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Precipitation-induced filament pattern of injected fluid controlled by a structured cell
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Mixing of two fluids can lead to the formation of a precipitate. If one of the fluids is injected into a
confined space filled with the other, then a created precipitate disrupts the flow locally and forms complex
spatiotemporal patterns. The relevance of controlling these patterns has been highlighted in the engineering and
geological contexts. Here, we show that such injection patterns can be controlled consistently by injection rate
and obstacles. Our experimental results revealed filament patterns for high-injection and low-reaction rates, and
the injection rate can control the number of active filaments. Furthermore, appropriately spaced obstacles in the
cells can straighten the motion of the advancing tip of the filament. A mathematical model based on a moving
boundary adopting the effect of precipitation reproduced the phase diagram and the straight motion of filaments
in structured cells. Our study clarifies the impact of the nonlinear permeability response on the precipitate density
and that of the obstacles in the surrounding medium on the motion of the injected fluid with precipitation.
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I. INTRODUCTION

Injection of fluid is long known to cause far-from-
equilibrium pattern formation, such as viscous fingering,
owing to the viscosity contrast of the injected and the dis-
placed fluids [1,2]. Further complexity is introduced when
a chemical reaction is involved- a reaction-injection system.
Reaction-injection systems create patterns owing to the disso-
lution of matrix [3], the contrast of density [4], the change in
interfacial tension [5], and the precipitation [6,7].

Among these reaction-injection systems, the patterns
caused by the precipitation have further relevance in fluid
motion underground. Decreased fluid permeability due to
precipitation often creates filament patterns that counter-
intuitively enhance fluid migration. The typical examples
include CO2 sequestration techniques [8], enhanced oil re-
covery [9,10], and chemical grouting [11]. We can also
find geological examples related to the patterns caused by
precipitation. These examples include an injection-induced
seismology [12–15] and the coupling of fluid migration and
silica precipitation observed in the basic process of the regular
earthquakes [16,17]. Similarly, the fluid migration process
at the plate boundary is considered the cause of slow [18]
and regular earthquakes [19]. All examples of the injection
process shown here include the coupling between the flow and
the precipitate, which reduces the system’s permeability.
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Despite their relevance, observing fluid dynamics under-
ground in situ is challenging. In this context, an experimental
model system, a reaction-injection system with precipitation,
is necessary. A confined chemical garden [20–23], in which a
metal salt solution is injected into a cell with a narrow gap, a
Hele-Shaw cell, filled with an aqueous solution of silicate, has
attracted wide attention for its impact on the created pattern
and similarity in the physical conditions. Precipitation occurs
almost instantaneously when two solutions come into contact.
The precipitates hinder the fluid flow, forming various patterns
in the quasi-two-dimensional (2D) confined cell. Historically,
research on the confined chemical garden system began with
investigating the ordinary chemical garden [24–26]. For this
reason, confined chemical gardens with different chemical
combination has also been extensively studied [27,28].

Interestingly, filament patterns have often been reported
in confined chemical gardens [29,30]. Here, we note that the
filament patterns are not unique to specific chemical combina-
tions. A similar filament pattern of the injection front coupled
with precipitate [31–33] has also been observed in the combi-
nation of a micellar solution, where a gel-like precipitate was
formed [34,35]. Concerning the injection process, a filament
formation leads to enhanced transportation of injected fluids
compared with the extension of an isotropic circular front.

For these reasons, in this study, we focus on the filament
pattern in the micellar system [31–33]. In the micellar system,
the pattern appears with an order of magnitude lower injection
rate than those in the confined chemical garden systems, prob-
ably due to the slower reaction rate. With a lower injection
rate, we can do experiments with a low Reynolds number
to avoid the possible complexity of the hydrodynamic effect.
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FIG. 1. (a) Setup of top plates. Both structured cell and plain
cell are 70 mm in radius. A structured cell has pillars whose height
and diameter are 1 mm. (b) Side view of the experimental setup.
Inner fluid was injected from the inlet fixed at the center of the top
plate. The fluid can escape from the gap between the plates without
constraints.

In addition, we observed a larger number of filaments that
allowed us to confirm our mathematical models with better
statistics.

When we compare the model experiment with realistic
geological systems, care should be taken that a realistic ge-
ometry is not homogeneous because of the granular nature of
soils. Therefore, the effect of spatial obstacles on the filament
patterns should be investigated. Indeed, several trials have
been conducted with nonplanar cells to reveal the impact of
spatial inhomogeneity on the patterns [36]. However, owing
to the explored parameter space, little effect was paid to a fil-
ament pattern that substantially impacts the transportation of
the injected fluid. In this study, we conducted an injection ex-
periment represented by Figs. 1(a) and 1(b), using the micellar
solution system and introduced spatial inhomogeneity to a cell
by fabricating regularly arrayed pillars on the cell’s surface.

II. EXPERIMENTAL SETUP

Water was purified using a Millipore Milli-Q system. Cetyl
trimethyl ammonium bromide (CTAB) was purchased from
Tokyo Chemical Industry Co., Ltd. Sodium salicylate (NaSal)
and brilliant blue were purchased from Wako Pure Chemi-
cal Industries, Ltd. As the outer fluid, we used an aqueous
solution of CTAB, whose concentration was maintained at
50 mM throughout the experiments. The injected inner fluid
was an aqueous solution of NaSal stained with brilliant blue
for visualization. We varied the concentration of NaSal as a
parameter and denoted it as c. The amount of brilliant blue
used in the experiment was less than 0.1 wt%.

