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Direct laser acceleration: A model for the electron injection from the walls
of a cylindrical guiding structure
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We use analytical methods and particle-in-cell simulation to investigate the origin of electrons accelerated
by the process of direct laser acceleration driven by high-power laser pulses in preformed narrow cylindrical
plasma channels. The simulation shows that the majority of accelerated electrons are originally located along
the interface between the channel wall and the channel interior. The analytical model based on the electron
hydrodynamics illustrates the underlying physical mechanism of the release of electrons from the channel wall
when irradiated by an intense laser, the subsequent electron dynamics, and the corresponding evolution of the
channel density profile. The quantitative predictions of the total charge of released electrons and the average
electron density inside the channel are validated by comparison with the simulation results.
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I. INTRODUCTION

Plasma-based electron accelerators have the potential to
enable ground-breaking applications at significantly reduced
size and cost in comparison with their radio-frequency
counterparts. Apart from the well-established laser-wakefield
accelerators [1], electrons can be also accelerated in plasmas
by the so-called direct laser acceleration (DLA) [2].

The mechanism of DLA takes the advantage of a resonant
process between the long-range “betatron-like” oscillations
induced by self-generated radial electric and azimuthal mag-
netic fields in plasma and Doppler-shifted oscillations within
a laser field. Numerous theoretical [3–9] as well as experi-
mental [10–13] studies have already proven the feasibility and
provided deeper understanding of this method. With petawatt-
class power laser drivers, DLA has demonstrated the ability to
generate high-energy electron beams with hundreds of nC of
charge [14–19]. The envisioned applications of high-charge
electron beams accelerated via the process of DLA include
the production of bright γ -ray and high-flux neutron sources
[20,21], exciting nuclear isomers [22], seeding of the quantum
electrodynamics (QED) cascades [23], and the guiding of
positrons [24,25].

As far as the positron guiding is concerned, previous works
used the particle-in-cell (PIC) simulations to demonstrate the
formation of dense electron beam by high-power lasers in
plasma channels [15–17,24]. This beam copropagates with
the laser and attracts positrons towards the channel center,
enabling their acceleration to GeV energies. In this paper, we
focus on the underlying physical mechanisms of the formation
of such a guiding structure.

*petr.valenta@eli-beams.eu

Our investigation employs both hydrodynamic analytical
model and a full-scale PIC simulation. The analytical model
illustrates the release of electrons from the channel wall when
irradiated by the laser. It also captures the subsequent elec-
tron dynamics and the corresponding evolution of the channel
density profile in both nonrelativistic and relativistic limits.
Furthermore, the analytical framework enables quantitative
predictions of the number of electrons released from the chan-
nel wall and the corresponding average electron density inside
the channel right after the passage of the laser pulse.

We validate the aforementioned predictions by compar-
ing them with the results obtained from the PIC simulation.
The simulation showcases the generation of a high-energy
(up to ≈1.8 GeV) and high-charge (≈140 nC with energy
>100 MeV) electron source through DLA driven by a kJ-class
laser in a preformed narrow cylindrical plasma channel. It
also demonstrates the formation of the guiding structure for
positrons, which consists of electrons originating mostly at the
interface between the interior of the channel and the channel
wall. Further, we focus on determining the parameters of this
guiding structure and its evolution in time. Our findings reveal
that the plasma channel not only eliminates the diffraction
spreading of the driving laser pulse but its wall also serves
as a reservoir of electrons for DLA.

The remainder of this paper is organized as follows: In
Sec. II we employ the analytical model based on the electron
hydrodynamics illustrating the release of electrons from the
channel wall. First, we introduce the initial set of equations for
the analytical model (Sec. II A). Subsequently, we explore the
electron dynamics (Sec. II B) and analyze the evolution of the
channel density profile in both nonrelativistic (Sec. II C) and
relativistic (Sec. II D) limits. Finally, we provide predictions
for the number of electrons released from the channel wall by
the laser pulse and the corresponding average electron density
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within the channel after the passage of the laser (Sec. II E). In
Sec. III we present the setup and the results of the PIC simula-
tion, including the comparison with the analytical predictions.
Finally, we summarize the main results of this work in
Sec. IV.

