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Generalized scaling laws for the irrotational motions bordering a turbulent region
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In turbulent free shear flows such as jets and wakes, and also in turbulent boundary layers, the turbulent region
is bounded by a region of irrotational flow where the magnitude of the potential velocity fluctuations can be very
high. This is particularly true close to the turbulent-nonturbulent interface layer (TNTI) that separates the regions
of turbulent (rotational) and nonturbulent (irrotational) fluid motion in these flows. Previous works have shown
that for distances from the TNTI x2 much bigger than the integral scale L in the nearby turbulent region (x2 � L),
the variance of the velocity fluctuations 〈u2

i 〉 (i = 1, 2, 3) depends on the shape of the kinetic energy spectrum in
the infrared region E (k) ∼ kn [O. M. Phillips, Proc. Camb. Phil. Soc. 51, 220 (1955); Xavier et al., J. Fluid Mech.
918, A3 (2021)]. Using rapid distortion theory, we derive the generalized scaling laws for the potential velocity
fluctuations, at distances sufficiently far from the TNTI layer, for any value of n. While the cases n = 4 (Batchelor
turbulence) and n = 2 (Saffman turbulence) have been previously derived, with 〈u2

i 〉 ∼ x−4
2 and 〈u2

i 〉 ∼ x−3
2 , for

n = 4 and n = 2, respectively [O. M. Phillips, Proc. Camb. Phil. Soc. 51, 220 (1955); Xavier et al., J. Fluid Mech.
918, A3 (2021).], we extend these results by including any other value of n. In particular, we obtain 〈u2

i 〉 ∼ x−2
2

and 〈u2
i 〉 ∼ x−4

2 , for n = 1 and n � 5, respectively, while n = 3 yields 〈u2
i 〉 ∼ x−4

2 ln(x2). These theoretical results
are confirmed by direct numerical simulations of turbulent fronts evolving into an irrotational flow region in the
absence of mean shear.

DOI: 10.1103/PhysRevE.109.065107

I. INTRODUCTION

Regions of irrotational or nonturbulent flow exist in vir-
tually all canonical free shear flows, e.g., jets, wakes, and
mixing layers, and are also found adjacent to turbulent bound-
ary layers [1]. An abrupt transition exists in these flows
between the nonturbulent (NT) and turbulent (T) flow regions
that are separated by the so-called turbulent-nonturbulent in-
terface layer (TNTI), which is highly contorted by the large
range of existing scales in the turbulent region [2–4]. The
importance of this layer is motivated by the mechanism of
turbulent entrainment whereby fluid initially pertaining to the
nonturbulent region is drawn into the turbulent region across
this interface and becomes part of the turbulent region.

An interesting and often neglected fact about the flow field
in the irrotational region consists of the existence of potential
velocity fluctuations caused by the presence of the eddy struc-
tures in the T region [5–7], and naturally the magnitude of
these fluctuations tends to increase when approaching the tur-
bulent region. Whereas the vorticity displays an abrupt change
across the TNTI layer [8], the velocity fluctuations evolve
smoothly as shown in Ref. [9]. However, while the cross
Reynolds stresses, 〈uiu j〉, with i �= j, are rigorously zero in the
NT flow region [10] the normal Reynolds stresses, 〈uiu j〉 with
i = j, are very high in the NT region near the T region. For
example, Refs. [3,9] have shown that the streamwise normal
Reynolds stresses in the TNTI layer from a planar turbulent jet
are about one-half their value inside the turbulent core region
of the flow.

To investigate the velocity fluctuations in the NT region
near the boundary of a T region, we define the three spatial
coordinates and the time, �x = xi (i = 1, 2, 3) and t , respec-
tively, where the index i = 2 corresponds to the direction
normal to the TNTI layer. The Reynolds decomposition is
used to separate the total velocity field Ui(�x) into the sum
its mean 〈Ui(�x)〉 and fluctuating velocity components ui(�x, t ),
i.e., 〈Ui(�x)〉 + ui(�x, t ), and the brackets “〈〉” represent an av-
eraging operation (described later).

Phillips [10] pioneered the investigation of the potential
velocity fluctuations in the NT region by providing analytical
descriptions for the evolution of the second-order moments of
the fluctuating velocity components 〈uiu j (x2)〉 (i, j = 1, 2, 3),
as a function of the distance from the T region layer, x2, for
distances much bigger than the integral scale of turbulence,
x2 � L. By assuming that the kinetic energy spectrum has an
infrared (low wave number) region in the form E (k) ∼ k4,
where k is the wave number (representing a Batchelor spec-
trum [11]), Phillips [10] obtained the following scaling laws
for the variation of the velocity fluctuations: 〈u2

i (x2)〉 ∼ x−4
2

(i, j = 1, 2, 3), and 〈uiu j (x2)〉 = 0 for i �= j. Carruthers and
Hunt [12] used rapid distortion theory (RDT) to extend the re-
sults derived by Ref. [10] for all the range of coordinates x2 for
NT regions in stable stratification, and in the absence of mean
shear (for a review on RDT, see Ref. [13]). For coordinates
x2 � L and in the absence of stratification, the asymptotic re-
lations 〈u2

