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Molecular dynamics study of the sonic horizon of microscopic Laval nozzles
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A Laval nozzle can accelerate expanding gas above supersonic velocities, while cooling the gas in the process.
This work investigates this process for microscopic Laval nozzles by means of nonequilibrium molecular
dynamics simulations of stationary flow, using grand-canonical Monte Carlo particle reservoirs. We study the
steady-state expansion of a simple fluid, a monoatomic gas interacting via a Lennard-Jones potential, through an
idealized nozzle with atomically smooth walls. We obtain the thermodynamic state variables pressure, density,
and temperature but also the Knudsen number, speed of sound, velocity, and the corresponding Mach number
of the expanding gas for nozzles of different sizes. We find that the temperature is well defined in the sense that
the each velocity components of the particles obey the Maxwell-Boltzmann distribution, but it is anisotropic,
especially for small nozzles. The velocity autocorrelation function reveals a tendency towards condensation of
the cooled supersonic gas, although the nozzles are too small for the formation of clusters. Overall we find that
microscopic nozzles act qualitatively like macroscopic nozzles in that the particles are accelerated to supersonic
speeds while their thermal motion relative to the stationary flow is cooled. We find that, like macroscopic Laval
nozzles, microscopic nozzles also exhibit a sonic horizon, which is well defined on a microscopic scale. The sonic
horizon is positioned only slightly further downstream compared to isentropic expansion through macroscopic
nozzles, where it is situated in the most narrow part. We analyze the sonic horizon by studying space-time density
correlations, i.e., how thermal fluctuations at two positions of the gas density are correlated in time and find that
after the sonic horizon there are indeed no upstream correlations on a microscopic scale.

DOI: 10.1103/PhysRevE.109.065104

I. INTRODUCTION

The Laval nozzle converts thermal kinetic energy into
translational kinetic energy and was invented by Gustaf de
Laval in 1888 for actuating steam turbines with steam ac-
celerated by expansion. The goal was to achieve the highest
possible velocity of an expanding gas, made possible with the
convergent-divergent nozzle shape. The left panel of Fig. 1
schematically shows the cross section of such a nozzle. When
the gas reaches the most narrow part, the nozzle throat, the
flow can become supersonic. The surface where this happens
is called sonic horizon (or acoustic horizon) [1,2] because
no information carried by sound waves can travel upstream
through the sonic horizon.

The expansion of gas in a Laval nozzle has interest-
ing thermodynamic properties. While the gas acceleration
of macroscopic Laval nozzles is exploited for propulsion
purposes in rocket engines, the temperature drop during ex-
pansion through a nozzle with a diameter in the tenth of the
micrometer range is exploited in supersonic jet spectroscopy
to freeze out translational, rotational and vibrational degrees
of freedom of molecules, leading to spectra that are not
complicated by too many thermally populated excited states
[3–6]. The studied molecules can be kept in a supercooled
gas phase, far below the condensation temperature, with a
high density compared to a conventionally cooled equilibrium
vapor. Under appropriate conditions, weakly bound van der
Waals cluster can be formed [7,8]. The molecules of interest
are typically coexpanded with a noble gas. In case of 4He

as carrier the cooling effect is also greatly enhanced by the
unique quantum effects of 4He at low temperatures. Especially
the helium-droplet beam technique takes additional advantage
from the superfluidity of 4He [7–9]. The typical orifice used
for molecular beams has only a convergent part and the di-
vergent nozzle part is realized by the ambient pressure in the
expansion chamber. During expansion the surrounding gas
in the chamber provides a pressure boundary to the jet and
the jet temperature itself keeps decreasing after exiting the
orifice [10].

Macroscopic Laval nozzles are well understood and can be
approximately described by simple thermodynamic consider-
ations, under assumptions that are reasonable for macroscopic
nozzles: isentropic flow without dissipation (inviscid gas and
smooth slip boundaries); the flow velocity v depends only on
the position x along the axis of the nozzle; the nozzles cross
section varies only gradually with x; the flow is stationary; and
continuum fluid dynamics is valid, i.e., each fluid element is in
local thermodynamic equilibrium. Then the relative velocity
change with x and the relative change of the cross-section area
A follow the simple relation [10]

dv

v
= − 1

1 − (v
c
)2

dA

A
, (1)

where c is the speed of sound, which can be expressed in terms
of the isentropic or isothermic derivative of the pressure with
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FIG. 1. Left: Cross section of a Laval nozzle with a convergent and divergent nozzle part. Indicated by the arrow and color is the flow
direction and temperature decrease of the expanding gas. Right: Molecular dynamics trajectories of 30 randomly chosen particles starting in
the shaded area to the left. The average total particle number in the nozzle for this simulation is much larger, approximately 790 000. The
velocity of these particles is indicated by color. While the subsonic motion in the convergent part is dominated by random thermal motion, the
supersonic motion of the particles in the divergent part is dominated by the flow velocity.

respect to the density,

c =
√(

∂ p

∂ρ

)
S

=
√

cp

cv

(
∂ p

∂ρ

)
T

, (2)

where cp and cv is the heat capacity at constant pressure and
volume, respectively. The ratio M = v/c is called Mach num-
ber, and M = 1 defines the sonic horizon. The usual situation
is a gas in a reservoir or a combustion chamber producing gas
to the left in our figures of the nozzle. Hence the flow velocity
is small when it enters the nozzle, in particular it is subsonic,
M < 1. Equation (1) tells us that, with decreasing cross sec-
tion A (e.g., moving downstream in the convergent part), the
flow velocity v must increase. In the nozzle throat, i.e., where
A has a minimum and dA = 0, v either stays below M, in
which case v must decelerate in the divergent part. Or the gas
flow attains M = 1 in the nozzle throat and then accelerates
further in the divergent part (if the pressure difference between
inlet and outlet is large enough). Hence for supersonic flow,
v increases with increasing A. Note that Eq. (1) implies that
the transition to supersonic flow can happen only where the
cross-section area has a minimum.

