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Sensitivity of magnetohydrodynamic simulations of Joule-heated
conductors to the vaporization curve in equations of state
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Magnetohydrodynamic (MHD) simulations of electrically exploded aluminum and copper rods demonstrate
a technique to validate equations of state (EOS) for rapidly Joule-heated conductors. The balance of internal and
magnetic forces at the conductor-insulator interface drives the metal there along the vaporization phase boundary.
Variations between critical points and vaporization curves in existing models predict differing densities and
temperatures in MHD simulations for these models. The inclusion of Maxwell constructs in the liquid-vapor
biphase region of the EOS caused the rod surface to vaporize earlier in time than unmodified tables with van
der Waals loops. Velocimetry of recent experiments is used to validate the location of the vaporization curve
in existing EOS models and differentiate between the vapor dome treatments. Dielectric coatings applied to the
metal surface restricted the conductor’s expansion and diverted the metal into the warm dense matter regime.
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I. INTRODUCTION

This article demonstrates a technique to validate equa-
tions of state (EOS) when modeling conductors under intense
Joule heating by fast current pulses. Pulsed power is a proven
method to create strong Lorentz forces that drive implosions
in Z-pinch liners for fusion [1–3] and accelerate flyer plates
for dynamic material science experiments [4–6]. Exploding
thin metal wires and foils via Joule heating are used in elec-
trical initiators of high explosives [7,8] and for opening and
closing switches in high-current circuits [9]. The dynamic
conductors are, however, susceptible to hydrodynamic and
magnetohydrodynamic (MHD) instabilities that distort the
metal and degrade the performance of these platforms [10,11].

Numerical simulations using the single-fluid MHD sys-
tem of equations can capture the dynamics of these systems
but require accurate EOS and electrical conductivity (ECON)
models. Tabular equation of state models used in these cal-
culations can vary widely in the expanded metal regime, i.e.,
along the vaporization phase boundary and near the critical
point. Because this region is where the unstable metal sur-
faces traverse, the different pressure, density, and temperature
relationships between EOS models can cause large variations
in the predicted instability growth rates [11]. As a result,
simulations are often limited by these models, which makes
designing future pulsed power experiments incredibly difficult
when the models have not been properly validated for this
region of phase space.

Here simulated electrically exploded aluminum and copper
rods show the conductor at the conductor-vacuum interface
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tracks the vaporization phase boundary of the EOS used.
Moreover, the velocity of this metal surface (in the fluid
approximation, i.e., mean radial location of the outermost
∼100 atomic layers) over time depends very strongly on the
trajectory it takes through density-temperature phase space.
Experimental velocimetry measurements of these rods could
then be used to validate the location of the vaporization curve
in EOS models—providing for more accurate MHD simula-
tions of pulsed current applications.

II. THEORY

The single-fluid resistive MHD model [Eqs. (1)–(4)] cap-
tures the relevant physics for conductors driven by intense
currents [12,13]. The single-fluid model approximates the
ion and electron species as being in equilibrium which is
valid when the electron-ion collision frequency, νei, is much
larger than the ion gyrofrequency, ωci. For the Mykonos rod
simulations presented here, ωci/νei � 10−2 � 1. The MHD
equations,

Dρ

Dt
= −ρ(∇ · u), (1)

ρ
Du
Dt

= −∇p + ∇ · s + j × B, (2)

D(ρε)

Dt
= −p(∇ · u) + η j2, (3)

∂B
∂t

= −∇ × η j + ∇ × (u × B), (4)

include material strength and solve for the mass density
ρ, fluid velocity u, and specific internal energy ε [13–15]
while the magnetic field B evolves according to Maxwell’s
equations. D/Dt (...) represents the material or convective
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FIG. 1. (a) The structure from a recent EOS for Al [18] in the region of interest for this study. The region between the vapor and liquid
phases is broad and is commonly referred to as the vapor dome. At its apex resides the critical point (CP), above which the liquid and vapor
states are nearly indistinguishable. To the left of the critical point the vapor dome is bounded by the condensation curve, and to the right the
vaporization curve. Under the vapor dome, so-called van der Waals loops exist including negative pressures (dark gray, dashed). Maxwell
constructs (light gray) are often implemented where isobars are also isotherms. The melt and solidification lines are seen to the lower right.
(b) The corresponding ECON model for Al where the solid phase boundaries align with those in (a).

derivative in the Lagrangian frame of reference [16], pp. 28-
29. The electromagnetic equations are reduced by ignoring
displacement currents such that the current density j = ∇ ×
B/μ, where μ is the permeability of the conductor and by in-
cluding the resistive Ohm’s law (η j = E + u × B) [16], p. 32.
For good conductors like aluminum, μ can be approximated
by the permeability of free space, μ0 = 4π × 10−7 H/m.