i (x2)〉 ∼ x−4
2 (i, j = 1, 2, 3) are recovered. Teixeira

and da Silva [14] later extended these results by considering
the effects of a thin viscous layer roughly coinciding with the
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TNTI layer. As in Ref. [12], RDT allowed them to obtain the
full profiles of all important turbulence quantities as a function
of the distance from the TNTI, x2, but again, when analyzing
large distances x2 � L, the scaling relations 〈u2

i (x2)〉 ∼ x−4
2

(i, j = 1, 2, 3) were recovered.
The asymptotic relations described above for the po-

tential velocity fluctuations in the NT region have been
observed in several experimental works, such as in turbu-
lent wakes [15–17], turbulent mixing layers [18], turbulent
jets [19,20], and turbulent boundary layers [21,22]. The nu-
merical works reporting these asymptotic relations include
the direct numerical simulations (DNSs) of turbulent pla-
nar jets [9], and shear-free turbulent fronts (turbulent fronts
evolving into a region of NT flow in the absence of mean
shear) [14].

It is important to recall that all the above results were
derived assuming the turbulent flow in the nearby T region is
described by a Batchelor spectrum [11], where E (k) ∼ k4 (for
k � 1/L). However, it is well-known that spectra of the form
E (k) ∼ k2 [23], also denoted as the Saffman spectrum [11],
do exist in many turbulent flows, and several authors also
mention spectra with the general form E (k) ∼ kn, where n is a
constant, different from n = 4 (Batchelor spectrum) or n = 2
(Saffman spectrum) [24–27]. Indeed, it is well-known that the
shape of the kinetic energy spectrum in the infrared region
E (k) ∼ kn determines the evolution of the main turbulence
quantities in decaying isotropic turbulence (see Refs. [11,13]
for an exhaustive description of the several isotropic decay
theories). Besides the above-mentioned cases of E (k) ∼ k2

(Saffman spectrum) and E (k) ∼ k4 (Batchelor spectrum), a
decay solution with a constant integral scale (e.g., as when
the integral scale reaches the domain size) corresponds to
E (k) ∼ k∞, whereas E (k) ∼ k represents a decay with con-
stant Reynolds number [27]. Vassilicos [26] has shown that at
least for n � 2, virtually all cases are physically consistent.

Using RDT and by assuming that the T region behaves
as Saffman turbulence (Xavier et al. [28]) were able to ob-
tain the asymptotic laws governing the turbulence quantities
neighboring the NT region. Specifically, they showed that for
NT regions near a T region with E (k) ∼ k2 (for k � 1/L) the
velocity variance decreases, as a function of the distance from
the TNTI (x2), as 〈u2

i 〉 ∼ x−3
2 (i = 1, 2, 3), while the Taylor

microscale λ, and viscous dissipation rate ε vary as 〈λ〉 ∼ x2

and 〈ε〉 ∼ x−5
2 , respectively. These results were confirmed by

DNS of shear free turbulence (SFT).
It is important to recall that in the above-mentioned work,

it was shown that the RDT results for the asymptotic behavior
of the potential velocity fluctuations in the NT region are
independent of the value of the Reynolds number of the flow
and also of the peak of the kinetic energy spectrum, which is
related to the integral scale of the turbulence in the nearby T
region. Also, the fact that these asymptotic laws (including the
case for E (k) ∼ k2) have been observed in several different
flow configurations such as in turbulent jets, turbulent wakes,
and turbulent boundary layers suggests that the presence or
absence of mean shear is not important for these laws, which
should be valid in any other NT flow region (provided x2 �
L).

In the present paper, and using RDT, we extend the results
described above for T regions exhibiting a general energy

spectrum, i.e., with an infrared region defined by E (k) ∼ kn,
where n is an integer constant, for k � 1/L. The asymptotic
laws for the variance of the potential velocity fluctuations
extend the results previously obtained by Refs. [10,28] for
kinetic energy spectra with any value of the integer constant n.
The results reduce to the previous solutions of 〈u2

i 〉 ∼ x−4
2 and

〈u2
i 〉 ∼ x−3

2 , corresponding to n = 4 (Batchelor turbulence)
and n = 2 (Saffman turbulence), respectively, and provide
solutions for other values of n. In particular, we obtain 〈u2

i 〉 ∼
x−2

2 and 〈u2
i 〉 ∼ x−4

2 for n = 1 and n � 5, respectively, while
the case n = 3 leads to 〈u2

i 〉 ∼ x−4
2 ln(x2). The theoretical re-

sults are confirmed by DNS of shear-free turbulence.
This paper is organized as follows. The next sec-

tion (Sec. II) extends the analytical results obtained by Xavier
et al. [28] using RDT by considering an infrared kinetic en-
ergy spectrum with a form E (k) ∼ kn, for any integer value of
n. Section III describes the numerical methods, simulations,
and validation of the simulations used in the present paper,
and assesses the theoretical results using DNS. The paper ends
with an overview of the main results and Conclusions (Sec.
IV).

II. THEORY FOR VELOCITY FLUCTUATIONS
IN AN IRROTATIONAL FLOW REGION

In a recent paper, Xavier et al. [28] extended the results of
Phillips [10] regarding the decay of the velocity fluctuations
in an irrotational flow region adjacent to a homogeneous and
isotropic turbulence region as one moves away from the TNTI.
They found that when a Saffman energy spectrum with a
variation at low wave numbers E (k) ∼ k2 is adopted to de-
scribe the turbulence, the velocity variances in the irrotational
flow region decay as 〈u2

i 〉 ∼ x−3
2 (x2 is the distance from the

TNTI). This is in contrast with Phillips’s [10] original find-
ing, rediscovered using RDT by Teixeira and da Silva [14],
assuming a Batchelor spectrum that varies as E (k) ∼ k4 at low
wave numbers, which states that the velocity variances vary as
〈u2

i 〉 ∼ x−4
2 .