II. RELEASE OF ELECTRONS FROM CHANNEL WALL

A. Initial considerations

The interaction of an intense laser pulse with plasma
targets critically depends on the ratio of the laser angular
frequency, ω0, and the plasma frequency, ωp. When inter-
acting with overdense plasma (i.e., ω0 < ωp), the absorption
mechanisms of the laser pulse are determined by the plasma
nonuniformity scale length, the pulse polarization, and the in-
cidence angle (see Ref. [26] and the references cited therein).
If the plasma nonuniformity is sufficiently large, then the
laser energy is absorbed mainly through the mechanism of
electron “vacuum heating” [27], i.e., the flow of the plasma
electrons breaks, their trajectories self-intersect, and their mo-
tion is of stochastic nature. Furthermore, a copious number
of electrons initially located along the plasma boundary is
released [26], which is of high relevance to both the electron
injection for DLA and the formation of a guiding structure for
positrons.

In this paper, we therefore limit our analysis to the laser
propagating along the axis of a preformed plasma chan-
nel having a steep density gradient along its boundary. We
also assume that the channel is cylindrically symmetric and
sufficiently narrow, i.e., its diameter is comparable to the
transverse size of the laser pulse. We use the equations of
electron hydrodynamics in radial coordinate, r, and time, t ,
similarly as in Refs. [28–33] (dynamics in planar geometry
was studied also in Ref. [34]). In dimensionless form, the
equations can be written as

∂t ne + 1

r
∂r (rneve) = 0, (1)

∂t pe + ve∂r pe = −E , (2)

1

r
∂r (rE ) = Zni − ne. (3)

Here r and t are normalized by cω−1
0 and ω−1

0 , respectively,
where c is the velocity of light in vacuum. The radial compo-
nents of velocity, ve, and momentum, pe, of the electron fluid
component are measured in the units of c and mec, respec-
tively, where me is the electron mass. The electron velocity
and momentum are related to each other by the expression
ve = pe/(1 + p2

e )1/2. The densities of electron, ne, and ion,
ni, fluid components are normalized by the critical plasma
density nc = meω

2
0/4πe2, where e is the elementary charge.

In the following calculations we assume that the ions are
immobile (i.e., the ion density does not depend on time). The
approximation of immobile ions is valid for early dynamics
and should be revised for long laser pulses or long time evolu-
tion of the plasma. The radial component of the electric field,
E , is normalized by meω0c/e. All quantities are assumed to be
cylindrically symmetric.

By plugging ne from Eq. (3) into Eq. (1) and integrating
over r one gets

∂t E + ve∂rE = Znive − veE

r
. (4)

The system of Eqs. (1), (2), and (4) can be solved, e.g., using
Lagrange coordinates, r0 and τ . The relation between the
Euler and Lagrange coordinates is defined as r = r0 + ρ and
t = τ , where r0 is the initial coordinate of the electron fluid
element and ρ(r0, τ ) is a displacement of the fluid element
from r0 during the time τ ; thus ρ(r0, 0) = 0 and

∂τρ = ve = pe√
1 + p2

e

. (5)

For the partial derivatives with respect to the Euler coordinates
we have

∂r = 1

1 + ∂r0ρ
∂r0 , ∂t = ∂τ − ve

1 + ∂r0ρ
∂r0 . (6)

In the Lagrange coordinates, Eqs. (1), (2), and (4), respec-
tively, thus become

∂τ ne = − ne

1 + ∂r0ρ
∂r0τ ρ − ne

r0 + ρ
∂τρ, (7)

∂τ pe = −E , (8)

∂τ E = Zni∂τρ − E

r0 + ρ
∂τρ. (9)

We assume that the particle density inside the plasma
channel is negligibly low and that the density gradient along
the channel wall is sharp. Thus, we model its initial (i.e., at
τ = 0) transverse density profile with Zni(r0) = ne(r0, 0) =
n0�(r0 − R), where � is the Heaviside step function [i.e.,
�(x) = 1 for x > 0 and �(x) = 0 for x � 0] and R represents
the coordinate of the boundary between the interior of the
channel and the channel wall. The solutions of Eqs. (7) and
(9), respectively, can be then written as

ne = r0

r0 + ρ

n0�(r0 − R)