The stress deviator tensor, s, includes the off-diagonal
terms of the mechanical stress tensor and accounts for material
strength. Once the material melts, these terms disappear and
∇ · s goes to zero. Strength was included in all the numerical
calculations presented in this paper using the Preston-Tonks-
Wallace flow stress model [17]. When the strength model
was removed, though, it only varied the expansion rate of the
exploding rod by ∼5 m/s before the surface melted.

The system is closed with an EOS model providing the
pressure, p(ρ, T ) [Fig. 1(a)] and temperature, T (ρ, ε), as
well as an isotropic ECON model, σ (ρ, T ) [Fig. 1(b)]. The
conductivity σ of the metal is the inverse of its resistivity
η. Thermal conduction was neglected here as the radial melt
wave outpaces the relatively slow diffusion of heat. Finally,
radiative cooling was also ignored for the low-temperature
regime discussed in this paper. Even for 10 eV temperatures,
the blackbody radiative heat flux density (σSBT 4) of the rod
surface was 108 times smaller than the Joule heating rate.

Variability between EOS models near the critical point
has a significant impact for the expansion dynamics [19] and
instability development [11] of Joule-heated conductors and
is an important area of development. For computation, the
models are commonly represented in data tables in SESAME
format [20]. To cover the wide range of phase space needed
for the numerical simulations, the EOSs necessarily com-
bine multiple analytic and calculated models with varying
domains of applicability. For example, solid and liquid states
are usually constructed from density functional theory (DFT)
calculations and constrained by experimental measurements

as in Ref. [19]. At lower densities relevant to the expanded
metal regime, however, a Lennard-Jones model has been
implemented to connect to the DFT data [21]. The Lennard-
Jones analytic model is fit to the high-density material data
which introduces discrepancies in the predicted critical points
and vaporization and condensation phase boundaries between
equations of state. This is demonstrated in the set of three
Al EOSs used in this article. The standard deviations of the
set’s critical point density (0.0973 g/cm3) and temperature
(1107 K) were roughly 25% of the average density and 15%
of the average temperature. The critical point and vaporiza-
tion phase boundary locations are indicative of the different
pressure landscapes of the models in the expanded metal
regime [Fig. 1(a)]. For an electrically exploded metal, each
EOS model would predict different densities and tempera-
tures of the conductor as it expanded. This pressure-density
relationship defined by the EOS impacts the growth rates of
fluid instabilities by exacerbating density perturbations they
are unstable to over time.

The Lennard-Jones model also introduces a thermodynam-
ically unstable region where ∂ p/∂ρ < 0 in the central region
of the liquid-vapor biphase. This unstable region models
spinodal decomposition of the mixed phase into regions of
pure vapor and liquid. To either side of this unstable region,
the model represents the metastable superheated liquid and
supercooled vapor states. Material held in these metastates
will eventually decompose via nucleation of vapor bubbles or
liquid droplets in the material [22]. Once the metastate has
decomposed, the stable liquid-vapor mixed state is accurately
represented by Maxwell constructs [23]. As a result, two
versions of an EOS often exist: the unmodified vapor dome
model that is referred to as a van der Waals (VdW) model and
the Maxwell constructed (MC) vapor dome [Fig. 1(a)]. The
validity of either model depends heavily on the timescale of
the problem as compared to the nucleation timescale for the
metastable states.
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III. MHD SIMULATIONS

Large-diameter cylindrical metal rods with an initial ra-
dius (R ≈ 400 µm) much larger than the electrical skin depth
(δ ≈ 46 µm) were fielded at the Mykonos [24] linear trans-
former driver (trise ∼ 80 ns, Ipk ∼ 850 kA). High-precision
velocimetry with a ∼52-µm spot size (much smaller than the
rod diameter) was fielded to characterize the rods’ surface
expansion [25–27] and has proven to be a valuable data set
to compare to numerical simulations. In order to understand
the complex evolution of the high-current rod system in terms
of the experimental data, single-fluid MHD simulations us-
ing the multimaterial, Lagrangian FLAG code [28,29] were
conducted. One-dimensional simulations of the rod’s radius
where a single axial computational cell was included were
performed to calculate the bulk evolution of the rod with-
out surface instabilities. The experimentally measured current
traces were applied as the magnetic field boundary condition
for all metal rods. An initial mesh resolution of 10 nm on
the rod surface was necessary for a converged solution for
the ∼100X expansion from solid (ρ0 = 2.7 g/cm3) to vapor
(ρ ∼ 10−2 g/cm3) densities.