These results are intriguing, as a pattern between them
is not obvious, so they will be extended here to an energy
spectrum of the turbulence that varies at low wave numbers
as E (k) ∼ kn. The corresponding form of the decay of the
velocity variances with x2 will be derived theoretically. A
firmer connection between the results of Xavier et al. [28] and
the previous results of Phillips [10] will also be established
by relating the different approaches used by these authors via
specification of the spectrum forcing the velocity fluctuations.
Finally, we will substantiate and justify the result, advanced
by all these previous authors without formal justification, that
the qualitative asymptotic behavior of the velocity variances
does not depend on the high-wave-number range of the as-
sumed turbulence energy spectrum.

As in Teixeira and da Silva [14] and Xavier et al. [28],
RDT is adopted here. This approach is more specific than
the one used by Phillips [10], where the forcing of the irro-
tational velocity fluctuations is simply specified at the TNTI.
It will be shown that the RDT approach is a particular case of
Phillips’s approach, which allows one to be more systematic
regarding the characterization of the turbulence generating the
irrotational velocity fluctuations. These two approaches were
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shown by Teixeira and da Silva [14] to give the same type of
decay rate of the velocity variances for the particular case of a
Batchelor energy spectrum.

The variety of RDT used in this paper accounts for the
effect of a suddenly inserted boundary (in the present case,
a turbulent-nonturbulent interface). This approach goes back
to the treatment of shear-free turbulence near a solid wall
by Hunt and Graham [29], and of an interface between un-
stratified turbulence and a stably stratified nonturbulent flow
region by Carruthers and Hunt [12]. In this approach, we add
irrotational velocity corrections to the homogeneous turbulent
velocity field to satisfy the boundary conditions at the relevant
boundary (zero normal velocity in the case of the wall consid-
ered by Hunt and Graham [29], and continuity of the normal
velocity and pressure in the case of the turbulent-nonturbulent
interface of Carruthers and Hunt [12]. This approach has been
used subsequently to treat in more detail the characteristics
of turbulence at a turbulent-nonturbulent interface by Teixeira
and da Silva [14], and Xavier et al. [28], the latter of which
the present paper extends. As shown both in Xavier et al. [28]
and in the present paper (see below), this approach predicts
the decay of velocity variances in the nonturbulent part of the
flow to be ∝ x−4

2 for a von Karman energy spectrum (with
a low wave-number range ∝ k4. Although its performance
in previous studies partly justifies this approach, in practice,
the sudden insertion of a turbulent-nonturbulent interface is
approximately realized when a turbulent jet or plume exits
a pipe (although, in that case, the turbulence is previously
bounded by a solid boundary).

In Phillips [10], the irrotational velocity fluctuations are
driven by the 2D spectrum θ (k1, k3) of the velocity fluctua-
tions perpendicular to the TNTI, u2, at the TNTI, i.e., x2 = 0.
According to Eq. (19) of Phillips [10] or Eq. (2.2) of Xavier
et al. [28], this spectrum is defined as

θ (k1, k3) = 1

(2π )2

∫ +∞

−∞

∫ +∞

−∞
〈u2(x1, x2 = 0, x3)

×u2(x1+ r1, x2 = 0, x3+ r3)〉e−i(k1x1+k3x3 )dr1dr3,

(1)

where (x1, x2, x3) is the spatial position, (r1, 0, r2) is the spa-
tial lag along a plane parallel to the TNTI, and (k1, 0, k3) is
the wave-number vector parallel to the TNTI.

The velocity fluctuations are assumed to be statistically
homogeneous in the directions parallel to the TNTI, x1 and
x3. Attention will be focused on u2, because it is the velocity
component directly involved in the definition of θ (k1, k3) and,
as shown by Phillips [10], its variance in the irrotational flow
region is simply twice that of the velocity variances parallel
to the TNTI, 〈u2

1〉 and 〈u2
3〉. u2 can be expressed as a Fourier

integral along the x1 and x3 directions:

u2(x1, x2, x3) =
∫ +∞

−∞

∫ +∞

−∞
û2(k1, x2, k3)ei(k1x1+k3x3 )dk1dk3,

(2)
where û2 is the Fourier transform of u2. The RDT solutions
of Teixeira et al. (2012) for the velocity fluctuations in an
irrotational velocity field outside a region of homogeneous
and isotropic turbulence are similar to those of Carruthers and
Hunt [12] when the non-turbulent region is not stratified. The

Fourier component of u2, for example, is given by

û2(k1, x2, k3) = 1

2

∫ +∞

−∞
û(H )

2 (k1, k2, k3)e−k13x2 dk2, (3)

where k13 = (k2
1 + k2

3 )1/2, k2 is the wave number in the di-
rection perpendicular to the TNTI, and û(H )

2 is the Fourier
transform of the u2 velocity component in the homogenous
and isotropic turbulence existing to the other side of the TNTI.
It is known that, by definition of isotropic turbulence〈