The goal of this work is to understand the physics of
microscopic Laval nozzles on the nanoscale of the atoms of
the gas flowing through a constriction which is only nanome-
ters wide. We want to answer the following questions: How
do the transport properties of a Laval nozzle depend on its
size, and does it even have the typical characteristic of a
convergent-divergent nozzle, i.e., converting thermal energy
into translational energy? If yes, then how efficiently does a
nanoscale Laval nozzle cool the expanding gas? Do we obtain
supersonic flow? Is there a well-defined sonic horizon, and if
yes, then where in the nozzle is it located? Is there even local
thermodynamic equilibrium such that we can define a local
speed of sound and thus can speak of a sonic horizon and
supersonic flow? Since we are interested in the fundamental
mechanism of a microscopic Laval nozzle, we study a rather
idealized nozzle with atomically flat surfaces corresponding to
slip boundaries. This simplifies the problem since it eliminates
the boundary layer close to the nozzle walls. Boundary effects
are of course essential in a real microscopic nozzle, and they
would be easy to model with rough walls, but they would
complicate the analysis and interpretation of our results.

A common method to study microscopic nozzles is the di-
rect simulation Monte Carlo (DSMC) method [11–14], which

solves the Boltzmann equation. However, we want to make
as few approximations as possible, apart from the idealiza-
tion of an atomically smooth nozzle walls. Therefore, we
use molecular dynamics (MD) simulations, which account for
each atom or molecule of the gas, and collisions are described
by realistic intermolecular interactions. Atomistic (MD) sim-
ulations have been shown to be useful for the understanding
of fluid dynamic phenomena [15–22]. The only underlying
assumption of the MD method is that quantum physics plays
no role and classical mechanics is sufficient. This is usu-
ally a valid assumption, with the exception of expansion of
4He under conditions where the 4He gas cools to superfluid
nanodroplets [23].

Because of the nonequilibrium nature of this expansion
process through a Laval nozzle we perform nonequilibrium
MD (NEMD) simulations [24]. The right panel of Fig. 1
shows the trajectories for 30 randomly chosen particles of a
simulation in a convergent-divergent nozzle that contained on
average about 790 000 particles. The speed of the particles is
color coded. Figure 1 gives an impression how a Laval nozzle
converts thermal energy (temperature) to ordered translation
energy: Close to the inlet, the motion is predominantly ther-
mal; close to the outlet the velocities are higher and tend
to point in x direction, but the temperature, i.e., the kinetic
energy after subtracting the flow velocity, is in fact much
lower as our results will show. Averaging over all particles
and over time leads to the thermodynamic notion of a gas that
accelerates and cools as is expands through the nozzle.

With MD we can obtain, with microscopic resolution,
both thermodynamic quantities like temperature, pressure, or
density, and microscopic quantities like the velocity auto-
correlation function VACF, velocity distribution, or density
fluctuation correlations: We will investigate whether the ex-
panding gas has a well-defined temperature, characterized
by an isotropic Maxwell-Boltzmann distribution of the ther-
mal particle velocities. The VACF exhibits features related
to the metastability of the accelerated gas cooled below con-
densation temperature. We calculate spatiotemporal density
autocorrelations, i.e., correlations between fluctuations of the
density at different times and different locations, to study
the propagation of information upstream and downstream and
pinpoint the location of the sonic horizon (if it exists). In
a macroscopic nozzle, upstream propagation of information
carried by density fluctuations is not possible in the supersonic
region. On the microscopic scale, e.g., on the scale of the mean
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free path of the atoms, a unidirectional information flow is not
so obvious. For instance, if we assume a Maxwell-Boltzmann
distribution of random particle velocities, then fast parti-
cles from the tail of the distribution could carry information
upstream.

We remark that, in a seminal paper by W. G. Unruh et al.
[1], a mathematical analog between the black hole evaporation
by Hawking radiation and the fluid mechanical description of
a sonic horizon is found. This analog has brought significant
attention to sonic horizons [2,25–28], but in this work we will
not study analog Hawking radiation.

II. MOLECULAR DYNAMICS SIMULATION
OF EXPANSION IN LAVAL NOZZLE

The gas flow through the microscopic Laval nozzle is simu-
lated with the MD method which solves Newton’s equation of
motion for all particles of the gas. Unlike in continuum fluid
dynamics, which solves the Navier-Stokes equation, MD con-
tains thermal fluctuations of the pressure and density, also in
equilibrium. Furthermore, unlike the continuum description,
MD does not assume local thermodynamic equilibrium, which
may not be fulfilled in a microscopic nozzle.

The price for an accurate atomistic description afforded
by MD simulations is a high computational cost compared
to Navier-Stokes calculations or DSMC simulations. In the
present case, we simulate up to several hundred thousand
particles. Larger MD simulations are possible, but our focus
is the microscopic limit of a Laval nozzles on the nanometer
scale. A challenge for MD is to implement effective reservoirs
to maintain a pressure differential for a steady flow between
inlet and outlet of the nozzle. An actual reservoir large enough
to maintain its thermodynamic state during the MD simula-
tion would be prohibitively computationally expensive. We
approximate these reservoirs by defining small inlet and out-
let regions where we perform a hybrid MD and GC Monte
Carlo simulation (GCMC) [29], with grand-canonical Monte
Carlo exchange of particles [30]. As the name implies, this
method simulates a grand-canonical ensemble for a given
chemical potential μ, volume V , and temperature T by in-
serting and removing particles if the volume is closed. Since
inlet and outlet regions are open to the nozzle region, the
outflow and inflow of particles leads to a significant devia-
tion from an equilibrium ensemble, even if the simulations
reaches a steady flow state, as discussed below. The nozzle
region itself is simulated without thermostat nor Monte Carlo
exchange. This would correspond to the microcanonical en-
semble at constant number of particles N , volume V , and
energy E if the nozzle region were not open to the inlet and
outlet regions. The nozzle walls are thermally insulating.

