shocks. Although not shown in the
figures, we notice that radiation temperature quickly flattens
out in Case A, while it remains in equilibrium with the matter
temperature at all times in Case B. The density and tempera-
ture profiles developed in this optically thick case match the
analytical profiles sketched in Fig. 4(a). The evolution of mat-
ter (ion) temperature in the optically thin Case C is shown in
Fig. 6(d). Unlike in the other regimes, the theoretical analysis
has proven that the shock forms in quasi-isothermal condi-
tions, requiring the simulation to begin with a homogeneous
temperature profile. The Mach number of the incoming flow
is derived in this case from the momentum equation alone,
reading Ma = [(1 + 2ε)/γ ]1/2. The temperature profile peaks
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FIG. 6. Evolution of the normalized perturbed density (a)–(c), and matter temperature (d) from three different FLASH simulations. They
correspond to cases A, B, and C sketched in Fig. 5, characterized by Bo = ε−1, ε1/2, ε2, respectively, and particularized for ε = 0.03. The
characteristic lengths and times provided in Table I have been used to normalize the streamwise coordinate and evolution time. In every
panel, darker to lighter grays correspond to normalized times t/tc = 0, 0.2, 0.5, 1, 2, and 5. Density profiles are compared to the fully formed
analytical solution in dashed lines.

at the center of the shock, broadening and diminishing its
maximum as the shock evolves. It experiences a second-order
increase, �T/T ∼ O(ε2), as predicted by the theoretical anal-
ysis and in agreement with the results for T2 provided by
Eq. (37) and sketched in Fig. 4(b).

Figure 7 depicts a shock developing in conditions satisfy-
ing Bo ∼ O(ε3/2), where the optically thin regime is relevant.
In this case, however, the initial temperature is nonuniform
and its jump satisfies Rankine-Hugoniot. As a result, the den-
sity profile does not relax to a hyperbolic tangent, but rather
the incoming flow experiences an overcompression that is
established in a characteristic time of a fraction of Tthin; see
Fig. 7(a). A strong radiant flux is established, which quickly
carries away the internal energy gained during compression.
Consequently, the temperature profile becomes more diffused,
leading to the shock formation in quasi-isothermal condi-
tions, as shown by the dashed blue lines. The resulting shock
structure is displaced downstream as the isothermal speed
of sound becomes the relevant speed during this time. The
local bump observed in the temperature profile confirms again

second-order corrections in this regime. The same shock con-
ditions are simulated in Fig. 7(b) but with larger characteristic
lengths and times specific to the optically thick regime. In this
case we do not capture the optically thin dynamics, since the
disparity in scales between both regimes is in the order of
Bo−2 ∼ 104. Instead, a slight overcompression is observed,
with density eventually relaxing to a hyperbolic tangent shape.
Matter and radiation temperatures remain in equilibrium at
this timescale. These panels corroborate that in a strongly
radiant plasma, radiation can mediate weak shock forma-
tion via two distinct regimes, each with disparate formation
times.

Finally we demonstrate in Fig. 8 Cases A and B once more,
but this time with characteristic scales that do not correspond
appropriately to their respective dissipative mechanisms. Fig-
ure 8(a) proves that radiation cannot support shocks if the
Boltzmann number is not small enough. While a radiatively
driven precursor forms in a timescale much longer than Tcond.,
the hydrodynamic shock remains embedded within and me-
diated by thermal conduction. In Fig. 8(b) we inspect the
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FIG. 7. Evolution of density and temperature from two different FLASH simulations of the same case ε = 0.05 and Bo = 0.01 (∼ε3/2).
Each simulation is characterized by a different computational length and time, corresponding to (a) optically thin and (b) optically thick
regimes. Notice that the scale of the streamwise coordinate changes in each panel. Darker to lighter curves depict increasing simulation time:
(a) t/tc = 0, 0.02, 0.05, 0.1, and 0.2. (b) t/tc = 0, 0.2, and 2. The normalizing time tc is different in each panel and provided in Table I.
Radiation temperature at the latest plotting time is shown with dashed red lines.

shock formation of a radiative shock (Case B) in a shorter
timescale, appropriate to the optically thin regime. Contrary
to Fig. 7(a), the incoming flow in this case does not undergo
permanent overcompression. The radiant flux is not strong
enough to dissipate the gained internal energy, and radiation
and matter remain in thermal equilibrium. We essentially
observe a diffusion of profiles across the domain, as the
shock develops a thicker structure. This case confirms that
the conditions required for the existence of the optically thin
regime are more restrictive than those for the optically thick
regime.

This simple setup described provides a validation test
to benchmark radiation hydrodynamic codes. FLASH has
been able to successfully capture the predominant supporting
mechanisms and regimes of interaction between matter and
radiation when scanning the parameter space {ε � 1, Bo}.

V. CONCLUSIONS AND DISCUSSION

In this work we have discussed the nature of weak shocks
developing in radiative plasmas. We aim at understanding the
formation process of such waves after two plasmas with dif-
ferent pressures are put in contact. The smallness of the shock
strength has been exploited to derive a set of Burgers-type
equations governing the temporal evolution of the perturbed
variables.