û(H )
i (k)û(H )

j (k′)
〉 = �

(H )
i j (k)δ(k − k′), i, j = 1, 2, 3, (4)

where �
(H )
i j is the three-dimensional wave-number spectrum

of the isotropic turbulence velocity, k = (k1, k2, k3), k′ =
(k′

1, k′
2, k′

3), and δ is the Dirac delta function. If (2)–(4) are
inserted into (1), this yields

θ (k1, k3) = 1

4

∫ +∞

−∞
�

(H )
22 (k)dk2. (5)

In isotropic turbulence, the 3D wave-number spectrum is
related to the energy spectrum of the turbulence E (k) in the
following way:

�
(H )
i j (k) =

(
δi j − kik j

k2

)
E (k)

4πk2
, i, j = 1, 2, 3, (6)

where δi j is the Kronecker delta and k = (k2
1 + k2

2 + k2
3 ) is the

wave-number magnitude. Using (6), (5) can be expressed as

θ (k1, k3) = k2
13

8π

∫ +∞

0

E (k)

k4
dk2, (7)

where it was assumed that E (k) is an even function of k2

(which is justified, because it only depends on k). Using (2)–
(6), it is also possible to show that the variance of the u2

velocity component in the irrotational flow region is given by

〈
u2

2

〉 = 1

16π

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

k2
13

k4
E (k)e−2k13x2 dk1dk2dk3.

(8)
Using (7), this can also be expressed in terms of θ (k1, k3) as

〈
u2

2

〉 =
∫ +∞

−∞

∫ +∞

−∞
θ (k1, k3)e−2k13x2 dk1dk3, (9)

which can also be written〈
u2

2

〉 = 2π

∫ +∞

0
k13θ (k13)e−2k13x2 dk13, (10)

where in the integral polar coordinates, k1 = k13 cos λ and
k3 = k13 sin λ have been introduced, and the integration along
the azimuthal angle λ was carried out analytically. This result
uses the fact that θ (k1, k3) is only a function of k13, which can
easily be inferred from (7).

Equation (10) clearly shows why at large distances from
the TNTI (i.e., large x2), only small values of the wave number
k13 contribute to the velocity variance. Any wave numbers
other than the smallest ones will lead to a small value of
the exponential. With this in mind, it is possible to infer the
behavior of the variance by studying the behavior of θ (k13)
as defined by (7). That equation shows that, if the limit of
the integral as k13 → 0 is a nonzero constant, θ (k13) is pro-
portional to k2

13, as was assumed by Phillips [10] [see his
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Eq. (20)]. This corresponds to a Batchelor spectrum, which
at low wave numbers is E (k) ∼ k4, as was shown by Teixeira
and da Silva [14], and will be confirmed and extended next.

Consider a generic form for the energy spectrum of the
turbulence E (k), such that this spectrum is asymptotically
proportional to kn at low wave numbers,

E (k) = kn f (k), (11)

where n is a non-negative integer number, and f (k) is func-
tion that must tend to a nonzero constant as k → 0. For the
spectrum to be physically consistent, f (k) must also decay to
zero as k → ∞ at an appropriate rate, such that the spectrum,
when integrated over k, adds up to a finite energy. With these
properties, it is clear that if n � 4, the integral of E (k)/k4

in (7) as k13 → 0, i.e., as k → k2, must converge to a nonzero
constant. Hence, for all cases where n � 4 (which include the
case of a Batchelor spectrum, n = 4), θ (k13) is proportional
to k2

13 for low k13. Now, if this fact is used in (10), it must be
concluded (by calculating the integral in that equation by parts
multiple times) that 〈u2

2〉 ∼ x−4
2 . So, for any n � 4, the veloc-

ity variance always decays proportionally to x−4
2 for large x2.

The behavior of u2
2 in other cases, namely, n < 4, depends on

how the dependence of θ (k13) on k13 for low values of this
variable differs from k2

13.
For integer n, only the cases n = 1, 2, 3 need to be con-

sidered, since n = 0 would correspond to an energy spectrum
where the integral length scale is not properly defined (see
Eq. (4.15) of Teixeira and Belcher [30]). Each case needs to
be treated separately. The case n = 2 was already addressed
by Xavier et al. (2021) for a specific exponential form of f (k),
but will be repeated here under more general conditions. For
treating the cases n = 1, 2, 3, it is useful to split the integral
in (7) into two parts,

∫ +∞

0

E (k)

k4
dk2 =

∫ k0

0
kn−4 f (k)dk2 +

∫ +∞

k0

kn−4 f (k)dk2,

(12)
where (11) has been used, and k0 > 0 is a wave number value
below which f (k) is constant to a good degree of approxima-
tion. The second integral in (12) always evaluates to a finite
constant when k13 → 0 for any value of n (provided f (k)
decays to zero sufficiently fast as k → ∞) because the only
reason for the integral not to converge could only come from
the lower limit k0, but since k0 is positive, this never occurs.
The first integral also evaluates to a constant when k13 → 0 in
the case n � 4 (hence the results presented above), but when
n < 4 it diverges at k3 = 0 when k13 → 0, dominating the full
integral on the left-hand side of (12), and thus changing the
dependence of θ on k13. For this effect to be perceived and
evaluated correctly, the limit k13 → 0 must be taken after the
integral has been calculated.