1 + ∂r0ρ
, (10)

E = n0

2
�(r0 + ρ − R)

(r0 + ρ)2 − R2

r0 + ρ

− n0

2
�(r0 − R)

r2
0 − R2

r0 + ρ
. (11)

One may see that the electron density, Eq. (10), is inversely
proportional to the Jacobian of the transformation from
the Euler to Lagrange coordinates, J (r0, τ ) = (r0 + ρ)(1 +
∂r0ρ)/r0. When J vanishes (i.e., when ∂r0ρ → −1), ne tends
to infinity. This indicates breaking of a plasma wave [28].

B. Electron dynamics

Equations (5) and (8) with the electric field given by
Eq. (11) can be cast into a Hamiltonian form with the Hamil-
ton function

H = T + V, (12)
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FIG. 1. Contours of constant values of Hamilton function (12),
where R = 10 λ0 (black dashed line), n0 = 1 nc, h = 5, and r0 is
varied from 10 to 11.6 λ0. The arrows indicate the direction of motion
of fluid elements and λ0 = 2πc/ω0 is the laser wavelength.

where T = √
1 + p2

e and

V = − n0

2
�(r0 + ρ − R)

[
R2 ln

r0 + ρ

R
− (r0 + ρ)2 − R2

2

]

− n0

2
�(r0 − R)

(
r2

0 ln
r0 + ρ

r0
−R2 ln

r0 + ρ

R
+ r2

0 − R2

2

)
(13)

are the kinetic and potential energies of electron fluid element,
respectively. Since the Hamilton function (12) does not de-
pend explicitly on time, the conservation of H(ρ, pe) = h(r0)
gives a relationship between the electron momentum, pe, and
the displacement, ρ, along the trajectory determined by the
value of h,

pe = ±
√

(h − V )2 − 1. (14)

Here the − and + signs in front of the square root correspond
to the trajectories of electrons moving towards the channel
axis and in the opposite direction, respectively. The phase por-
trait of the Hamiltonian system (5) and (8), which corresponds
to the contours of constant values of Hamilton function (12),
is shown in Fig. 1.

For given h, one can identify three types of electron tra-
jectories in the phase space depending on the value of r0: (i)
When r0 � R, the electrons perform oscillations around r0

inside the channel wall with displacement ρ ranging from ρ−
(minimum value) to ρ+ (maximum value), where

ρ± ≈ ±
√

2(h − 1)

n0
; (15)

(ii) when r0 > R and r0 + ρ− < R, the electrons within a sin-
gle oscillation cycle cross the boundary between the channel
wall and the channel interior, subsequently stop in the region
inside the channel, and then return back to the channel wall.

In such a case, the value of ρ− is modified to

ρ− = −r0 + R exp

[
r2

0

r2
0 − R2

ln
r0

R
− 2(h − 1)

n0
(
r2

0 − R2
) − 1

2

]
;

(16)

and (iii), in the limiting case of r0 = R, ρ− = −r0, i.e., the
electrons cross the boundary between the channel wall and the
channel interior as well as the origin of the coordinate system
and then return back to the channel wall.

C. Nonrelativistic limit

In the nonrelativistic limit (i.e., when pe ≈ ve), which is to
a certain extent valid in the neighborhood of the point where
the electron fluid element stops, r0 + ρ−, Eq. (14) can be
written as

∂τρ = ±
√

2(h − 1) − 2V . (17)

Taking into account only the electron dynamics inside the
channel (i.e., when r0 > R and r0 + ρ � R), Eq. (13) reduces
to

V = −n0

2

(
r2

0 ln
r0 + ρ

r0
− R2 ln

r0 + ρ

R
+ r2

0 − R2

2

)
(18)

and Eq. (17) therefore becomes

∂τρ = ±
√

n0
(
r2

0 − R2
)

ln
r0 + ρ

r0 + ρ− . (19)

The solution of Eq. (19) can be written in the following im-
plicit form:

τ = τ− ±
√

π (r0 + ρ−)√
n0

(
r2

0 − R2
)erfi

(√
ln

r0 + ρ

r0 + ρ−

)
, (20)

where

τ− =
√

π (r0 + ρ−)√
n0

(
r2

0 − R2
)erfi

(√
ln

r0

r0 + ρ−

)
(21)

is the time it takes for the electron fluid element to travel
from r0 to r0 + ρ− and erfi(x) is the imaginary error function.
The dependence of ρ on τ according to Eq. (20) is depicted
in Fig. 2(a), where one can clearly recognize the electron
trajectories of types (ii) and (iii) mentioned in Sec. II B.