The experimental system consisted of a horizontal Hele-
Shaw cell with a gap width of 1 mm, which is shown in
Figs. 1(a) and 1(b). The top plate of the cell was made of
nylon and printed using a 3D printer service (DMM.make).
The thickness and radius of the top plate were 2 and 70 mm,
respectively. A plain cell was fabricated using a flat-top plate
with spacers whose height was 1 mm. A structured cell was
fabricated using a top plate with circular pillars with a height
and diameter of 1 mm and spacers. These pillars were ar-
ranged in a square lattice, where the lattice constant, dp, was
varied as a parameter. The top plate was supported by two
transparent acrylic plates with thicknesses of 5 mm. These
plates are sufficiently thick to avoid cell deformation and

maintain a constant injection rate of the inner fluid. A hole
was bored at the center of the top plate, and inner fluid was
injected from the hole. An outer fluid is initially introduced to
fill the cell. The fluid escapes from the cell through the side
part of the cell when the inner fluid is injected.

The inner fluid was injected from the center of the top plate
at various injection rates (J = 50 to 300 ml/h). The central
hole and a 10 ml syringe (Top Co. Ltd) were connected to a
nylon tube (Nihon Pisco Co., Ltd.; internal diameter, 2.5 mm)
whose length was 500 mm. Here, special care was taken to
maintain a constant injection rate; that is, the selected nylon
tube was sufficiently rigid. The syringe was installed on a
syringe pump (CXF1010; ISIS Co. Ltd.). The system was
illuminated from the top, and the pattern of injected fluid
was measured from the bottom of the cell using a digital
video camera at 10 Hz and analyzed using Image J software
(NIH) [38].

III. RESULTS AND DISCUSSION

When the inner and outer fluids are mixed, a gel made of
wormlike micelles is formed. This gel behaves as an ideal
Maxwellian fluid with a single relaxation time [34,35]. Note
that the viscosity of the inner and outer fluid is close to that of
water in the absence of worm-like micelles (inner fluid c = 50
mM, 1.03 m Pa s, outer fluid: 1.07 mPa s). Therefore, viscous
fingering did not occur in the absence of the reaction.

A. Plain cells

Figure 2(a) shows the situation after the injected fluid Q
reached 4 ml. Circular patterns were observed at a high c
and low J . The front of the inner fluid advanced in a radially
symmetric manner while producing the layer of gel precipi-
tate, as shown in Fig. 2(b). However, we observed a filament
pattern, where the front of the inner fluid becomes a two-
dimensional tube at low c and high J . The filaments exhibited
meandering during the extension, and some of these filaments
halted their extension. It should be noted that this meander-
ing motion was typical of the filament pattern observed in
previous studies [20,23,31]. Furthermore, new filaments were
generated during the injection process by fracturing the layer
of precipitate in a branching manner, as shown in Fig. 2(c).

As reported in the previous studies [23,31], the number of
extending and active filaments reached a steady value during
the injection. Such a saturation in the number of active fila-
ments was revealed by image analysis. The motion of the front
was obtained from the difference of images (D-images) with
2 s time intervals. Only the active filaments were visualized as
the moving domain. The domain in D-images larger than 0.7
mm2 is recognized as the front of the active filaments. The
time course of the number of active filaments N is plotted
for J = 150 (black circles) and 300 ml/h (yellow squares)
in Fig. 2(d). Here, we plotted N against the amount of in-
jected fluid, Q = Jt . Initially, the number of active filaments
increased with Q; however, it reached a maximum steady
value. We obtained the saturated number Ns from the data
averaged over Q = 1.5–3.5 ml, where the initial transient
behavior can be ignored. The relationship between J and Ns

is illustrated in Fig. 2(e). A monotonic increase in Ns with
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FIG. 2. (a) Phase diagram of injection pattern for different c and J in a plain cell. Blue-shaded/no-shaded regions: circular/filament
patterns. The time development of (b) circular (c = 200 mM, J = 200 ml/h) (c) filament (c = 50 mM, J = 200 ml/h) pattern. Scale bar:
50 mm. (d) The time course of the number of active filaments N (c = 50 mM). Black circles and yellow squares represent J = 150 and 300
ml/h. (e) The saturated number of active filaments Ns for c = 50 mM. The error bar corresponds to the standard deviation. The dashed line
represents the linear fitting. See Supplemental Material for movies [37].

J was observed. The dashed line corresponds to the fitting
with Ns = αJ , whereas α = 6.35 × 10−2 ±1.3 × 10−3 h/ml.
We also confirmed that the speed of the actively extending
filament was almost constant with J . Such a linear depen-
dence of Ns on J and a constant front speed implies that the
characteristic width of the filament is fixed and determined
independently from J . These results are consistent and much
improved in resolution compared with the previous study [23]
because the injection rate in the present study was two orders
of magnitude lower for the slower reaction rate.