Three tabular aluminum equation of state models were
tested when simulating the Mykonos rods—each with a VdW
and MC version. They were chosen to span the develop-
ment of EOS tables and identify the features in an EOS
model that impact calculations of exploded metal. SESAME
3718 is a historical table used for imploding liners that ex-
hibited instability growth better than previous tables [11].
However, it does not include a solid-liquid biphase region
in contrast with the other two tables. SESAME 3720 is the
current workhorse for pulsed power calculations. It was devel-
oped primarily for high-pressure condensed states but offered
some improvements for the expanded regime as shown by
the critical point location rising in temperature significantly
[30]. Finally, EOS 93722 is the latest table developed of the
three and represents the current state-of-the-art model. It also
focused heavily on the high-pressure states—including the
multiple solid allotropes for aluminum in addition to a liquid
state and an improved treatment of the warm dense matter
regime [18]. It also included exploded aluminum foil exper-
imental data in the expanded metal region of phase space.
This all led to the most accurate critical point location and
expanded aluminum treatment of the models here and a sig-
nificant change in the vaporization phase boundary compared
to 3720.

In the Lagrangian MHD calculations, the balance of
the internal (−∇p) and magnetic ( j × B) forces at the
conducting-nonconducting boundary drives the metal at this
interface along a quasi-isobaric expansion that coincides with
the vaporization curve of the EOS. While the pressure evo-
lution of the outer aluminum zones was largely consistent
for every EOS model tested, the densities and temperatures
corresponding to this pressure evolution varied widely be-
tween them [Fig. 2(a)]. Because the expansion velocity at the
rod’s surface is proportional to the expanding surface layer’s
change in density, experimental velocimetry can distinguish
between the density evolution prescribed by each EOS model.
Moreover, the pressure in the metal approaches zero (i.e.,
the surrounding vacuum pressure) for radii approaching the

FIG. 2. (a) MHD Al rod surface trajectories in density, tem-
perature space are plotted every ns from t = 0 to 100 ns over
the phase boundaries of the models used: EOS 93722 [purple,
CP= (0.343 g/cm3, 8463 K)] [18], SESAME 3720 [green, CP=
(0.278 g/cm3, 7036 K)] [30], and SESAME 3718 [orange, CP=
(0.510 g/cm3, 5751 K)]. Every 10 ns is marked using lime green
starting from 60 ns in the bottom right to 100 ns. Inset: The pres-
sure of the outermost cell is plotted over time for VdW (solid) and
Maxwell (dashed) EOS models. (b) The simulated surface velocities
are compared against experimental PDV measurements: SESAME
3720 (green, top curves), SESAME 3718 (orange, middle curves),
and EOS 93722 (purple, bottom curves near PDV). A systematic
timing offset between the PDV and B-dot diagnostics was corrected
for by shifting the PDV data +4.7 ns.

surface of the uncoated rods. The density and temperature
evolution at the surface are then correlated and velocimetry
measurements can be used validate EOS models (density and
temperature) for expanding metal rods near the zero-pressure
isobar. Figure 2(b) shows the divergent surface velocities
of simulations using each tabular equation of state. For the
aluminum Mykonos rods, the VdW version of EOS 93722
predicted the closest expansion rate to the experimental PDV
data.

Using Maxwell constructs in the EOS had a significant
affect on the rod’s (ρ, T ) trajectory—causing the metal sur-
face to vaporize earlier than the VdW counterpart. Maxwell
constructs eliminate the thermodynamically unstable region
where ∂ p/∂ρ < 0 by setting a constant pressure for a given
temperature under the vapor dome. For the liquid-vapor region
adjacent to the liquid phase, the Maxwell construct pressure
is by definition greater than the VdW model’s pressure due
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FIG. 3. Radial profiles of the mass density, ρ, temperature, T ,
material pressure, p, magnetic energy density, �M , and total force
density potential, �T , for an uncoated Al Mykonos rod using the
VdW EOS 93722 at t = 80 ns.

to this process. Because the metal surface’s trajectory is set
by the pressure value of the EOS, calculations using the
Maxwell constructed models will divert under the vapor dome
at lower temperatures and earlier in time than when using the
VdW EOS [Fig. 2(a)]. Furthermore, as the surface velocity
follows the change in density of the outer zone, the earlier
vaporization appears as a rapid acceleration of the Al surface
that diverges from the VdW prediction.