Using the asymptotic expansion of erfi(x) for ρ → ρ− one
obtains

ρ = −r0 + (r0 + ρ−) exp

[
n0

(
r2

0 − R2
)

4

(
τ − τ−

r0 + ρ−

)2
]
.

(22)

By plugging the derivative of ρ [given by Eq. (22)] with re-
spect to r0 into Eq. (10), one obtains the evolution of electron
density inside the channel. Its expression for τ → τ− takes
the following simple form,

ne = n0
(
R2 − r2

0

)
�(r0 − R)

2(r0 + ρ−)2 ln [(r0 + ρ−)/r0]
. (23)
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FIG. 2. (a) Dependence of the displacement of electron fluid ele-
ment, ρ, on time, τ , in the nonrelativistic limit according to Eq. (20)
with r0 being varied from 10 to 11.6 λ0. The arrows indicate the
direction of motion of fluid elements and T0 = 2π/ω0 is the laser
period. (b) Electron density, ne, according to Eq. (23). The red dashed
line corresponds to the approximation given by Eq. (24). In both
panels, R = 10 λ0 (black dashed line), n0 = 1 nc, and h = 1.5.

For r0 + ρ− → 0 (i.e., near the channel axis), the electron
density given by Eq. (23) can be approximated (and trans-
formed back to Euler coordinate r) as

ne ≈ h − 1

[r ln (r/R)]2 . (24)

One may see that for r → 0 the electron density tends to
infinity. However, the singularity is integrable, i.e., the total
number of electrons near the axis remains finite. The electron
density profile described by Eq. (23) as well as the approxima-
tion of the electron density filament formed along the channel
axis given by Eq. (24) are shown in Fig. 2(b).

D. Relativistic limit

We now shift our focus to the relativistic case relevant to
DLA, where relativistic laser intensities inherently produce
high-energy electrons. In the relativistic limit, the dependence
of the displacement on time for each electron fluid element
can be obtained by integration of Eq. (5) along the phase
space trajectory of the fluid element. Parametrizing a single
oscillation cycle as

ρ(r0, s) = [ρ−�(sin s) − ρ+�(− sin s)] sin s (25)

(a)
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FIG. 3. (a) Dependence of the displacement of electron fluid
element, ρ, on time, τ , in the relativistic limit according to Eq. (26)
with R = 10 λ0 (black dashed line) and r0 being varied from 10 to
11.6 λ0. The arrows indicate the direction of motion of fluid ele-
ments. (b) Electron density, ne, evolution in time, τ , obtained from
Eqs. (10) and (26) with R = 2 λ0 in order to show the density profile
along the channel axis before the wave breaking occurs. In both
panels, n0 = 1 nc and h = 10.

with s ∈ [0, 2π ], one gets the relationship in the following
implicit form:

τ =
∮ s

0

h − V (ρ(r0, s′))√
[h − V (ρ(r0, s′))]2 − 1

× [ρ+�(− sin s′) − ρ−�(sin s′)]| cos s′| ds′. (26)

Here the electron potential energy, V , is given by Eq. (13).
Figure 3(a) shows the dependence of ρ on τ according

to Eq. (26) with the integral on the right-hand side being
evaluated numerically. Here one can recognize all three types
of electron trajectories mentioned in Sec. II B. Contrary to
the nonrelativistic limit presented in Sec. II C, one may see
that the dependence has characteristic “sawtooth-like” form
because the velocity of the electron fluid elements during
subsequent half-periods is close to ±c.