Then the first integral on the right-hand side of (12) is

∫ k0

0
kn−4 f (k)dk2 ≈ f (k = 0)

∫ k0

0
kn−4dk2

= f (k = 0)
∫ k0

0
(k2

13 + k2
2 )

n−4
2 dk2. (13)

Consider first the case n = 1. Then,∫ k0

0

(
k2

13 + k2
2

) n−4
2 dk2 =

∫ k0

0

(
k2

13 + k2
2

)− 3
2 dk2

= k0

k2
13

(
k2

13 + k2
0

)1/2 . (14)

The limit of this expression as k13 → 0 is k−2
13 . Therefore,

when inserted in (7) this makes θ approach a constant (i.e.,
lose its dependence on k13), so calculation of the integral
in (10) yields a dependence of the velocity variance ∼x−2

2 .
In the case n = 2 (treated by Xavier et al. [28]), the integral
on the right-hand side of (13) becomes instead∫ k0

0

(
k2

13 + k2
2

) n−4
2 dk2 =

∫ k0

0

(
k2

13 + k2
2

)−1
dk2

= 1

k13
arctan

(
k0

k13

)
, (15)

which approaches π/(2k13) when k13 → 0. This makes θ

become proportional to k13, which from (10) implies that the
velocity variance is proportional to x−3

2 . This is the result
obtained by Xavier et al. [28] for a particular form of the
turbulence energy spectrum where the function f (k) in (11)
is Gaussian.

Finally, in the case n = 3, the integral on the right-hand
side of (13) becomes∫ k0

0

(
k2

13 + k2
2

) n−4
2 dk2 =

∫ k0

0

(
k2

13 + k2
2

)− 1
2 dk2

= ln

[(
k2

13 + k2
0

)1/2 + k0

k13

]
. (16)

In the limit k13 → 0, this reduces to ln(2k0/k13) ∼ − ln(k13).
This means that θ ∝ −k2

13 ln(k13), and so it can be shown
that in this case (10) determines the velocity variance to be
proportional to x−4

2 ln(x2) as x2 → ∞. This type of variation
is intermediate between x−3

2 and x−4
2 , as would perhaps be

expected intuitively.

A. Exact and asymptotic results for an exponential
energy spectrum

All the preceding results have been derived, in general (and
without a quantitative specification of the asymptotic behavior
of 〈u2

2〉 apart from proportionality to a type of function of
x2), for a generic energy spectrum. To be more specific and
confirm that these results are indeed valid for any energy
spectrum, a number of examples will be presented next for
the case of an exponential energy spectrum similar to those
adopted by Teixeira and da Silva [14] and Xavier et al. [28].
Only the cases n = 1, 2, 3, 4, 5, 6 will be considered, since
for higher values of n the behavior of the velocity variance
is qualitatively similar, as noted in the preceding section.
Recall that the case n = 1 corresponds to a situation where the
Reynolds number is constant (inside the neighboring turbulent
region) [27], whereas the cases n = 5, 6 (or bigger) can be
used to represent an isotropic flow evolving with a constant
integral scale [27]. The case n = 3 would represent another
intermediate, physically valid, condition [26].
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A preliminary point must be made about the specification
of the energy spectrum. If an exponential form is used, the
coefficients included in the spectrum are specific for each
value of n chosen, and it is convenient to treat separately the
cases with n even or odd. Hence, for odd n = 2m + 1 (where
m is an integer),

E (k) = α(q2λ∞)(kλ∞)2m+1e−β(kλ∞ )2
, (17)

where q is the root-mean-square (RMS) velocity in the ho-
mogeneous and isotropic turbulence, λ∞ is the corresponding
Taylor microscale, and the coefficients α and β must be de-
fined as

α = 3

2m+1m!

(
2m + 2

5

)m+1

, β = m + 1

5
. (18)

The equations in (18) ensure that the energy spectrum given
by (17) satisfies the constraint of integrating to 3q2/2, and
when multiplied by 2νk2 (where ν is the kinematic viscosity)
integrating to ε∞, the dissipation rate in the homogeneous and
isotropic turbulence. To satisfy the same constraints, for even
n = 2m, the energy spectrum is defined as

E (k) = γ (q2λ∞)(kλ∞)2me−δ(kλ∞ )2
, (19)

where

γ = 3

(2π )1/2

2mm!

(2m)!

(
2m + 1

5

)m+ 1
2

, δ = 2m + 1

10
. (20)

For the cases m = 0, 1, 2, i.e., n = 1, 3, 5, the values taken by
α and β are

α = 3
5 , β = 1

5 (n = 1), (21)

α = 12
25 , β = 2

5 (n = 3), (22)

α = 324
1000 , β = 3

5 (n = 5), (23)

whereas for the cases m = 1, 2, 3, i.e., n = 2, 4, 6, the values
taken by γ and δ are

γ = 9

5

(
3

10π

)1/2

, δ = 3

10
(n = 2), (24)

γ = 1

(2π )1/2
, δ = 1

2
(n = 4), (25)

γ = 343

625

(
7

10π

)1/2

, δ = 7

10
(n = 6). (26)

Note that the cases n = 4 and n = 2 have been obtained pre-
viously by Teixeira and da Silva [14] and Xavier et al. [28],
respectively.