The magnetic force density potential in cylindrical geom-
etry, �M , is the magnetic equivalent to the hydrodynamic
pressure, p, and was used to determine the relative strengths
of internal and magnetic forces in the expanding surface layer
of the rod. In Cartesian geometry, �M is equivalent to the
magnetic pressure, pM = B2/2μ0. It was calculated at a loca-
tion in the rod by spatially integrating Eq. (2) from the outer
conducting boundary at r = R to the radius r of interest. For a
1D right-circular cylinder like the Mykonos rod calculations,
this results in Eq. (5),

∫ R

r
ρ

Dur′

Dt
dr′ = p(r) −

∫ R

r
jzBφdr′ − p(R). (5)

Here p(R) is the pressure of the material outside the rod
at the conductor-insulator boundary. For a rod surrounded
in vacuum, p(R) ≈ 0, but for a conducting rod coated with
a dielectric, the pressure of the coating at the boundary
evolves over time according to the expanding metal beneath it:
p(R) = p(R, t ).

�T represents the total force density potential and is de-
fined as the difference between the internal force density
potential (i.e., material pressure p) and magnetic radial force
density potential, �M ≡ ∫ R

r jzBφdr′. Substituting �T ≡ p −
�M into the momentum equation yields Eq. (6) where −∇�T

determines the local forces in the rod,

ρ
Du
Dt

= −∇�T . (6)

Figure 3 shows the competition of the magnetic and ma-
terial contributions to �T (r) in a MHD simulation of an
Al Mykonos rod at 80 ns. In the outer 10 µm, d�T /dr < 0
and the rod is exploding. From 354 µm in, the total poten-

FIG. 4. Material pressure (solid) and magnetic force density po-
tential, �M , (dashed) are plotted for the outer MHD computational
zone over time using various aluminum VdW equations of state:
(top) EOS 93722, (middle) SESAME 3720, and (bottom) SESAME
3718.

tial gradient is positive and this section of the rod is being
compressed. Between these regimes, the radial melt wave is
traversing the rod’s radius. Inside the solid-liquid biphase, the
Joule heating is diverted to paying off the latent heat of fusion
and the pressure of the material here could not keep up with
the rising magnetic force density potential. This generated a
local minimum in �T where the solid metal underneath and
liquid metal outside both acted to compress the melt transition
region. The melt wave trailed the diffusion of current in the
rod, though, and the fast transit of the melting region through
the rod reduced the compression of material undergoing the
solid-to-liquid phase transition.

While the magnetic force was too small to overcome the
rod’s expansion, it was an effective brake on the aluminum
surface. In Fig. 4, the pressure and magnetic force density
potential of the outermost aluminum zone are shown through
the expansion of the rod along the vaporization curve. As
in Fig. 3, �M was similar in magnitude to p and prevented
rapid expansion. Because the pressure and magnetic force
density potential in the surrounding vacuum are identically
zero, the difference of p and �M in Fig. 4 is proportional
to the gradient of the total force density potential across the
conductor-insulator boundary and therefore the acceleration
of the rod surface. After melting, the material strength is
removed and the pressure drops considerably before evolving
along a similar contour as �M (t ) in the outer zone. This was
due to the internal pressure being more sensitive to changes
in density than �M . The Joule heating in the expanding rod
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FIG. 5. MHD Al rod surface trajectories using EOS 93722 and
two modern Al ECON tables: (a) 23716 and (b) 29373. (c) Simu-
lated expansion velocities for both calculations are compared against
experimental PDV measurements.

FIG. 6. (a) The outer zone trajectories of a simulated Al rod
coated with 35 µm of Parylene-N are overlaid on the phase bound-
aries for EOS 93722 [purple, CP= (0.343 g/cm3, 8463 K)] and
SESAME 3720 [green, CP= (0.278 g/cm3, 7036 K)]. Every 10 ns
is marked in lime green starting from 60 ns in the bottom right to
110 ns toward the top of the simulation trajectory. Inset: The pressure
of these trajectories is plotted over time. (b) The simulated surface
velocities are compared to the analyzed experimental PDV data.

raised the aluminum temperature and thus pressure much
faster than �M . As the material expanded from the result-
ing internal forces, though, the pressure dropped faster with
density than the magnetic potential until it reached a value
that maintained a relatively constant relationship between the
two potentials. This resulted in a balancing of the internal
and magnetic forces in the Mykonos rods to an approximately
constant acceleration during the 20–30 ns the surface followed
the vaporization curve after melting.