Figure 2 shows the geometry of the nozzle simulated with
the inlet and outlet colored in blue and yellow, respectively,
with the convergent-divergent nozzle in between. To keep
the simulation simple and the computational effort in check
we simulate a slit Laval nozzle, translationally invariant in z
direction (perpendicular to the plane of the figure) and realized
with periodic boundaries in this direction. Since our focus is
a microscopic understanding of supersonic flow and the sonic
horizon, we simulate a nozzle with atomically smooth walls,
shown as thick black curved lines in Fig. 2. Simulating rough

FIG. 2. Geometry of a slit Laval nozzle with the convergent and
divergent part in the xy plane. The nozzle walls are two cylinders. In
the z direction out of the plane, the nozzle is translationally invariant,
realized with periodic boundary conditions. Particle insertion is done
by grand-canonical Monte Carlo insertion and deletion [29,30] on the
left side (blue), specifying chemical potential μ1, and temperature T1.
The nozzle region shown in white with the convergent end divergent
boundaries is simulated without Monte Carlo exchange and thermo-
stat. Particle are deleted on the right side (yellow) by specifying μ2

and T2.

walls would have significantly complicated the analysis of
the flow, because of the nontrivial spatial dependence of the
flow field in the direction perpendicular to the general flow
direction, requiring significantly longer simulations to resolve
all measured quantities in both the x and y directions. In a
smooth-walled nozzle, we can restrict ourselves to studying
only the x dependence of the quantities of interest.

The gas particles are atoms interacting via a pairwise
Lennard-Jones (LJ) potential. Thus we simulate the expansion
of a noble gas through the nozzle. Molecules with vibrational
and rotational degrees of freedom seeded into the noble gas
would be an interesting subject for further investigation, but
this exceeds the scope of this work. The LJ potential between
a pair of particles with distance r is given by

VLJ(r) = 4ε

[(σ

r

)12
−

(σ

r

)6
]
. (3)

The smooth walls are also modelled via a LJ potential with

VLJ(s) = 4ε

[(σ

s

)12
−

(σ

s

)6
]
, (4)

where s is the normal distance between atom and wall. The
repulsive part of the LJ potential make the walls impenetrable
for the gas particles, and hence gas flows only through the
constriction between the convex walls, while there are no
particles on the concave outside part of the walls. For both
the atom-atom and the atom-wall potential we use a cut-off
radius of rc = 3σ . A more realistic, but still smooth, wall
potential would be the LJ potential integrated over an infinite
half space leading to powers 3 and 9 of σ

r [31–33]. This would
be relevant when the atom-wall interaction is essential, such
as for studies of wetting or other adsorption processes or of
density oscillations of fluids near walls, but in the present
case we only need the wall potential to provide the slit nozzle
geometry, and therefore we chose the the shorter-ranged LJ
potential with powers 6 and 12.

We use the common reduced units for simulations of LJ
particles if not otherwise stated; see Table I. Thus with the
atom mass m, and the LJ parameters σ and ε for a specific
noble gas, the results can be converted from reduced units to
physical units.

Atoms are inserted and deleted in the inlet (blue) and outlet
(yellow) by running the MD simulation in these regions as a

065104-3



HELMUT ORTMAYER AND ROBERT E. ZILLICH PHYSICAL REVIEW E 109, 065104 (2024)

TABLE I. Conversion to dimensionless reduced units (∗) used in
this work.

Quantity Reduced units

Distance x∗ = x/σ
Time t∗ = t

√
ε

mσ 2

Energy E∗ = E/ε

Velocity v∗ = vt∗/σ
Temperature T ∗ = T kB/ε

Pressure P∗ = P σ 3

ε

Density ρ∗ = ρσ 3

hybrid (GCMC) simulation [29], where we specify the chem-
ical potential, the volume, and the temperature, (μ1,V1, T1)
and (μ2,V2, T2), respectively. A proper choice of these ther-
modynamic variables ensures that on average, an excess of
particles are inserted in the inlet and particle are eliminated
in the outlet, such that a stationary gas flow is established
after equilibration. There are alternative insertion method,
such as the insertion-deletion method, where the mass flow
is specified [34].

The temperature and chemical potential of the inlet
reservoir is set to T1 = 2.0 and μ1 = −23, which would cor-
respond to a density ρ1 = 0.086 and ensures that the pressure
is not too high and the LJ particles remain in the gas phase. As
mentioned above, the particle insertion region in the nozzle is
not in equilibrium with a grand-canonical reservoir defining
the (μ1,V1, T1) ensemble, because the inlet volume is not
closed on the side facing the nozzle. The outflow must be com-
pensated by additional insertions, which makes the insertion
rate higher than the elimination rate. Indeed, we observed that
the average density in the insertion region is approximately
half the density ρ1. Also the temperature in the inlet region
is lower than the set value T1 = 2.0. The resulting pressure in
the insertion region is p ≈ 0.06 in our reduced units. For argon
with ε = 1.65 × 10−21 J and σ = 3.4 Å [35] this translates to
a temperature of T = 179 K and a pressure p ≈ 2.5 × 106 Pa
in SI units. This is in the pressure range for molecular beam
spectroscopy experiments [4].