B. Structured cells

Experiments with c and J in a plain cell confirmed that
the system exhibited filament formation over a wide range of
parameter space. To confirm the effect of the structured cell,
we injected fluid into a structured cell with regularly arrayed
pillars. To observe the typical behavior, the results with the
lattice constant of the pillar dp = 1 mm are shown in Fig. 3(a).
At a high c, instead of a circular front, the front exhibited a
rhombus shape. The fourfold symmetry was due to a square
lattice of pillars, while the printing direction of the top plate
resulted in the observed anisotropy between the horizontal
and vertical directions. For a smaller c, we observed filament
formation as observed in a plain cell. The filament width was
observed to be slightly narrower than that of the plain cell. In
addition, the direction of the filament extension was mainly
limited to the vertical and horizontal directions, with a slight
preference for the vertical direction owing to the printing
direction, for the same reason as for the rhombus case. Fur-
thermore, the filaments exhibited minimal meandering. This
is a striking effect of the lattice structure, which enhances the
transportation of the inner fluid much farther in space.

The experiments were conducted to evaluate the effect of
the lattice structure on the filament pattern while the lattice
constant dp was varied as a parameter. The other parameters
were fixed at c = 50 mM and J = 150 ml/h, where ap-
proximately nine actively extending filaments are expected to
coexist simultaneously. Snapshots taken after injecting 4 ml
of the inner fluid are shown in Fig. 3(b). For dp � 4 mm,
filament growth was affected by the lattice, and filaments
extended in a straight manner [Fig. 3(c)] with a filament
primarily developed in the horizontal and vertical directions.
The filaments exhibited meandering instability at larger values
of dp [Fig. 3(d)] and appeared to be unaffected as in the case
without pillars [denoted as dp = ∞ in Fig. 3(b)].

To quantify the stabilization of the extending direction
owing to the presence of the pillars, we traced a filament front
from the time difference between the images with 2 s time
intervals. Images were acquired with �t = 0.4 s. The director
of the filament extension n was calculated as n = v/|v|. The
autocorrelation function of director R(τ ), defined as follows:

R(τ = ��t ) = 1∑
i(Ni − �)

∑
i

Ni−�∑
m=0

ni((m+ �)�t ) · ni(m�t ),

(1)

were then calculated, where the subscript i denotes ith active
filaments whose trajectory was traced for Ni�t . The result of
R(τ ) is plotted in Fig. 3(e). The persistency in the direction of
filament growth was enhanced for dp = 1–3 mm. In contrast,
R(τ ) exhibits minimal change in the case of dp = 4–10 mm.
This effect of the lattice constant dp can be observed clearly
when R(τ ) is plotted against dp, as shown in Fig. 3(f). For
τ = 2 s, the difference is not so evident between the cases with
and without the lattice; however, the difference is observed
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FIG. 3. (a) Phase diagram of injection pattern for different c and J in structured cell at dp = 1 mm. Blue-shaded and no-shaded regions
correspond to a rhombus and filament pattern. The images were taken after 4 ml of inner fluid was injected. (b) Snapshots of the injection
pattern after 4 ml of inner solution were injected with different lattice constant dp, where c = 50 mM, J = 150 ml/h. Time development is also
shown for dp = (c) 2 mm and (d) 10 mm. Scale bar: 50 mm. (e) Auto-correlation function R(τ ) for different dp. (f) R(τ ) for τ = 2 s (black
circles), 5 s (blue squares), and 15 s (yellow triangles) plotted with dp. R(τ ) without lattice is indicated using black dashed (τ = 2 s), blue
dotted (τ = 5 s) and yellow dashdotted lines (τ = 15 s), respectively. Error bars correspond to 99% compatible interval. See Supplemental
Material for movies [37].

for τ = 15 s. Furthermore, the peak in the R(τ ) was observed
at approximately dp = 2 mm, indicating the existence of an
appropriate pillar structure for stabilizing the direction of fila-
ment motion.

IV. MATHEMATICAL MODEL

In this section, a model to reproduce the behavior of
precipitation-induced filament formation was built, focusing
on the relationship with structured cells. Previous stud-
ies have also included the precipitate formation at the
boundary [20,23,29]. Despite the simplicity, these models
successfully reproduced the morphology of the precipitation-
induced filament formation in a reaction-injection system.
Some of these models are even applied to broader systems,
such as corrosion of the surface [39] and the possible structure
in the methane hydrate zones [40–42].

Among these previous models, we extended the moving
boundary model [23] that is schematically shown in Fig. 4(a)
to focus on the effect of precipitate on the permeability of
injected fluids. Here, a hat is used to show the variables with
physical dimensions. Each segment of the moving boundary is
labeled with coordinate ŝ. The boundary moves in its normal
direction with speed v̂n(ŝ), while maintaining the local density
of the precipitates, σ̂ (ŝ). v̂n and σ̂ develop with

v̂n = ξ̂ f (σ̂ )(�p̂ − γ̂ κ̂ ) (2)

and

∂σ̂

∂ t̂
= â − κ̂ σ̂ v̂n. (3)

In Eq. (2), �p̂ represents the pressure difference between the
inner and outer fluid. γ̂ κ̂ is the Laplace pressure preventing
the deformation of the boundary, where γ̂ is the effective
interfacial energy and κ̂ is the curvature of the boundary
defined at ŝ. In Eq. (3), σ̂ increases linearly with time because