The MHD simulations were not as sensitive to variations in
electrical conductivity as they were to the location of the EOS
vaporization curve. In Fig. 5, calculations using two modern
ECON tables in conjunction with EOS 93722 were compared.
ECON 23716 was specifically developed to also match the
melt phase boundary in EOS 93722 while ECON 29373 was
developed independently from the equation of state. The re-
sulting discrepancies between the tables’ conductivities near
the solid-liquid biphase altered the Joule heating rate on the Al
surface while it was melting. ECON 29373 predicted a larger
heating rate that decreased the time spent in the biphase and
therefore increased the rate at which the zone expanded. This
accelerated the rod’s surface to larger velocities during the
melting process than when using ECON 23716 with a lower
Joule heating rate [Fig. 5(c)]. The conductivity models did not,
however, impact the phase space trajectory of the rod nor did
they vary the acceleration of the rod surface as it traversed
along the vaporization phase boundary.

Coating the rod with a layer of the dielectric Parylene-N
inertially tamped the metal’s expansion and caused the surface
to divert from the vaporization curve to a high-pressure liquid
and later into the warm dense matter regime [33]. As the
rod expanded, it compressed the plastic which then raised
the boundary condition pressure p(R) and caused the metal

FIG. 7. MHD simulated uncoated Cu surface trajectories in den-
sity, temperature space are plotted every ns for the EOS models
used: SESAME 3337 [light blue, CP= (2.04 g/cm3, 8544 K)] [31],
EOS 93338 [dark blue, CP= (1.85 g/cm3, 8255 K)], and EOS 3325
[green, CP= (1.70 g/cm3, 6972 K)] [32]. EOS 3325 was also tested
with ECON 23335 [orange (light gray) crosses]. Every 10 ns is
marked using lime green from 60 ns in the bottom right to 100 ns. In-
set: The pressure of the outermost zone for each calculation is plotted
over time for VdW (solid) and Maxwell (dashed) EOS models.

065202-5



SETH E. KREHER et al. PHYSICAL REVIEW E 109, 065202 (2024)

to overshoot the critical point. This allowed the metal in the
coated simulations to avoid the uncertainties in the EOS mod-
els associated with the critical point location and resulted in a
more accurate surface acceleration from 90 ns on. However,
the Al models still vary enough near the melting transi-
tion to impact the early surface acceleration such that they
predict different velocities later in time. The steeper dT/dρ

trajectory in EOS 93722 slowed the velocity earlier in the
rod’s expansion and resulted in a closer fit to the PDV data
once again (Fig. 6).

Finally, simulations of similar exploding Cu rods exhibited
the same strong sensitivity to the equation of state vapor-
ization curve. Figure 7 shows the phase space trajectories
for the outer computational zones of pure Cu Mykonos rod
calculations using various EOS and ECON tables. Just like
the aluminum rods, the outer Lagrangian zone of the con-
ductor followed a specific pressure vs time evolution. The
calculations using equations of state with Maxwell constructs
also diverted under the vapor dome earlier in time and at
lower temperatures than their VdW counterparts. These vary-
ing trajectories again correspond to different predicted surface
velocities with v3337 < v3325 < v93338 before the surface va-
porized; however, no experimental PDV data for this uncoated
Cu rod was available to the authors to validate any particular
EOS for the expanded metal regime.

IV. CONCLUSIONS

The use of experimental velocimetry to validate MHD sim-
ulations of Joule-heated conductors demonstrates a simple,
effective method to improve the tabular EOS models currently

in use for the expanded metal regime. This technique identi-
fied what general shape the vaporization curve for aluminum
should exhibit with EOS 93722 providing a close fit relative
to the other models tested. Because the force balance at the
metal surface dictated the pressure of the outermost compu-
tational cell, increasing the pressures under the vapor dome
in a Maxwell constructed EOS lead to an earlier vaporization
of the conductor’s surface. While the inclusion of a plastic
tamper diverted the density and temperature of the metal sur-
face away from the vaporization curve to warm dense matter,
the sensitivity of the calculation to the EOS model used was
consistent. The continued detailed comparison between MHD
calculations and high-fidelity PDV data of exploding conduc-
tors is therefore a rich area for research into the properties and
evolution of metals driven by intense current pulses.
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