The inlet conditions will converge to the specified reservoir
variables if the number of GCMC moves is significantly larger
than the number of MD moves or if the size of the inlet region
is increased; both increases computational cost. Alternatively,
the inlet conditions may be matched to the desired pressure
and temperature by fine-tuning the reservoir variables and
running many equilibration simulations, which again requires
a high computational effort. In this work we refrain from
perfectly controlling the thermodynamic state of the inlet
although it leads to effectively different inlet conditions in
differently sized nozzles.

In the convergent-divergent part of the nozzle, the atoms
are propagated according to Newton’s equation of motion,
which would converge to the microcanonical ensemble if the
nozzle were closed. Thus the MD trajectories are not biased by
a thermostat nor Monte Carlo particle exchange, which can be
crucial for dynamic studies [36] of nonequilibrium phenom-
ena. Since we want to simulate expansion into vacuum, we
simply set the pressure in the outlet to zero, such that particles
entering the outlet region are deleted immediately.

For comparisons of different nozzle sizes, we scaled the slit
nozzle in both x and y directions, while keeping the simulation
box length zmax in the translationally invariant z direction,
perpendicular to the figure plane in Fig. 2, fixed. In the z
direction, we apply periodic boundary conditions. We com-
pared different simulation box lengths zmax in the z direction
to quantify unwanted finite-size effects in the z direction.
Ideally, we want to keep zmax larger than the mean free path.
Especially for the dilute gas at the end of the divergent part,
a sufficiently large zmax is required to avoid such effects. For
most simulations, we found zmax = 86.18σ or zmax = 43.09σ

to be adequate, as shown below.
We initialize the NEMD simulations with particles only

in the inlet region. Equilibration is achieved when the total
number of particle in the simulation does not increase any-
more but just fluctuates about an average value. When this
steady state is reached, we start measurements by averaging
velocities, pressure, density, etc.

The equilibrium equation of state for LJ particles is well
known [37,38]. The equation of state is not needed for the MD
simulations, but it is helpful for the analysis of the results,
particularly for the calculation of the speed of sound and
the Mach number. Specifying the Mach number, temperature,
or pressure rests on the assumption of local thermodynamic
equilibrium and thus on the validity of a local equation of
state. In a microscopic nozzle, where the state variables of
the LJ gas changes on a very small temporal and spatial scale,
local thermodynamic equilibrium may be violated.

All simulation were done with the open-source MD soft-
ware LAMMPS [39,40].

III. THERMODYNAMIC PROPERTIES

In this section we present thermodynamic results of our
molecular dynamic simulations of the expansion through slit
Laval nozzles: density, pressure, temperature, and Mach num-
ber. We check whether a microscopic nozzle exhibits the
transition to supersonic flow and where the sonic horizon is lo-
cated in nozzles of various sizes, and we compare to ideal gas
continuum dynamics. The atomistic NEMD simulation also
allows us to investigate if the gas attains a local equilibrium
everywhere in the nozzle, with a well-defined temperature.

A. Very small nozzle

Figure 3 shows results for a very small Laval nozzle, with
a throat width of only 3.9σ , i.e., only a few atoms wide. Fig-
ure 3(a) shows the nozzle geometry. The temperature is shown
in Fig. 3(c). The kinetic temperature is the thermal motion of
the atoms after the flow velocity at r, v(r) is subtracted,

3

2
kBT =

∑
i

m

2
[vi − v(ri)]

2. (5)

Unlike in equilibrium, the temperature in a nonequilibrium
situation such as stationary flow varies spatially, T = T (r),
provided that local equilibrium is fulfilled. If there is no local
equilibrium, then there is no well-defined temperature. Al-
though the right-hand side of Eq. (5) can still be evaluated, the
notion of a “temperature” is meaningless if the thermal parts
of the atom velocities do not follow a Maxwell-Boltzmann
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(a)

(c)

(e)

(g)

(i)

(k)

FIG. 3. Thermodynamic quantities for a nozzle with a throat
width of only 3.9σ . The figure shows in panel (a) an overview of
the nozzle in the x − y plane; in (c) the temperature; in (e) the Mach
number M(x) and the ideal gas approximation for the Mach number
Mid; in (g) the ideal gas approximation of the speed of sound cid, the
speed of sound c obtained from the simulation and the averaged flow
speed v; in (i) the density ρ and pressure p; and in (k) the Knudsen
number. All quantities are shown as a function of the x position in
the nozzle.

distribution. Here we assume that Eq. (5) provides a well-
defined local temperature T (x) at position x along the flow
direction in our Laval nozzles. Further below we investi-
gate whether this assumption is justified. The subtleties of
the calculation of v(r) and T (x), and how to subtract the

flow velocity from the particle velocities, can be found in
Appendixes C and D, respectively.

Figure 3 shows that T (x) indeed drops after the gas passes
the nozzle throat, but there is a small increase before it reaches
the throat. We attribute this to the wall potential: The constric-
tion is dominated by the attractive well of the LJ potential (4).
The associated drop in potential energy is accompanied by an
increase of the temperature, i.e., kinetic energy.

Figure 3(g) shows the flow speed v(x) = |v(x)|. v(x) in-
creases monotonously over the whole length of the nozzle.
For comparions, we also show the speed of sound of the LJ
gas c(x) and of the ideal gas cid (x), which are very similar,
even in the convergent part where the density is higher. For a
monatomic ideal gas, the speed of sound (2) becomes

cid (x) =
√

5

3
kBT (x)/m. (6)

The speed of sound c(x) of the LJ fluid is calculated from its
equation of state given in Ref. [37] and the specific residual
heat capacities [38], using the expression with the isothermal
derivative in Eq. (2) and the values of ρ(x) and T (x) measured
in the MD nozzle simulations; ρ(x) is shown in Fig. 3(i),
together with the pressure. The heat capacities cp and cv

appearing in Eq. (2) are also obtained from the equation of
state of the LJ fluid. Note that applying the equation of state
at position x in the nozzle again assumes local equilibrium,
which is not necessarily true.