FIG. 4. (a) Schematic representation of the boundary dynamics
model. The model is based on the movement of a 2D boundary.
Outwards normal velocity is represented by v̂n, and the local density
of precipitates is represented by σ̂ . Ŝ indicates a curve of the entire
boundary. ŝ indicates the coordinate along Ŝ. (b) Decreased σ̂ owing
to curvature effect. (c) The shape of the mobility function f (σ̂ ).
(d) The simplified situation in which the advancing tip moves with
velocity v0

n and width 2/κ0.
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of precipitation with coefficient â. The second term represents
the change σ̂ owing to the deformation of the boundary. The
unit length in the moving boundary increases to be 1 + κ̂ v̂n

with each unit of time; thus, the density of precipitates at the
boundary effectively decreases as shown in Fig. 4(b) [43].

In Eq. (2), ξ̂ f (σ̂ ) represents the mobility of the boundary
under the influence of the precipitates. Here, we used the
normalized part of mobility f (σ̂ ) with a piecewise linear
function:

f (σ̂ ) =
⎧⎨
⎩

1 (0 � σ̂ � σ̂t ),
1 − (1 − ε) σ̂−σ̂t

σ̂s−σ̂t
(σ̂t � σ̂ � σ̂s),

ε (σ̂s < σ̂ ),
(4)

where the function is plotted on the graph shown in Fig. 4(c).
This mobility function is intended to have a nonlinear re-
sponse on the density of the precipitates, where the mobility is
unchanged until the density reaches σ̂t , decreases linearly until
it reaches σ̂s, and the boundary almost stops, however, with
finite mobility ε. When σ̂t = ε = 0, the model is identical to
that used in a previous study [23]. The inner fluid pressure
increases owing to the constant injection and decreases when
the moving front advances faster than the injection rate Ĵ .
Adopting the effect of finite rigidity of the system �̂, � p̂
follows

∂� p̂

∂ t̂
= �̂

(
Ĵ

ĥ
−

∫
Ŝ
v̂ndŝ

)
, (5)

where ĥ corresponds to the thickness of the cell, and the
integral is taken from the entire boundary, Ŝ.

For compact notation, we introduce the units of length,
time, and density of aggregate as follows:

�̂c ≡
(

γ̂

�̂

)1/3

, t̂c ≡ �̂2
c

ξ̂ γ̂
=

(
1

ξ̂ 3�̂2γ̂

)1/3

, σ̂s. (6)

Then, we use dimensionless variables: t = t̂/t̂c, s = ŝ/�̂c,

vn = v̂nt̂c/�̂c, σ = σ̂ /σ̂s, κ = κ̂ �̂c,�p = �p̂�̂c/γ̂ and dimen-
sionless parameters: σt = σ̂t/σ̂s, a = ât̂c/σ̂s, J = Ĵt̂c/(ĥl̂2

c ).
The dimensionless notations of Eqs. (2)–(5) are

vn = f (σ )(�p − κ ), (7)

∂σ

∂t
= a − κσvn, (8)

f (σ ) =
⎧⎨
⎩

1 (0 � σ � σt ),
1 − (1 − ε) (σ−σt )

1−σt
(σt � σ � 1),

ε (1 < σ ),
(9)

and
∂�p

∂t
= J −

∫
S
vnds. (10)

The existence of minimal pressure to advance a boundary with
a temporally stable density can be predicted using Eqs. (7)–
(10) with ε = 0 (see Appendix A). With this condition, a
boundary has the steady curvature κ0, and normal speed v0

n
determined only by σt and a. If the front of the active filament
satisfies this condition [Fig. 4(d)], then the extending speed
is v0

n , the width is 2κ0, and the flow rate in the filament
is j0 = 2v0

n/κ
0. Furthermore, if all the filaments satisfy this

condition, then the number of active filaments cannot exceed

FIG. 5. Method for conducting numerical simulations with dis-
crete representative points. (a) A boundary is discretized by
representative points denoted by i where i = 0 to M(t ) with tangen-
tial and normal vector given by t i and ni. (b) Protocol for adding
a new representative point when �si > δsi. A circle is fitted to the
position of the four points j = i − 2, . . . i + 1, and a new point is
added at the middle point on the circle in angle between j = i − 1, i.

N0 = J/ j0. This is a simplified view of the saturation in the
number of active filaments. The filament tip could not main-
tain the above conditions in our numerical calculations, and
complex boundary dynamics were observed.

V. NUMERICAL SIMULATION

Numerical calculation is conducted by modeling mov-
ing boundary with representative points denoted by i in
two-dimensional space whose total number is M(t ) [i=
0 . . . , M(t )] as shown in Fig. 5(a). Each point has two spatial
coordinates and σ , as (xi, yi, σi ) = (xi, σi ). Contour length
�si is defined by

�si = {(xi − xi−1)2 + (yi − yi−1)2}1/2 = |xi−1 − xi|. (11)

The coordinate si is given by si = ∑i
j=0 �s j . As shown in

Fig. 5(a), the outward normal vector ni for the point i is
defined by ni · t i = 0, |ni| = 1, and

t i = (xi+1 − xi−1, yi+1 − yi−1). (12)