After one half-period, when the individual elements return
back to the channel wall, they begin to intersect each other’s
paths, which indicates the presence of a multistream flow and,
possibly, the electron density singularities (e.g., cusps, folds,
etc.). These orbit self-intersections arise from the nonuni-
formity of ion density distribution at the interface between
the channel interior and its wall. We note that beyond this
point the hydrodynamic description of Eqs. (1)–(3) becomes
inadequate.

The evolution of electron density in τ , which can be ob-
tained from Eqs. (10) and (26), is illustrated in Fig. 3(b). Since
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this approach is taking into account also the dynamics inside
the channel wall, apart from the shock wave propagating to-
wards the channel axis, one may see also a rarefaction wave
propagating towards the channel wall. Prior to the occurrence
of a multistream flow, one can observe the formation of thin
and dense electron filament on the channel axis (similarly as
in the nonrelativistic case) as well as the onset of the plasma
wave breaking on the interface between the channel interior
and the channel wall.

E. Laser interaction with channel wall

When interacting with laser pulse, the initial energy of an
electron located in the vicinity of R can be approximated as

h =
√

1 + a2
eff , where aeff stands for the effective value of the

normalized pulse amplitude characterizing the strength of the
interaction, i.e., h ≈ 1 + a2

eff/2 when aeff � 1 (nonrelativistic
limit) and h ≈ aeff when aeff � 1 (relativistic limit).

According to Eq. (15), an electron is released from the
channel wall to the interior of the channel when ρ− < R − r0.
Therefore, the maximum number of electrons, Ne, being re-
leased from the channel wall due to the action of the laser
pulse at a given longitudinal coordinate x, is

dxNe ≈ πκ (2R
√

n0 + κ )

(
c

ω0

)2

nc (27)

with

κ =
{

aeff if aeff � 1√
2(aeff − 1) if aeff � 1

. (28)

If the laser pulse is sufficiently long, then a substantial
portion of these electrons are rotated along the channel axis by
the magnetic component of the pulse, making them available
for injection [35] and subsequent acceleration in the longitu-
dinal direction by DLA. The rest eventually returns back to
the channel wall. Neglecting the electrons trapped by the laser
field, the average electron number density inside the channel
right after the passage of the laser is thus given by

〈ne〉 ≈ κ

R2
(2R

√
n0 + κ ). (29)

The value of aeff is studied using the PIC simulation in the
following section.

III. PARTICLE-IN-CELL SIMULATION

A. Simulation setup

The parameters of the PIC simulation are defined as fol-
lows: The driving laser pulse is characterized by the central
wavelength λ0 = 2πc/ω0 and dimensionless amplitude a0 =
eE0/meω0c = 50, where E0 is the peak amplitude of the laser
electric field in vacuum. In this case we may neglect the
effects of radiation reaction force on injected electrons [6,36].
The pulse has Gaussian profile in the radial direction with the
beam waist w0 = 10 λ0 and a Gaussian-like fifth-order sym-
metric polynomial profile in the longitudinal direction with
duration τ0 = 50 T0 (in the full-width at half-maximum of the
laser electric field profile), where T0 = λ0/c is the cycle period
of the laser. In what follows we assume λ0 = 1 μm, i.e., the

laser pulse

plasma channel

FIG. 4. Setup of the PIC simulation: The laser pulse (orange)
propagates in preformed plasma channel (gray) with the initial radial
density profile, ne(r), defined by Eq. (30).

total energy, peak power, and peak intensity of the laser pulse
in vacuum are, respectively, E0 ≈ 0.7 kJ, P0 ≈ 5.4 PW, and
I0 ≈ 3.4 × 1021 W/cm2.

The laser pulse propagates in a preformed narrow cylin-
drically symmetric channel, which consists of a fully ionized
plasma. Its initial electron density profile dependence on the
radial coordinate is given by

ne(r) =
{

n0 exp
(

r−R
λ0/2

)
+ �n if r � R

n0 + �n if r > R
, (30)

where R = w0 is the channel radius, n0 = 10 nc, and �n =
10−3 nc (see Fig. 4). In order to account for the effect of
laser prepulse, the plasma along the interface between the
channel wall and the channel interior is slightly pre-expanded;
the characteristic length of the exponential profile is chosen
such that ne = nc at r ≈ R − λ0. In addition, there is a conical
opening at the front side of the channel, which facilitates the
transmission of the laser pulse into the channel. The initial
ion density profile is chosen such that the condition of plasma
quasineutrality is fulfilled. The laser pulse propagates along
the channel axis (denoted as the x axis) and is linearly polar-
ized along the y axis. Its focal plane is located at the entrance
to the plasma channel.