Figure 3(e) shows the Mach number M(x) obtained from
the simulation and the Mach number Mid (x) for an ideal gas
continuum. For the ideal gas, we can derive from Eq. (1)
a relation between the cross-section areas A(x) and Mach
numbers Mid (x) at two different positions x1 and x2 in the
nozzle [10],

A(x1)

A(x2)
= Mid(x2)

Mid(x1)

[
1 + γ−1

2 M2
id(x1)

1 + γ−1
2 M2

id(x2)

] γ+1
2(γ−1)

. (7)

Mid (x) can now be obtained by setting x1 = x and x2 = xc, the
position of the sonic horizon, where Mid(xc) = 1 by defini-
tion. Figure 3(e) shows that the Mach number M(x) obtained
from the simulation stays below the ideal gas approximation
Mid (x), with the difference growing in the divergent part of
the nozzle. At the end of the nozzle M is approximately half
the value of the ideal gas continuum approximation Mid. In
particular, the sonic horizon predicted by the MD simulation
is located after the throat of the nozzle, not at the point of
smallest cross section predicted by the continuum description
of isentropic flow; see Eq. (1).

In the limit of vanishing density, ρσ 3 → 0, LJ particles
approximately follow free paths between interactions with
other particles. Especially near the inlet, these conditions are
not really fulfilled; nonetheless, λ is a convenient phenomeno-
logical quantity to characterize the gas. In combination with
flow through in narrow geometries, another phenomenolog-
ical quantity is commonly used to characterize the flow,
the Knudsen number, Kn. It is the mean-free-path length λ

divided by a characteristic length d of confinement,

Kn(x) = λ(x)

d (x)
. (8)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

FIG. 4. Same as Fig. 3 for a throat width of 7.8σ (left column) and 15.6σ (right column).

In our slit Laval nozzle d (x) is the width at position x and λ(x)
is the mean free path at position x. We estimate λ(x) using the
hard-sphere approximation [41]

λ(x) = [
√

2πσ 2ρ(x)]−1 (9)

under the assumption of a Maxwell-Boltzmann distribution of
the velocities which we check to be fulfilled in the nozzle; see
Sec. IV A and Fig. 7. For Kn � 1 the mean free path is much
smaller than the nozzle width and a continuum description of
the flow is appropriate. For Kn ≈ 1 or Kn � 1 a continuum
description is is not possible and the transport becomes partly
ballistic. For the smallest nozzle results, the Knudsen number
Kn(x) shown in Fig. 3(k), is significantly larger than unity in
the supersonic regime.

B. Small nozzles

Figure 4 shows results for two nozzles twice and four
times as large as the smallest nozzle presented in Fig. 3, with
throat widths 7.8σ and 15.6σ , respectively. The small tem-
perature increase seen for the smallest nozzle is not present

anymore. T is almost constant in the convergent part and then
decreases monotonously. Note that for each nozzle, the flow
starts from slightly different thermodynamics conditions in
the inlet region for reasons explained above. As the nozzle
size increases, the Mach number M reaches a higher value
for the larger nozzle despite the slightly lower T in the inlet,
and it follows the ideal gas approximation Mid more closely.
The sonic horizon moves closer to the minimum of the cross
section. Of course the Knudsen number Kn(x) is smaller for
larger nozzles. Due to the wider nozzle throat, the pressure is
significantly lower in the convergent part.

For Fig. 5, we increase the nozzle size again twofold and
fourfold. We find the same trends as in Fig. 4. For the nozzle
with throat width 62.5σ , the Mach number M is close to the
ideal gas approximation Mid. M falls below Mid only towards
the end of the nozzle, where the collision rate presumably
becomes too low for efficient cooling. The sonic horizon is
essentially in the center, indicated by the vertical dashed line.

For these two largest nozzles, we examined whether local
equilibrium is fulfilled. The direction-dependent tempera-
ture, see Appendix D, is shown in Figs. 5(c) and 5(d). The
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

FIG. 5. Same as Fig. 3 for a throat width of 31.25σ (left column) and 62.5σ (right column). The temperature is split into its contribution
from motion in the x, y, and z directions.

temperature is not quite isotropic, i.e., there is insufficient
local equilibration between the motion in the x, y, and z
directions. The three respective temperatures differ. In the
convergent part the temperature in the y direction, Ty, is high-
est, while in the divergent part Ty is lower than Tx and Tz.
Tz is only influenced by collisions between particles because
there is no wall in the z direction. Comparing the two nozzles
presented in Fig. 5, we observe the expected trend that the
temperature anisotropy decreases with increasing nozzle size.
At the end of the nozzles in Fig. 5 the temperature anisotropy
grows because the collision rate between particles drops as
the density drops. Whether the random particle velocities are
Maxwell-Boltzmann distributed will be studied in Sec. IV
about microscopic properties.

In Table II we compare the difference 	xc = xc − x0
c be-

tween the calculated position xc of the sonic horizon and
the position x0

c of minimal cross-section area predicted by
isentropic flow in the continuum description. In all cases the
sonic horizon is “delayed” and shifted downstream, 	xc > 0.
With growing nozzle size characterized by the throat width
dm, the dimensionless difference falls in relation to the nozzle

size, quantified by the ratio 	xc
dm

shown in the right column. In
absolute numbers, 	xc grows with size (middle column), until
it actually drops for the largest nozzle.