It is now possible to calculate the velocity variance for
all the cases introduced above. For this purpose, it is only
necessary to insert the expression for the energy spectrum,
corresponding either to Eq. (17) or Eq. (19), into the expres-
sion for the velocity variance, Eq. (8). When this is done,
〈u2

2(x2)〉 can only be evaluated numerically, in general, but
due to the simplifications outlined above when k13 → 0, it is
possible to obtain the asymptotic limit of 〈u2

2〉 for x2 → ∞ for
all cases as closed analytical expressions. These expressions

FIG. 1. Variance of the velocity perpendicular to the TNTI 〈u2
2〉

in the irrotational flow region as a function of distance from the
TNTI normalized by the Taylor microscale of the homogeneous and
isotropic turbulence (x2/λ∞). Solid lines: results from Eq. (8) using
an energy spectrum proportional to kn at low wave numbers; dashed
lines: asymptotic approximations from Eqs. (27)–(32). Black lines:
n = 1, red lines: n = 2, blue lines: n = 3, magenta lines: n = 4,
green lines: n = 5, orange lines: n = 6.

are the following:

〈
u2

2

〉 ∼ 3q2

80(x2/λ∞)2
(n = 1), (27)

〈
u2

2

〉 ∼
(

3π

10

)1/2 9q2

160(x2/λ∞)3
(n = 2), (28)

〈
u2

2

〉 ∼ 3q2

400(x2/λ∞)4
[6 ln(x2/λ∞) + 3γE

+ 3 ln(40) − 11] (n = 3), (29)〈
u2

2

〉 ∼ 3q2

64(x2/λ∞)4
(n = 4), (30)

〈
u2

2

〉 ∼ 81q2

3200(x2/λ∞)4
(n = 5), (31)

〈
u2

2

〉 ∼ 147q2

8000(x2/λ∞)4
(n = 6), (32)

where γE is the Euler-Mascheroni constant, γE ≈ 0.577. Note
how the result for m = 3 has a more complicated analytical
form because of the logarithmic dependence. For n � 4, it
would be, in principle, possible to obtain a generic formula
(depending on n) for the asymptotic behavior of 〈u2

2〉 with x2,
but that is of limited interest, since the form of the dependence
on x2 does not change, and only the coefficient multiplying
x−4

2 changes slightly.
Figure 1 shows 〈u2

2〉 as a function of x2 for n =
1, 2, 3, 4, 5, 6 from Eq. (8) (solid lines) and the asymptotic
behavior of these expressions from (27)–(32) (dashed lines).
Clearly, the asymptotes approximate the exact expressions
very closely for x2/λ∞ � 10. The asymptote for n = 3 has
a rather unusual behavior at its left end because of the pres-
ence of the logarithmic function in (29), as the logarithm of
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x2/λ∞ does not follow a straight line when represented using
logarithmic axes, and becomes negative when x2/λ∞ < 1.

III. DIRECT NUMERICAL SIMULATIONS

A total of five DNS of SFT were carried out in this paper.
All simulations use the same code already employed and
validated for a similar simulation in Ref. [28]. Each one of
the simulations is done in two steps, comprising (i) an initial
DNS of decaying homogeneous isotropic turbulence (DHIT)
followed by (ii) a simulation of SFT, where a turbulent front is
generated that spreads into the nonturbulent (irrotational) flow
region in the absence of mean shear.

A. Numerical methods

The code used in the simulations is an in-house Navier-
Stokes solver using pseudospectral methods (collocation
method) for spatial discretization [31], and a three-step
third-order explicit Runge-Kutta scheme for the temporal ad-
vancement [32]. The domain is a triple periodic cube with
sides equal to 2π and the simulations are fully dealiased with
the 2/3 rule, and employ N1 × N2 × N3 collocation points in
the x1, x2, and x3 directions, respectively [28].

B. DNS of decaying free shear turbulent fronts

The five DNS carried out in this paper mainly differ in the
details of the initial velocity field. This is obtained from a ran-
dom number generator that creates a divergence-free velocity
field with initial variance equal to 〈u2

1〉 = 〈u2
2〉 = 〈u2

3〉 = 1,
and with a prescribed three-dimensional kinetic energy spec-
trum following,

E (k) ∼ kne
−2

(
k

kp

)2

, (33)

where kp is the peak wave number and n is the slope in the
low wave number (infrared) region [33]. We designate by
k1 to k5 the five simulations carried out in this paper, where
the parameter n was set as n = 1 to n = 5, respectively. In
all cases, the kinematic viscosity was set to ν = 3 × 10−4,
while the peak wave number was kp = 30 as in Ref. [28]. The
cases n = 2 and n = 4 correspond to the so-called Saffman
turbulence [23] and Batchelor turbulence [34], respectively,
and were already discussed in Ref. [28]. A total of N1 × N2 ×
N3 = 512 × 512 × 512 collocation points was used for all the
simulations, except for the case K5 where N1 × N2 × N3 =
1024 × 1024 × 1024 points have been used.

Similarly to Ishida et al. [33] and Xavier et al. [28], the
Reynolds number is defined as Rekp = 〈u2〉1/2/(kpν), and the
time is normalized by the initial integral timescale (or turnover
timescale) Tkp = 1/(〈u2〉1/2kp) that is τ = t/Tkp. The initial
Reynolds number for all the simulations is equal to Rekp =
125, and the kinetic energy spectrum peaks at kp = 30, which
again are equal to the simulations of Ishida et al. [33] and
Xavier et al. [28]. As discussed in these works, the values of
Rekp and kp are set to preserve the slope of the kinetic energy
spectrum at low wave numbers during the kinetic energy de-
cay phase and to obtain the theoretical kinetic energy decay
rates in DNS of DHIT (Rekp > 100 and kp > 20 [28,33]).
Finally, note that the ratio of the maximum effective wave

number kmax and the peak wave number is equal to kmax/kp =
12, which maximizes the Reynolds number Rekp , while keep-
ing an appropriate resolution.