The PIC simulation is carried out in a cylindrical ge-
ometry with the azimuthal Fourier decomposition of the
electromagnetic field components [sometimes referred to as
quasi-three-dimensional (3D) geometry] using the OSIRIS
framework [37]. This simulation approach is suitable for sys-
tems close to the cylindrical symmetry, where a low number
of modes is sufficient. While the quasiparticles are allowed
to move in the three-dimensional Cartesian geometry, the
electromagnetic fields are calculated only on two-dimensional
lattices [38,39]. In the simulation, we decompose the electro-
magnetic fields into two modes; the first mode account for the
axisymmetric self-generated channel fields, and the second
mode for the nonaxisymmetric linearly polarized field of the
laser.

The simulation utilizes moving window technique; the
window, which moves at the velocity of c, has dimensions
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FIG. 5. (Top) Electron energy spectrum, d|Q|/dEe, (bottom left)
charge density of electrons with respect to their kinetic energy
and propagation angle, d2|Q|/dEedθ , and (bottom right) inte-
grated charge density of electrons with kinetic energy >100 MeV
with respect to their propagation angle, d|Q|/dθ , at the end of
the PIC simulation. All electrons inside the simulation box are
taken into account. The solid green line in the upper panel shows
a two-temperature Maxwell-Boltzmann distribution approximating
the electron energy spectrum with temperatures equal to 50 and
200 MeV.

of 250 and 25 λ0 in the longitudinal and radial directions,
respectively. The underlying Cartesian grid is uniform with
the resolution of 40 cells per λ0 in both directions. The sim-
ulation is evolved over the time interval of 2 × 103 T0. The
plasma is cold and collisionless, represented with electron
and ion quasiparticles. Initially, there are 32 quasiparticles per
grid cell for each species. The electromagnetic field evolu-
tion is calculated using a high-order finite-difference Maxwell
solver [40], whereas the equations of motion for quasipar-
ticles are solved using the Boris algorithm [41]. Absorbing
boundary conditions are applied on each of the simulation
window boundaries for both the electromagnetic fields and
quasiparticles.

B. Simulation results

The properties of electrons inside the simulation box at
the end of the PIC simulation (i.e., at t = 2 × 103 T0) are
shown in Fig. 5. The electrons have thermal energy spectrum,
which can be approximated with a two-temperature Maxwell-
Boltzmann distribution with temperatures equal to 50 MeV for
low-energy electrons and 200 MeV for the high-energy tail.
The cut-off energy of electrons increases linearly with the
laser propagation distance and saturates at the level of ≈1.8
GeV. According to DLA scaling laws for this regime [42], the
cut-off energy of electrons is determined by the combination
of the electron’s transverse oscillation amplitude, rmax, and
the ambient electron density, i.e., Emax/mec2 = 2I2nc/ne with
I = 1 + π2r2

maxne/λ
2
0nc. The value obtained from the simula-

tion can be recovered with ne = �n and rmax = 6 λ0 (which is
lower than R because of the pre-expanded channel wall).

The average angle between the channel axis and the prop-
agation direction of the electrons from the high-energy tail
is ≈50 mrad, whereas the lower-divergence electrons are far
less present. This is a characteristic feature of DLA, which
manifests itself through forked structures in electron spectra
[43–45]. The divergence of high-energy electrons corresponds

(a)

(b)

units of

units of

FIG. 6. (a) Distribution of electron charge with respect to their
kinetic energy and radial coordinate, d2|Q|/dEedr, at the end of the
PIC simulation. All electrons inside the simulation box are taken
into account. The solid red line shows the distribution of charge of
high-energy (Ee > 100 MeV) electrons with respect to their radial
coordinate, d|Q|/dr. (b) Same as (a) with the radial coordinate of
electrons, r, being replaced by their initial radial coordinate, ri. The
black dashed lines in both panels mark the channel radius, R.

well with θ ≈ arctan
√

2mec2I/Ee, where Ee denotes the elec-
tron energy [6].