Our atomistic simulations indicate that for a sufficiently
large, but still microscopic, nozzle the sonic horizon is sit-
uated, with atomistic precision, in the middle, most narrow,
position of the nozzle. For example, for the nozzle with a

TABLE II. Downstream shift 	xc of the sonic horizon with re-
spect to the center position predicted by continuum fluid dynamics.
Nozzle are characterized by the minimal width dm. The right column
shows the dimensionless difference in relation to nozzle size, 	xc

dm
.

dm 	xc
	xc
dm

3.90 3.78 0.97
7.80 4.97 0.64
15.60 5.96 0.38
31.25 6.09 0.19
62.50 2.74 0.044
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FIG. 6. Density-temperature phase diagram. Shown are the saturation density (yellow), the critical density (blue), and the critical point
(purple) from the Lennard-Jones equation of state [37]. For the nozzle with a throat width dm = 31.25, the path of temperature and density
values are shown as a green curve.

throat width of 31.25σ , presented in the left panels of Fig. 5,
the Knudsen number is Kn ≈ 0.3 in the throat, i.e., the throat
width is only three times larger than the mean-free-path esti-
mate. Nevertheless, such a microscopic nozzle performs even
quantitatively already in the same way as a macroscopic noz-
zle, at least for the present case of ideal, atomically flat walls,
i.e., without boundary layer effect. Similar agreement with
hydrodynamics, which after all is based on the assumption
of local thermodynamic equilibrium, has been observed, e.g.,
for steady-state flow around a microscopic obstacle [18], but
at much higher density than in this work. We find it surprising
to find such agreement also for the transition to supersonic
flow for the dilute conditions and the high acceleration in a
microscopic Laval nozzle.

C. Phase diagram

Does the gas undergo a phase transition and condense into
droplets at the end of the nozzle as it cools on expansion?
Figure 6 shows the phase diagram of the LJ equation of state in
the (T, ρ) plane as determined from Ref. [37]. The saturation
density curve shown in yellow is associated with the phase
transition, but up to the critical density, shown as blue curve,
a supersaturated vapor phase or a superheated liquid phase
is possible. This supersaturated and superheated phases are
metastable. The green curve in Fig. 6 shows the path of den-
sity and temperature values, shown in Figs. 5(c) and 5(i), of
the gas expansion in the nozzle with throat width dm = 31.25.
Strictly speaking, only an adiabatically slow evolution of a LJ
fluid has a well-defined path in diagram Fig. 6, which shows
equilibrium phases. But plotting the state during expanding
through the microscopic nozzle in Fig. 6 at least provides a
qualitative description of the fluid at a particular position in
the nozzle. The path would extend to about T = 0.4, but the
equation of state from Ref. [37] does not reach below T =
0.7. We note that the triple point, obtained from molecular
simulations studies in Ref. [42] lies at Ttr = 0.661, below
which the gas-liquid coexistence region becomes a gas-solid
coexistence region.

From the path traced by the expanding gas we see that the
LJ fluid starts in the gas phase in the inlet. As temperature
and density fall on expansion, the fluid enters the gas-liquid

coexistence region. In this region the fluid can remain in a
metastable supersaturated gas phase. Below the triple point,
even the gas-solid coexistence region is reached at the end of
the nozzle.

Our simulations show no evidence of a liquid or even a
solid phase in our simulations, which would appear as small
liquid or solid clusters; the LJ particles remain unbound un-
til reaching the outlet region of the nozzle. Either the gas
remains metastable or it is too far out of local thermal equi-
librium that the discussion in terms of the phase diagram is
meaningless. The anisotropy of the temperature discussed in
the previous section indicates that thermal equilibrium is not
completely fulfilled. The absence of nucleation of clusters is
not a surprise, because there is simply not enough time in a mi-
croscopic nozzle for nucleation under such dilute conditions
before the gas reaches the outlet.

IV. MICROSCOPIC PROPERTIES

Molecular dynamics simulation allows to measure prop-
erties which are inaccessible in a macroscopic continuum
mechanical description. We already have seen in the pre-
vious section the temperature is slightly anisotropic, which
is inconsistent with local equilibrium. In this section we
take a closer look at quantities defined on an atomistic
level: the velocity probability distribution (in equilibrium the
Maxwell-Boltzmann distribution) and the velocity autocor-
relation function. Furthermore, we study the propagation of
density waves by calculating the upstream and downstream
time correlations of thermal density fluctuations of the station-
ary flow before, at, and after the sonic horizon. The goal is to
check if the sonic horizon, found in the previous section by
thermodynamic consideration, is also a well-defined bound-
ary for upstream information propagation on the microscopic
level.

A. Velocity distribution

We have observed a temperature anisotropy; see Figs. 5(c)
and 5(d). This raises the question whether the particle veloc-
ities even follow a Maxwell-Boltzmann distribution. If the
velocities are not Maxwell-Boltzmann distributed, then we
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

FIG. 7. Thermal part of the particle velocity distribution f (vi, x j ) for two nozzle sizes with a throat width of 31.25σ and 62.5σ in the left
and right columns, respectively. Panels (a) and (b) show a schematic representation of those nozzles with the three regions x1, x2, and x3 for
which the velocity distributions are obtained from the MD simulations. Panels (c)–(h) show the velocity distribution of the components vx , vy,
and vz for the the different regions in the nozzle. Also shown are Gaussian fits (dashed lines). Panel (i) and (j) are comparing the fits to the
three velocity components in the x3 region, in the diverging part of the nozzle.

do not have a well-defined kinetic temperature. This question
is important for the interpretation of the results, for example
when we discussed the temperature drop during expansion in
the previous section. We now clarify whether it is meaningful
to talk about temperature in microscopic nozzles.