The curvature κi was calculated by

κi =
{(

d2x

ds2

)
i

(
dy

ds

)
i

−
(

d2y

ds2

)
i

(
ds

ds

)
i

}
· 1∣∣( dx

ds

)
i

∣∣3 , (13)

where (
dx
ds

)
i

= xi+1 − xi−1

si+1 − si−1
= xi+1 − xi−1

�si+1 + �si
(14)

(
d2x
ds2

)
i

=
(

xi+1 − xi

si+1 − si
− xi − xi−1

si − si−1

)
2

si+1 − si−1
. (15)

In each time step, xi, σi and �p is updated to be xN
i , σ N

i and
�pN by following

xN
i = xi + (vn)ini�t, (16)

σ N
i = σi + (a − κiσi(vn)i )�t, (17)

(vn)i = f (σi )(�p − κi ), (18)
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and

�pN = �p +
(

J −
∑

i

�si(vn)i

)
�t . (19)

The representative points are updated by the following rule.
A new representative point is added when �si > δs as in
Fig. 5(b). A circle is fitted to four representing points xi−2,
xi−1, xi, xi+1 (see see Appendix B), and the angle between
xi−1, xi at the center of the fitted circle is evenly divided
into 1/2 by the newly added point, and the point is renum-
bered as xN

i−2, xN
i−1, xN

i , xN
i+1, xN

i+2, while xN
i−2 = xi−2, xN

i−1 =
xi−1, xN

i+1 = xi, xN
i+2 = xi+1. xN

i is the position of the newly
added point. This refinement of the representative points was
conducted at the refresh rate of �tr . The total number of
representative points M(t ) increases with time.

When any representative points k with |i − k| � 2 comes
close to the point i, that is |xi − xk| < δs, both point k and i
stop their motions. This way, we avoid the boundary’s overlap.
Furthermore, we prepared pillars with square lattice configu-
ration, while the lattice constant is set as dp, and the radius of
the pillar is denoted as rp. When representative points enter
the pillar region, the representative points stop motion.

The temporal integration was conducted with simple Eu-
ler methods. The initial condition was a circle with radius
1, and the representative point was set evenly with distance
δs/2. The size of the circle must be finite to overcome the
Laplace pressure, which shrinks the boundary. A uniform
noise was given in the initial value σi in 0.5 to 1. The initial
value of �p = 0. rp is set small and fixed as 0.25. We used
�t = 0.0001, δs = 0.1, and the refresh rate of the representa-
tive points to be �tr = δs/100 = 0.001. We used ε = 0.01 as
a small parameter. We used σt = 0.9 unless stated explicitly.
The remaining parameters are a, J , and dp.

The results of the numerical calculations are shown in
Fig. 6. We reproduced the phase diagram by changing the
reaction rate a and injection rate J , where filament patterns
appeared at low a, corresponding to low c in the experiment,
and high J as shown in Fig. 6(a). At J = 15 and a = 1, we
observed a filament pattern initially, then turned into a homo-
geneous extension of a boundary. Such a transition was also
observed in the experiment. Figure 6(b) shows the number
of active filaments saturated with time. Here, we plotted N
against the amount of injected fluid, Q = Jt . N increased ini-
tially with time and almost reached a maximum steady value.
However, N exhibited a slight decay later. This is attributed
to the finite mobility ε for σ > 1. We observed that such
a decrease in the active filament number was eliminated in
the case with ε = 0. In such a case, the boundary motion
can be terminated completely if the injection rate is not large
enough as all boundaries reach σ > 1. As we never observed
the complete termination of the boundary motion during the
injection process, we used nonzero ε in our mathematical
model. Figure 6(c) shows the saturated number of active
filaments, which was proportional to the injection rate. The
dashed line corresponds to the fitting with Ns = αJ , whereas
α = 6.35 × 10−2 ±1.3 × 10−3 h/ml.

Furthermore, the model showed extensive meandering in
the absence of pillars as shown in Fig. 7(a), while the
model reproduced the suppression of meandering motion by

FIG. 6. Result of numerical simulations. (a) Phase diagram of in-
jection patterns for different a and J without pillars. Lines correspond
to the boundary position at a given amount of injected fluid Q = Jt
denoted by colors given at the top bars. The final images were taken
at Q = 810. (b) Time course of the number of active filaments N
for a = 1 without the presence of the pillars. The inset denotes the
symbol for each J . The error bar corresponds to the standard devia-
tion. (c) The saturated number of active filaments Ns for a = 1. The
data averaged over Q = 1000 to 1500. The dashed line represents the
linear fitting. See Supplemental Material for movies [37].

a regular array of pillars as shown in Fig. 7(b). These exten-
sive meandering and suppression of filament were confirmed
quantitatively by the autocorrelation function of the filament
motion direction as shown in Fig. 7(c). The suppression of
meandering was most enhanced at dp = 2, which indicates the
appropriate pillar structure as well as the experiment as shown
in Fig. 7(d).

In our numerical simulation, we used σt = 0.9. In the case
with σt is not large enough, the meandering of the front mo-
tion was significant so that the front does not show straight
motion even in the presence of pillars as shown in Fig. 8(a).
To reproduce the observed boundary dynamics, we need to
have the mobility function of precipitate density to be non-
linear steplike as shown in Fig. 4(c) with finite mobility for
high σ .