We have formally obtained three different solutions
corresponding to conduction-dominated shocks, radiation-
dominated optically thick shocks, and radiation-dominated
optically thin shocks. They all develop a tanh-like profile
asymptotically in time given by Eqs. (27), (33), and (39),
respectively, but present different characteristic lengths and
formation times. In the first two solutions, matter is

FIG. 8. Evolution of density and temperatures from FLASH simulations. (a) Conduction-dominated Case A run with a characteristic time
and length specific to the optically thick regime. (b) Optically thick, radiation-dominated Case B run with a characteristic time and length
provided by the optically thin regime. Darker to lighter curves depict increasing simulation time: (a) t/tc = 0, 1, and 5; (b) t/tc = 0, 0.2, and
0.6. The normalizing time tc is different in each panel and given in Table I. Radiation temperature at the latest plotting time is shown with
dashed red lines.
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compressed quasi-isentropically and the jump in the fluid vari-
ables satisfies the Rankine-Hugoniot conditions. Contrary to
this, in radiation-dominated, optically thin shocks, the down-
stream flow radiates away any increase in internal energy, and
matter is compressed quasi-isothermally.

Our results for weak shocks share some similarities with
the analysis of monochromatic acoustic waves in a radiat-
ing fluid, covered in the classical monograph by Mihalas
and Mihalas [10], in that the propagation velocity of the
disturbances varies between the isentropic and isothermal
speed of sound. However, the formation of weak shocks is
a somewhat more complex process as the regimes manifest
depending on how the Boltzmann number of the medium Bo
scales with the shock strength ε � 1, as shown in Fig. 5.
In a weakly radiant medium, characterized by Bo � ε−1/2,
the shock structure is given by thermal conduction and is
established in a characteristic time Tcond.. In a medium where
Bo � ε−1/2, radiation effects are strong enough to modify the
conduction-mediated shock in a larger timescale Tthick. In such
media, shocks always develop a wider, optically thick shock
structure asymptotically in time. In strongly radiant media,
Bo � ε3/2, the shock formation undergoes a transitory regime
in which the shock is supported by radiation but develops
an optically thin structure. Such structure is established in a
quicker timescale Tthin after which the optically thick structure
is established.

This theoretical analysis provides a useful test to bench-
mark multiphysics codes. In this work, we retrieved these
asymptotic regimes and scaling laws using the radiation hy-
drodynamics code FLASH. The existence of the intermediate
radiation-dominated, optically thin regime manifests as an
overcompression of the material that is observed to occur
when Bo � ε3/2 in the simulation setup, in agreement with
the theoretical predictions.

Finally, we discuss how the present work can be used to
analyze the dynamics of radiative Z-pinch implosions. We
first notice that the enhancement of a pinch compression due
to radiative losses is the core of an extensively discussed
phenomenon known as radiative collapse [50,51]. In its the-
oretical derivations, a single optically thin Z-pinch column is
generally considered under the assumption of time-dependent
pressure equilibrium. The present work focuses rather on the
nature of compressional waves encompassing arbitrary optical
depths, and as such is better suited to inspect the liner physics
in liner-on-target configurations.

Figure 9 illustrates in which region of the parameter
space defined by the liner density and temperature are
compressional waves radiation-dominated and optically thin.
Throughout the chart, we have considered a constant ioniza-
tion state but retained the dependence on temperature and
density in the photon mean-free-path. We take as an example
a pressure wave of strength ε = 0.1 launched in a liner of
thickness Lliner = 0.1 cm. This work shows that such a wave
would lead to overcompression according to following con-
siderations. The liner thickness should be larger than Lthin to
ensure that radiation can effectively support this weak shock.
However, the liner thickness should not exceed Lthick or the
radiant flux emitted by the wave will entirely be absorbed
within the liner, preventing overcompression. The white lines
in Fig. 9 delineate these two conditions. Additionally, the

FIG. 9. Isocontours of relevant parameters and lengths in the
design space of liner density and temperature. A liner thickness
Lliner = 0.1 cm and a shock strength ε = 0.1 are considered. Top
panel: Deuterium liner Z = 1. Bottom panel: Xenon liner with an
ionization state Z = 10. The green shadowed region corresponds
to the conditions in which such shock would develop a radiation-
dominated, optically thin structure, leading to overcompression. The
red dotted line α = 1 corresponds to internal pressure equal to radi-
ation pressure.

characteristic Boltzmann number of the liner should satisfy
Bo � ε3/2 for the optically thin regime to exist, which sets the
lower bound to the dashed black line. Finally, the radiation
pressure should remain negligible to be consistent with the
hypothesis of this analysis and to avoid employing driver
energy in compressing the radiation field. A small radiation-
to-internal pressure ratio α is ensured below the dashed red
line.

The region delimited by such considerations is shad-
owed in green in Fig. 9 for both a deuterium and a xenon
gas-puff liner. In the latter, a ionization state Z = 10 is
considered. Despite the simplifying assumptions of equal
Rosseland and Planck mean-free paths, both of them given
by bremsstrahlung physics solely (which is specially inaccu-
rate in the xenon case), this chart showcases the benefit of
using high-atomic-number liners to enhance compression. Of
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course, other considerations such as liner stability or fuel-liner
mixing should also be present in the liner material choice.
In any case, this analysis provides a first estimation to assess
conditions that enable liner adiabat control through radiative
effects.
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