Starting with these initial conditions, each DHIT simula-
tion (k1 to k5) undergoes the typical evolution described in
many previous works, i.e., the enstrophy increases initially
with time as the kinetic energy spectrum spreads into higher
wake numbers k > kp, until it attains a maximum (τω: en-
strophy peak), which is then followed by a slow decay (e.g.,
Refs. [28,33]). Eventually, after the enstrophy peak has been
attained, the velocity variance for the cases k4 and k2 recovers
the power laws 〈u2〉 ∼ τ−10/7 and 〈u2〉 ∼ τ−6/5 predicted by
the classical theory [11], as described in the similar simula-
tions from Ref. [28].

Figure 2 shows the initial kinetic energy spectrum of
several simulations prior to the generation of the SFT simu-
lations. The difficulty of achieving the desired slopes for the
infrared region of the kinetic energy spectra in DNS is well-
known [33], however, the present spectra are reasonably close
to the target values. For the cases k = 1, 2, 3, 4, 5, the low
wave-number slopes are equal to n ≈ 1.0, 1.9, 2.8, 3.7, 5.2,
respectively, considering the wave numbers between 3 and 5,
where the slopes were obtained using a linear regression esti-
mate. In any case, as can be observed, the infrared region of
the kinetic energy spectra approximately follow the prescribed
power laws.

C. Direct numerical simulations of shear-free turbulence

The five DNS of SFT corresponding to simulations k1 to
k5 are then started from these fields (for a time instant τSFT

after the enstrophy peak τSFT > τω), following the procedure
described in Refs. [35–37]. By using a convolution function
(hyperbolic tangent), the flow field is separated into two re-
gions, a central region where the velocity from the previous
DHIT simulation is kept constant (H/2 � x2 � H/2) and an-
other region (x2 < −H/2 ∧ x2 > H/2) where the velocity
field field is set to zero (H is a parameter defining the width of
the initial turbulent region). The resulting flow field will then
evolve for a few time steps and the initial isotropic turbulence
flow region will slowly spread into the irrotational (quiescent)
region, in the absence of mean shear. As in Ref. [28], it was
checked that the value of H chosen does not affect the large
scales of motion (as observed in the shape of the kinetic
energy spectrum in the infrared region) and that the size of
the nonturbulent region (2π − 2H) is sufficient to ensure that
it is not affected by the (periodic) boundary conditions.

As in Zeccheto and da Silva [38], Xavier et al. [28], and
many other works, the identification of the TNTI layer was
done using the volume method described in detail in Taveira
et al. [39], which allows one to identify the IB, which is
the outermost layer of the TNTI. The procedure analyzes the
variation of the vorticity magnitude ω with the volume of the
turbulent flow region and allows one to obtain the vorticity
magnitude threshold ωth that identifies the IB.

Figure 3 shows a zoom of the flow region near the TNTI
for the simulations k2 and k4, at approximately the same
instant (τ ≈ 30) for the two cases, where the TNTI can be
appreciated. In these simulations, the TNTI is very sharp
and the turbulent region (T) contains a large number of
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FIG. 2. Initial kinetic energy spectrum for the five DNS of DHIT used in the present paper. k2 and k4 correspond to the cases where the
parameter n in Eq. (33) was set to 2 and 4, respectively, and were recently addressed by Ref. [28].

large-scale eddies, unconstrained by the presence of the
boundary conditions.

D. Verification of the generalized asymptotic laws
for the potential velocity fluctuations in DNS of SFT

To compare the theoretical results derived in Sec. II A with
the results obtained from DNS Fig. 4 shows conditional pro-
files of normal velocity variance in the NT region 〈u2

2〉I (see,
e.g., Zecchetto and da Silva [38]), as a function of the mag-
nitude of the distance from the irrotational boundary 〈x2〉I ,for
all the SFT simulations carried out in this work (k1 to k5). The
results are compared with power laws defined by

〈u2
2〉I ∼ 〈x2〉−p

I , (34)

as predicted by Eqs. (27)–(32) for n = 1 to n = 6, respec-
tively, where the kinetic energy spectrum is described by a

power law E (k) ∼ kn in the infrared region. Notice that power
laws of the type described by Eq. (34) are predicted for all
these cases except for n = 3, where the decay law is less
simple, but even this case is barely distinguishable in practice
from the case n = 4 as discussed above (see Fig. 1).

According to the equations derived in Sec. II A, the cor-
respondence between the power laws of the kinetic energy
spectrum E (k) ∼ kn and the power laws of the velocity vari-
ance 〈u2

2〉I ∼ 〈x2〉−p
I in the nonturbulent region go as follows:

n = 1 → p = 2,

n = 2 → p = 3,

n = 3 → p ≈ 4,

n = 4, 5, 6 → p = 4.

It is clear that the curves from the DNS data closely follow the
predicted power laws for a sufficiently large distance from the

FIG. 3. Zoom of the enstrophy contours in the (x1, x2) plane near the TNTI for the (a) k2 and (b) k4 simulations at similar time instants (k4

for τ = 31.43 and k2 for τ = 33.78). Notice that the figures show only half of the turbulent region H/2).