VI. DISCUSSION

Here, we discuss the dynamics of filament motion based on
the mathematical model. One key feature observed is tip split-
ting. Extending fronts increased their number at the beginning
of the numerical simulation by tip-splitting. However, once
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FIG. 7. Result of numerical simulations (a) without lattice struc-
ture and (b) with lattice structure dp = 2. (c) Autocorrelation
function R(τ ) for different dp. The inset denotes the symbol color
for each dp. (d) R(τ ) is plotted for each dp. R(τ ) without lattice
is indicated by the lines for each τ , and their colors correspond to
the symbol colors of the plot of R(τ ). Error bars correspond to 99%
compatible intervals. See Supplemental Material for movies [37].

the number of moving fronts increases, the value of the inte-
gral in Eq. (10) becomes larger than J , �p starts to decrease.
Remember that the front speed decreases as in Eq. (7) for
smaller �p, and the decreased front speed tends to increase
the local density of precipitates σ owing to the term −κσvn,
further reducing mobility. Hence, there is an autocatalytic
process to lower the boundary speed triggered by the decrease
in �p. Through this process, the split fronts stopped moving.
This suspension of tip splitting occurs at the late stage of
numerical simulations, where the number of active filaments
is saturated. Instead, suspended tip-splitting is observed as the
meandering behavior of the filaments. Thus, the tip-splitting
behavior of the filament is crucial to the filament motion.

The details of tip splitting can be explained by the fol-
lowing simple argument as shown in Fig. 8(b). We use the
observed fact from the numerical simulation that a small
σt leads to the failure of the straight motion with pillars
[Fig. 8(a)] and take σt ∼ 1 in the following argument. Under
this condition, the mobility of the boundary is independent of
σ and suddenly approaches zero when σ = 1. Subsequently,
the extending fronts have a flat curvature due to the larger
normal velocity vn and a smaller κ . The flat boundary quickly
accumulates precipitates, that is, σ increases rapidly owing
to the absence of −κσvn in Eq. (7). Once the leading flat
boundary of the extending filament stops, the side parts with
a higher curvature start to extend because of the increased

FIG. 8. (a) Effect of σt , where σt was set to 0, while main-
taining a = 1, J = 30. Colored lines correspond to the boundary
and indicate the dynamics based on the color bar. The final images
were obtained at Q = 540. (b) Typical shape of filament tip with
σt = 0.9, front flattened. This shape induces tip splitting as well as
the meandering motion of the filament.

pressure caused by the decreased area increase over time.
Consequently, the two boundaries begin to extend from the
side as shown in Fig. 8(b), that is, the tip-splitting behavior.

Tip splitting of the active filament is suppressed in the case
of high pillar density by imposing curvature on the active
front. Here, we illustrate the effect of the pillar to suppress
tip splitting by a sufficiently small dp. The dynamics of σ

[Eq. (7)] can be discretized in time as, δσ = δt (a − κσvn),
where the discretization was performed for a front sweep
of one unit cell of the pillars. We can take the curvature
of the front κ ∼ 2/dp imposed by the pillars. Other val-
ues are almost constant as σ ∼ σ 0 ∼ 1 and vn ∼ v0

n ∼ √
a

because of the small δt , where σ 0 and v0
n represents the

values of steadily extending filament with minimal pressure
(see Appendix A). Subsequently, we have the condition for
the steadily moving front affected by the presence of pillars
δσ = 0 as, a − 2

√
a/dp = 0. The moving front did not stop

under dp = 2/
√

a, and meandering did not occur.
Our numerical simulation indicates the relevance of the

nonlinear steplike response of the mobility of the boundary
on the density of the precipitate density. We observed that
the mobility function can be altered to be a smooth steplike
function, as well. Such a steplike nonlinear response of the
mobility can be justified if we consider the change in the
mobility owing to the appearance of solid-solid friction once
the boundary is fully covered by the precipitates. Unless it
is covered completely by the precipitates, the boundary is
insensitive to the density and mobile as a fresh one. Such a
steep change in the mobility is necessary to have σt large and
to have a finite time to have straight motion of the boundary.

Finally, we discuss the transition from the filament pattern
to the circular pattern, as shown in Fig. 6(a). This is because
of the small but constant and finite boundary mobility for
σ > 1. In this case, the mobility did not depend on σ , and
the boundary extends while keeping the curvature as small as
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possible owing to the effect of the Laplace pressure. In this
way, the front shows a circular pattern. Physically, the model
suggests that the boundaries’ mobility becomes insensitive to
the precipitate density when the density is high enough.

VII. CONCLUSION

In this study, we observed the reaction-injection pattern
with precipitation using plain and structured cells. We used
the combination of CTAB and NaSal aqueous solutions. We
found the transition from the circular pattern to the filament
pattern with a plain cell [Fig. 2(a)]. In the filament pattern, the
active filaments exhibited meandering during the extension, a
halt of their motion and split of the front. We confirmed that
the number of active filaments N saturated to be Ns [Fig. 2(f)],
which depended linearly on the injection rate of inner fluid J
[Fig. 2(e)]. These observations are consistent with previous
reports [23,31].