We calculate the velocity distribution for the two largest
nozzles (see Fig. 5) shown in Fig. 7 by separately sampling
the histograms for the x, y, and z components of the velocity,
where we subtract the steady flow velocity from the particle
velocities; see Appendix D. Since the velocity distribution
depends on the location x in the nozzle, the histograms are
two dimensional, which requires a lot of data to sample from.

Therefore we split x into only three regions, x1, x2, and x3,
depicted in the nozzle illustrations at the top of Fig. 7.

The velocity distributions f (vx, x j ) for the x component
of the velocity are shown in Figs. 7(c) and 7(d) for the
two respective nozzles, each panel showing f (vx, x j ) for all
three regions x j = x1, x2, x3 in blue, yellow, and green. Of
course, the distributions become more narrow for larger x j ,
consistent with a downstream drop of temperature in a Laval
nozzle. We fit the histograms with Gaussian functions, i.e.,
the Maxwell-Boltzmann distribution, also shown in the pan-
els. The corresponding results f (vy, x j ) and f (vz, x j ) for the
other two velocity directions are shown in Figs. 7(e)–7(h). It
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(a) (b)

(c) (d)

(e)
(f)

FIG. 8. Normalized velocity autocorrelation function VACF(x, τ ) [Eq. (11)], along the nozzle with color-coded x position. Panels (a) and
(b) show the shape and size of two nozzles, indicating the color scale for x in the panels below. Panels (c) and (d) show the VACF for nozzles
with a distance zmax = 43.1σ between the periodic boundaries in the z direction. Panels (e) and (f) show the same for zmax = 86.2σ . The inset
of panel (f) shows a close-up of the shoulder around τ = 4, discussed in the text.

is evident that, apart from small statistical fluctuations, the
Maxwell-Boltzmann distribution is a good fit in all cases.
Thus the notion of temperature in these microscopic nonequi-
librium systems makes sense.

The width of the velocity distributions (i.e., the tempera-
ture) is not quite the same in the three directions, however;
in particular in region x3, the diverging part of the nozzle. In
order to see this better, we compare the fits to f (vi, x3) for i =
x, y, z in Fig. 7(i) and 7(j). The distribution of the y component
of the velocity is narrower than the other two directions. In
other words the temperature according to vy is lower, and thus
the temperature is not isotropic. This means there is insuf-
ficient equilibration between the three translational degrees
of freedoms. The effect is more pronounced for the smaller
nozzle because particles undergo fewer collisions before they
exit the nozzle, as quantified by the larger Knudsen number;
see Fig. 5.

The spatial binning into just three region x j is rather
coarse-grained as it neglects the temperature variation within
a region. With more simulation data a finer spatial resolution
would be possible; however, we feel that the presented results
are convincing enough that the thermal kinetic energy can be
well characterized by a temperature, albeit slightly different
in each direction.

B. Velocity autocorrelation function

The velocity autocorrelation function, VACF, quantifies
the “memory” of particles about their velocity. The VACF is

defined as

VACF(τ ) = 〈vp(t ) · vp(t + τ )〉t,p, (10)

where vp(t ) is the velocity of particle p at time t and
〈. . . 〉t,p denotes an average over time and over all particles.
An ideal, i.e., noninteracting, particle has eternal memory,
VACFu(τ ) = const. But due to interactions with the other
particles, VACFu(τ ) → 0 within microscopically short times.

In the case of stationary flow, we need to subtract the flow
velocity from particle velocities in Eq. (10). Furthermore, the
VACF will depend on the x coordinate in the nozzle. There-
fore we generalize Eq. (10) to a form which is suitable for
stationary flow in a nozzle that depends on x and is not biased
by the flow velocity. We also normalize the VACF such that is
is unity at τ = 0:

VACF(x, τ ) = 〈	vp(t ) · 	vp(t + τ ) δ(x − xp(t ))〉t,p

〈	vp(t )2 δ(x − xp(t ))〉 , (11)

where 	vp(t ) ≡ vp(t ) − v(xp(t )) is the thermal part of the
velocity, after subtraction of the flow velocity v at the particle
coordinate xp(t ). Note that we define VACF(x, τ ) such that the
spatial coordinate x coincides with the starting point xp(t ) at
time t of the time correlation; at the final time t + τ , the parti-
cle has moved to xp(t + τ ) downstream. When we sample (11)
with a MD simulation, the coordinate x and the correlation
time τ are discretized, and δ(x − xp(t )) is replaced by binning
a histogram in the usual fashion; see the Appendix A.

Figure 8 shows the VACF for various positions x in the
nozzle. The calculations were done for two different nozzle
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sizes (left and right panels). The VACFs cannot be shown
for x all the way to the end of the nozzles because particles
leave the simulation before the velocity correlation can be
evaluated. For example, if a particle in the smaller of the two
nozzles in Fig. 8 is located at x = 437 at τ = 0, then it will
have moved with the flow on average to x = 537 at τ = 50,
where the outlet region starts and particles are removed from
the simulation. For x close to the outlet, the VACF would be
biased because the average in Eq. (11) would contain only
particles which happen to travel slow, e.g., slower than the
flow average.