The distribution of the electron charge with respect to their
kinetic energy, Ee, and radial coordinate, r, at the end of the
simulation is depicted in Fig. 6(a). The panel shows as well
the distribution of the charge of high-energy (Ee > 100 MeV)
electrons with respect to r. It can be observed that the elec-
trons from both low-energy and high-energy spectrum parts
are distributed across the entire area of the plasma channel,
contributing to the beam loading effect. Most high-energy
electrons (≈25 nC/λ0) are located around the radial coor-
dinate r ≈ 5 λ0, while fewer of them are found along the
channel axis and the channel wall. The total charge of elec-
trons with Ee > 100 MeV inside the channel is ≈140 nC.

Figure 6(b) displays the same distribution as Fig. 6(a)
with the radial coordinate of electrons being replaced by their
initial radial coordinate, ri. One can see that the majority of
electrons accelerated to >100 MeV originate in the vicinity
of the interface between the channel interior and the channel
wall, with the peak charge density reaching up to ≈90 nC/λ0;
the initial radial coordinate of ≈75% of these electrons falls
within the range R − λ0 to R + λ0. This numerical result (i.e.,
that most of the accelerated electrons come from the wall of
the plasma channel) is in line with the main assumption of the
analytical model presented in Sec. II.

Figure 7 shows the evolution of the electron density due
to the interaction with the laser pulse in radial coordinate
and time at the longitudinal coordinate x = 200 λ0 obtained
from the PIC simulation. One can recognize the main features
captured by the analytical model; the release of electrons from
the channel wall, the formation of a high-density filament
along the channel axis, and the plasma wave breaking along
the interface between the channel interior and the channel
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units of

FIG. 7. Evolution of electron density, ne, due to the interaction
with the laser pulse in radial coordinate, r, and time, t , at the longi-
tudinal coordinate x = 200 λ0 obtained from the PIC simulation.

wall. In addition to the model, the evolution of electron den-
sity obtained from the simulation reveals a slow expansion of
the channel radius due to the ion motion.

Let us now consider only the electrons initially positioned
in the channel wall (the boundary between the interior and the
wall of the channel shifts due to the pre-expanded channel
wall, i.e., ri � R − λ0) and later released to the interior of
the channel (i.e., r < R − λ0). The time evolution of the total
charge of these electrons is displayed in Fig. 8(a). As can be
seen, the rate at which the electrons are released is highest
soon after the pulse enters the channel (≈5 nC/T0) and then
continuously decreases (down to ≈2.5 nC/T0) over the course
of the time span captured by the PIC simulation due to the
energy loss of the driving laser. In total, ≈15 μC of the
electron charge is released until the end of the simulation.

The value of aeff , discussed in Sec. II E, can be found by
fitting the evolution of the rate at which the electrons are
released from the channel wall [shown in Fig. 8(a)] by the
formula of Eq. (27). As can be seen, the rate can be approxi-
mated with aeff = 14.5 and 5.5 for the first and second halves

units of

units of
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FIG. 8. (a) Evolution of the total charge, Q, of the electrons
released from the channel wall in time, t , obtained from the PIC
simulation. The solid green lines show the approximation given by
Eq. (27) with corresponding values of aeff . (b) Evolution of the aver-
age electron number density inside the channel, 〈ne〉, right after the
passage of the laser pulse in time obtained from the PIC simulation.
The solid green lines show the approximation given by Eq. (29) with
the same values of aeff as in (a).
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FIG. 9. (a) Channel fields contribution to the radial Lorentz force
acting on positrons, Fr , at the instant of time t = 300 T0 obtained
from the PIC simulation. The black dashed line and the arrow mark
the initial channel radius, R, and the direction of the laser pulse prop-
agation, respectively. The color bar is saturated. (b) Time evolution of
the minimum of the Lorentz force displayed in panel (a), Fr,min. The
values of Fr,min are attained in the vicinity of the channel axis, which
coincides with the electron density distribution inside the channel.

of the simulation, respectively. These values are comparable
to the normalized amplitude of the laser pulse at the interface
between the channel wall and the channel interior at the cor-
responding time instants.