We found the transition from the rhombus pattern to the
filament pattern [Fig. 3(a)] with a structured cell [Fig. 1(a)]. In
the parameter region corresponding to the circular pattern, the
rhombus pattern with fourfold symmetry was observed. In the
case of the filament pattern, each filament showed a straight
extension, which offers a clear contrast with the meandering
motion in a plain cell. By changing the lattice constant of
the pillar dp, we confirmed the suppression of the meandering
motion was the most distinctive when dp = 2 mm [Fig. 3(f)].

We built a mathematical model based on the dynamics of
boundaries. The model incorporated the effect of the Laplace
pressure that forces the boundary to take a flat shape. In addi-
tion, the mobility of the boundary that nonlinearly depends
on the local density of precipitates σ was considered. Our
model successfully reproduced the transition from the circular
pattern to the filament pattern by the injection rate J and
reaction rate a [Fig. 6(a)] and linear dependence of Ns on J
[Fig. 6(e)]. Further, we reproduced the effect of pillars on the
filament pattern [Figs. 7(a) and 7(b)].

Significantly, the suppression of the meandering behavior
of the filaments is reproduced by the effect of pillars with
appropriate lattice constant dp [Fig. 7(d)]. We explained the
meandering mechanism resulting from tip splitting [Fig. 8(b)]
and estimated the appropriate lattice constant, dp, to suppress
meandering. This estimation is consistent with the value deter-
mined in the mathematical simulation. We also explained the
circular extension of the boundary owing to the homogeneous
small mobility due to high a. We further discussed that the
meandering motion of the filament is caused by the nonlin-
ear dependence of the mobility of the boundary on the local
density of the precipitate.

Our study revealed the relevance of the precipitate forma-
tion process in the injection of fluid into a confined geometry.
Especially the transition from the circular injection front to the
filament pattern by the injection rate may allow the injected
fluid to be transported further than expected. The suppression
of the meandering motion of the filament may enhance the
transportation of the injected fluid. The transportation of fluid
has a large impact on geological events and civil engineer-
ing procedures, such as injection-induced earthquakes and
chemical grouting. Our experimental and theoretical findings
will shed light on the relevance of the coupling between the

flow and the precipitation with the nonlinear mobility of the
boundaries in these processes.
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APPENDIX A: MINIMAL PRESSURE
FOR MOVING BOUNDARY

Here, we discuss the dynamics of interfacial motion of our
mathematical model, which is a modification of our previous
one shown in Ref. [23]. Here, we assume ε = 0 for simplicity.
At first, let us assume �p and κ are constant. From

dσ

dt
= a − κσvn, (A1)

vn = f (σ )(�p − κ ), (A2)

with

f (σ ) =
⎧⎨
⎩

1 (0 � σ � σt ),
1 − (σ − σt )/(1 − σt ) (σt � σ � 1),

0 (1 < σ ),
(A3)

we obtain

dσ

dt
= a − κσ f (σ )(�p − κ ) = h(a, σ ). (A4)

We sketch the graph of f (σ ), σ f (σ ), and h(a, σ ) in
Fig. 9. We find the stable fixed point appear only when
h(a, 1/2) < 0 for σt < 1/2 and h(a, σt ) < 0 for σt > 1/2.
Otherwise, σ increases with time; eventually, the moving
boundary stops due to zero mobility in the case of σ � 1. To
have a steadily moving boundary, thus,

σ 0 =
{

1/2 (σt < 1/2),
σt (σt � 1/2), (A5)

and from h(a, σ 0) � 0,

κ (�p − κ ) � �, (A6)

where

� =
{

4a(1 − σt ) (σt < 1/2),
a/σt (σt � 1/2). (A7)

To extract the minimum pressure to have a moving bound-
ary, we should note that the left-hand side of Eq. (A6),
κ (�p − κ ), has a maximum when κ is varied, and the maxi-
mum is (�p)2/4 at κ = �p/2. One can see that (�p)2 � 4�
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FIG. 9. Shape of normalized mobility f (σ ), σ f (σ ) and h(a, σ )
for σt < 1/2 and σt > 1/2. Here we plotted by assuming κ (�p −
κ ) > 0.

is the condition to specify the minimum pressure to have a
steadily moving boundary, and the minimum pressure �p0 is
given by

�p0 =
{

4
√

a(1 − σt ) (σt < 1/2),
2
√

a/σt (σt � 1/2).
(A8)

Here, the possible curvature to have a steadily moving bound-
ary is given by κ0 = �p0/2, and

κ0 =
{

2
√

a(1 − σt ) (σt < 1/2),√
a/σt (σt � 1/2).

(A9)

Further, such condition imposes the speed of boundary v0
n is

given by

v0
n =

{√
a/(1 − σt ) (σt < 1/2),√
a/σt (σt � 1/2).

(A10)

Care should be taken that in the condition with the minimum
pressure �p0, the curvature κ0 and the velocity v0

n is deter-
mined only by σt .

These analyses are identical to the one done in Ref. [23].
As shown in Fig. 4(d), if we assume the tip part of an extend-
ing filament satisfies the above-mentioned steady state with
the constant curvature κ0, then the width2/κ0 and the speed
v0

n , the flow rate of the single filament is j0 = 2v0
n/κ

0, where

j0
n =

{
1/(1 − σt ) (σt < 1/2),
2 (σt � 1/2).