065107-7



ZECCHETTO, XAVIER, TEIXEIRA, AND DA SILVA PHYSICAL REVIEW E 109, 065107 (2024)

(a) (b)

FIG. 4. (a) Conditional profiles of normal velocity variance 〈u2
2〉I in the NT region for all the SFT simulations (k1 to k5): (b) same as

(a) but normalized by the initial normal velocity variance at the IB position. The profiles exhibit regions with power laws of 〈u2
2〉I ∼ 〈x2〉−4

I ,
〈u2

2〉I ∼ 〈x2〉−3
I , and 〈u2

2〉I ∼ 〈x2〉−2
I .

IB position. The small change observed for the DNS curves
at the end of the lines merely indicate minor possible effects
from the presence of the periodic boundary conditions. Even
more compelling evidence of the power laws described in
the theoretical expressions outlined above is given in Fig. 5,
which shows the values of the power exponents p obtained
from the asymptotic approximations computed in practice as

−p = 〈x2〉I

〈u2
2〉I

d〈u2
2〉I

d〈x2〉I
. (35)

The value of the exponents −p are not only monotonous
with n, but follow closely the predicted theoretical results for

distances from the IB of y/H � 1, thus demonstrating the
accuracy of the predictions.

Finally, Fig. 6 shows the same profiles of normal velocity
variance displayed in Fig. 4, but using classical statistics, i.e.,
〈u2

2〉z, where the averages are obtained by averaging the veloc-
ity field in the spanwise (z) direction. Similarly to Figs. 4(a)
and 4(b), the profiles show regions with power laws predicted
by the theoretical relations, although with a slightly stronger
effect of the boundary conditions as observed by the end of
the curves. The fact that these power laws are also observed in
these classical statistics reinforces the relevance of the present
theoretical results.

FIG. 5. Variation of the velocity variance decay exponent m defined in Eq. (35) for all the SFT simulations (k1 to k5). The colors are the
same as in Fig. 4.

065107-8



GENERALIZED SCALING LAWS FOR THE IRROTATIONAL … PHYSICAL REVIEW E 109, 065107 (2024)

FIG. 6. Profiles of normal velocity variance 〈u2
2〉z, in the NT

region for all the SFT simulations (k1 to k5), where the averages are
obtained by averaging the velocity field in the spanwise (z) direc-
tion. The profiles exhibit regions with power laws of 〈u2

2〉z ∼ 〈x2〉−4
z ,

〈u2
2〉z ∼ 〈x2〉−3

z , and 〈u2
2〉z ∼ 〈x2〉−2

z .

IV. CONCLUSIONS

Regions of potential velocity fluctuations exist at the
nonturbulent (or irrotational) flow region bordering turbu-
lent jets, wakes, mixing layers, and boundary layers, caused
by the nonlocal influence of the large-scale eddy structures
in the neighboring turbulent region. For large distances x2

from the turbulent region, typically x2/L > 1, where L is
the longitudinal integral scale of motion inside the turbulent
core region, the potential velocity fluctuations decay with
a power law, whose exponent is imposed by the shape of
the kinetic energy spectrum in the infrared region. In par-
ticular, it has been shown using analytical models that for
power spectra of types E (k) ∼ k4 (Batchelor spectrum) and
E (k) ∼ k2 (Saffman spectrum), the variance of the poten-
tial velocity fluctuations vary as 〈u2

i 〉 ∼ x−4
2 and 〈u2

i 〉 ∼ x−3
2 ,

respectively [10,28]. These theoretical results have been re-
covered in experimental data [15–22] and also in recent
DNSs [9,14,28].

In the present paper, these theoretical results were extended
by using rapid-distortion theory to address the more general
case of spectra with the form E (k) ∼ kn, where n is an integer,
since several authors have reported the existence of spectra
in the form E (k) ∼ kn, where n is different from n = 4 or
n = 2 [24–27]. The theoretical results recover the classical
solutions for n = 4 and n = 2, and lead to unique results for
other cases. Particular cases include the laws 〈u2

i 〉 ∼ x−2
2 and

〈u2
i 〉 ∼ x−4

2 , corresponding to n = 1 and n � 5, respectively,
together with the case n = 3, for which 〈u2

i 〉 ∼ x−4
2 ln(x2).

Finally, five DNSs were carried out to assess the theoret-
ical results using simulations of shear free turbulence where
turbulent fronts spread into regions of irrotational flow in the
absence of mean shear. The five simulations were designed
to reproduce TNTIs where the kinetic energy spectrum in the
infrared region follows a power law of the form E (k) ∼ kn,
with the cases n = 1, 2, 3, 4, and n = 5.

For each one of the five DNSs, the velocity variance in the
NT region was computed through both classical and condi-
tional statistics (in relation to the distance from the IB), and
show that the theoretical results are recovered in the DNS of
shear-free turbulence.

We end by recalling that, as discussed in Xavier et al. [28]
and references therein, these theoretical results are robust
and insensitive to particular changes in the form of the ki-
netic energy spectrum for large wave numbers, as well as
to the magnitude of the Reynolds number. Again, as argued
in Xavier et al. [28], these results should also be valid for
TNTIs existing in other flow types, including the effects of
mean shear, such as jets or wakes, provided the kinetic energy
spectra in the turbulence region exhibits a power law of the
type E (k) ∼ kn, where n is an integer.
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