Figure 8(b) shows the time evolution of the average elec-
tron number density inside the plasma channel right after
the passage of the laser pulse. We can see that the average
density is about twice as high in the first half of the simulation
(maximum ne ≈ 0.25 nc) as in the second half (maximum
ne ≈ 0.13 nc), which is in agreement with the decrease of the
rate at which the electrons are released from the channel wall.
The average density can be approximated using the formula
of Eq. (29) with the same values of aeff as before; one obtains
〈ne〉 ≈ 0.17 for aeff = 14.5 and 〈ne〉 ≈ 0.1 for aeff = 5.5. The
values obtained analytically are slightly lower because the
analytical model does not take into account the pre-expanded
channel wall.

As closer elucidated in Ref. [24], a charge of accelerated
electrons built up along the channel axis induces a negative
charge separation field, which can overcome positive, self-
generated radial electric field formed by the initial expulsion
of electrons. This results in a formation of regions of space
with focusing fields for positively charged particles, such as
positrons, that copropagate with driving laser over extended
distances. In Fig. 9(a) we plot the radial component of the
Lorentz force acting on positrons, Fr = e(Er − cBφ ), induced
by the self-generated radial electric, Er , and azimuthal mag-
netic, Bφ , fields in plasma at the time t = 300 T0. The regions
in which Fr is negative (displayed by the blue color) are
focusing for positrons, enabling their guiding [24]. The for-
mation of such a guiding structure can be clearly seen in the
simulation.

In Fig. 9(b) we further determine the temporal evolution
of the minimum of Fr , i.e., the magnitude of the force that is
focusing for positrons. The value of minimum decreases after
the entrance of the laser pulse to the channel and drops down
to a global minimum (−17 meω0c) at t ≈ 400 T0 (approxi-
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mately at the time when the average electron density inside the
channel is highest). After that, even though it shows variations
over time, with alternating increases and decreases, the overall
trend suggests a positive slope on average (to −10 meω0c).
Despite the decreasing magnitude of the positron focusing
force, the guiding structure remains stable.

IV. CONCLUSION

In this work, we investigate the mechanism of DLA in pre-
formed narrow cylindrical plasma channels using analytical
methods and full-scale PIC simulation in quasi-3D geometry.
The simulation demonstrates the generation of a high-charge
electron source via DLA using a kJ-class driving laser as well
as the formation of the guiding structure for positrons. We
further focus on determining the parameters of this guiding
structure and the locations at which the accelerated electrons
originate. Considering the setup of a comparable channel
diameter and the transverse size of the driving laser pulse,
it turns out that the accelerated electrons are predominantly
injected from the regions adjacent to the interface between the
channel interior and the channel wall.

Therefore, we formulate an analytical model based on the
electron hydrodynamics that illustrates the release of electrons
from the channel wall when irradiated by laser, the subsequent
electron dynamics, and the corresponding evolution of the
channel density profile in both nonrelativistic and relativistic
limits. In addition, the model allows to quantitatively predict
the number of electrons released from the channel wall as well
as the corresponding average electron number density inside
the channel right after the passage of the laser pulse. These

predictions are validated by comparison with the simulation
results.

We note that the situation described in this paper may
change when using driving laser pulses of extreme intensity
(>1023 W/cm2), i.e., when the effects of radiation-reaction
force cannot be neglected and the laser-plasma interac-
tion shifts towards the near-QED regime. In this case, the
radiation-reaction trapping [15,16] of electrons begins to play
an important role, so that the trapping efficiency of electrons
with the origin near the channel axis (where the laser intensity
is highest) may significantly increase.

In conclusion, the sources of high-energy and high-charge
electrons generated by DLA reveal a strong potential for fun-
damental research as well as for various practical applications
in diverse fields, including the production of bright γ -ray and
high-flux neutron sources [20,21], exciting nuclear isomers
[22], seeding of the QED cascades [23], and the guiding of
positrons [24,25].
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