(A11)

The number of active filaments, thus, saturates at N0 = J/ j0.

APPENDIX B: CIRCLE FIT

Here we show a method to fit N points (xi, yi ) with i ∈
[0, N − 1] to a circle whose center point and radius are r =
(x, y) and R, respectively [Fig. 10(a)]. As a merit function, we
use f = ∑

i(r
2
i − R2)2, where ri = {(xi − x)2 + (yi − y)2}1/2.

FIG. 10. (a) Schematic illustration of circle fit. (b) Schematic il-
lustration of interpolation of a new point while keeping the curvature
fixed.

Taking derivative with respect to x, y, and R, we have
∂ f

∂x
= 4

∑
i

(
r2

i − R2
)
(x − xi ), (B1)

∂ f

∂y
= 4

∑
i

(
r2

i − R2
)
(y − yi ), (B2)

and

∂ f

∂R
= −4R

∑
i

(
r2

i − R2
)
. (B3)

[Note that ∂ri
∂x = x−xi

ri
and hence ∂r2

i
∂x = 2(x − xi ).] For the con-

dition of minima, ∂ f
∂x = ∂ f

∂y = ∂ f
∂R = 0, we have∑

i

(
r2

i − R2)(x − xi ) = 0, (B4)

∑
i

(
r2

i − R2
)
(y − yi ) = 0, (B5)

and ∑
i

(
r2

i − R2
) = 0. (B6)

In the following, we use notation 〈· · · 〉 as average of · · ·
with respect to i, that is 〈· · · 〉 = (

∑
i · · · )/

∑
i. From the

condition Eq. (B6), we have R2 = 〈r2
i 〉. Furthermore, we can

obtain

R2 = 〈
r2

i

〉 = 1

N

∑
i

r2
i = 〈

x2
i

〉 + 〈
y2

i

〉
d − 2x〈xi〉 − 2y〈yi〉 + x2 + y2. (B7)

Then, we have
∑

i xir2
i = R2 ∑

i xi, from Eq. (B4) with the
condition Eq. (B6), leading to〈

x3
i

〉 + 〈
xiy

2
i

〉 − 2x
〈
x2

i

〉 − 2y〈xiyi〉
= 〈xi〉

(〈
x2

i

〉 + 〈
y2

i

〉 − 2x〈xi〉 − 2y〈yi〉
)
, (B8)

which is (〈
x2

i

〉 − 〈xi〉2
)
x + (〈xiyi〉 − 〈xi〉〈yi〉)y

= 1
2

(〈
x3

i

〉 + 〈
xiy

2
i

〉 − 〈xi〉
〈
x2

i

〉 − 〈xi〉
〈
y2

i

〉)
. (B9)

From symmetry, Eqs. (B5) and (B6) lead to

(〈xiyi〉 − 〈xi〉〈yi〉)x + (〈
y2

i

〉 − 〈yi〉2
)
y

= 1
2

(〈
y3

i

〉 + 〈
x2

i yi
〉 − 〈yi〉

〈
y2

i

〉 − 〈
x2

i

〉〈yi〉
)
. (B10)
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Finally, we have x = φ(xi, yi )/ξ, y = φ(yi, xi )/ξ , where

φ(xi, yi ) = (〈
x3

i

〉 + 〈
xiy

2
i

〉)(〈
y2

i

〉 − 〈yi〉2
)

− (〈
y3

i

〉 + 〈
x2

i yi
〉)

(〈xiyi〉 − 〈xi〉〈yi〉)

+ (〈yi〉〈xiyi〉 − 〈xi〉
〈
y2

i

〉)(〈
x2

i

〉 + 〈
y2

i

〉)
, (B11)

and

ξ = 2
{(〈

x2
i

〉 − 〈xi〉2)
(〈

y2
i

〉 − 〈yi〉2
) − (〈xiyi〉 − 〈xi〉〈yi〉)2

}
.

(B12)

R is obtained from Eq. (B7) with obtained x and y.
Using the above fitting with a circle, we interpolate a

point rk = (xk, yk ) from four original data points r j = (x j, y j )
( j = i − 2 to i + 1). A new point is inserted between ri−1 and
ri [Fig. 10(b)]. The center of the circle r = (x, y), as well as
the radius R is obtained by fitting four original data points

r j = (x j, y j ) ( j = i − 2 to i + 1) with a circle. Then,

θi−1 = arctan

(
yi−1 − y

xi−1 − x

)
and θ2 = arctan

(
yi − y

xi − x

)

(B13)

are obtained, and θ is defined by θ = (θi−1 + θi )/2 From a
formula of trigonometric functions,

tan θ = tan
θi−1 + θi

2

= 2 sin θi−1+θi

2 cos θi−1−θi

2

2 cos θi−1+θi

2 cos θi−1−θi

2

= sin θi−1 + sin θi

cos θi−1 + cos θi
, (B14)

and

θ = arctan

( yi−1−y
ri−1

+ yi−y
ri

xi−1−x
ri−1

+ xi−x
ri

)

= arctan

(
ri(yi−1 − y) + ri−1(yi − y)

ri(xi−1 − x) + ri−1(xi − x)

)
. (B15)

Then we have xk = R cos θ + x and yk = R sin θ + y.
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