The VACF decays monotonously for all x (in fact, the
VACF for only the y component of the velocity (not shown)
slightly overshoots to a negative correlations in the divergent
part of the nozzle, which is a trivial effect of wall collisions).
The decay is slower further downstream because the den-
sity drops. Towards the ends of the nozzles, the mean free
path becomes large, see Fig. 5, reaching the length zmax of
the simulation box in z direction, where periodic boundary
conditions are applied. We demonstrate that the finite-size
bias in z direction is negligible by comparing the VACFs
for different choices of zmax. If zmax were too small, then
two particles might scatter at each other more than once
due to the periodic boundaries, which would lead to a spu-
rious oscillation in the VACF. Figures 8(e) and 8(f) show
VACF(x, τ ) for zmax = 86.2σ , twice as large as in Figs. 8(c)
and 8(d), corresponding to twice as many particles. Apart
from the smaller statistical noise for larger zmax, the VACFs
for zmax = 43.1σ and zmax = 86.2σ are identical. This con-
firms that zmax = 43.1σ is large enough to obtain reliable
results.

An interesting feature in the VACF for both nozzle sizes
shown in Fig. 8 is a small shoulder around τ ≈ 4 in the
divergent part, i.e., a small additional velocity correlation.
The inset in Fig. 8(f) shows a close-up of the shoulder. Since
this happens only at the low density in the divergent part
of the nozzle, where the three-body collisions rate is low,
the shoulder can be expected to be a two-body effect. It is
consistent with pairs of particles orbiting around each other
a few times. We test this conjecture by estimating the orbit
period of two bound atoms in thermal equilibrium. The orbit
speed v shall be determined by the temperature T . We further
assume a circular stable orbit with diameter d . The orbiting
particles have two rotational degrees of freedom, each of them
related to the temperature T by

1
2 kBT = 1

2 mv2. (12)

The centrifugal force Fc and the attractive LJ force FLJ must
be balanced,

Fc + FLJ = m
2v2

d
− 4ε

(
−12

σ 12

d13
+ 6

σ 6

d7

)
= 0. (13)

The orbit period trot can now be calculated from Eq. (12) and
Eq. (13),

trot = π
d

v

=
√

mσ 2

ε
π 61/6

( ε

kBT

)2/3
(

1 −
√

1 − 2

3

kBT

ε

)1/6

, (14)

which expresses trot as function of the temperature. When we
plug in a typical temperature towards the end of the nozzles of
T ≈ 0.5, we obtain an orbit time trot ≈ 5, which is similar to
the time when the shoulder in the VACF appears; see Fig. 8.
This does not mean that bound dimers form in the supercooled
flow near the exit of the nozzle, which requires three-body
collisions. But the estimate based on bound states is applicable
also to spiral-shaped scattering processes where two particles
orbit each other a few times. Equation (14) is only a rough
estimate of orbit periods, based only on circular orbits. But
this estimated trot lies in the temporal range of the shoulder in
Fig. 8, and hence the shoulder of the VACF of the expanding
and cooling gas is in line with the picture of transient orbits of
atoms pairs. Such scattering processes may be seeding events
for the nucleation of van der Waals clusters and condensation
in larger nozzles, but this question goes beyond the scope of
the present work.

C. Density fluctuation correlations and the sonic horizon

The calculation of the speed of sound c according to
Eq. (2), using the equation of state from Ref. [37], assumes
local thermal equilibrium. However, the anisotropy of the tem-
perature, see Fig. 5, shows that not all degrees of freedom are
in local equilibrium during the fast expansion through a mi-
croscopic nozzle. Therefore, locating the sonic horizon may
be biased by nonequilibrium effects. It is not even clear if a
sonic horizon, the definition of which is based on macroscopic
fluid dynamics, is microscopically well defined. While the
thermal velocities of the atoms follow Maxwell-Boltzmann
distributions, there are always particles in the tails of the
distribution that travel upstream even after the sonic horizon.
So maybe information can travel upstream on the micro-
scopic scale of our nozzles, negating the existence of a sonic
horizon.

The MD method provides the microscopic tools to answer
this question by calculating space-time correlations of density
fluctuations: If density fluctuations propagate upstream even
in the divergent part of the nozzle, then there is no sonic hori-
zon. We quantify the density fluctuation correlations before,
at, and after the sonic horizon predicted from the calculation
of the speed of sound. The instantaneous density ρ(x, t ) at
position x and time t is evaluated according to Eq. (A2).
The density fluctuation, i.e., the random deviation at time t
from the average density at position x, is obtained by sub-
tracting the time-averaged density (shown in Figs. 3–5) from
ρ(x, t ), 	ρ(x, t ) = ρ(x, t ) − 〈ρ(x, t )〉t . Note that fluctuations
of the density depend also on y and z, but we are interested
in the fluctuations relative the the sonic horizon, and thus
fluctuations between different positions x in the nozzle. The
correlation between a density fluctuation at x and t and a
density fluctuation at x + δx and t + τ is given by the time
average,

S(τ, x, δx) = 〈	ρ(x, t ) 	ρ(x + δx, t + τ )〉t

〈	ρ(x, t ) 	ρ(x, t )〉t
, (15)

where S is normalized such that it is unity for zero spatial and
temporal shifts, S(0, x, 0) = 1.
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FIG. 9. Density fluctuation correlations S(τ, x, δx), Eq. (15). The panels show the self-correlation S(τ, x, 0) in yellow, a backward
correlation S(τ, x, −σ ) in blue and a forward correlation S(τ, x, σ ) in green for different positions x in the nozzle as given in the insets.
The illustration at the top shows the density bins used for calculating S(τ, x, δx): S(τ, x, 0) is obtained by correlating the yellow bin with itself,
and S(τ, x, σ ) or S(τ, x, −σ ) are obtained by correlating the yellow bin with the green or blue bin, respectively.

In Fig. 9 we show the density fluctuation correlations
S(τ, x, δx) in a nozzle with throat width 31.25σ , evaluated at
six different positions x in the nozzle and for three relative
position offsets δx = pσ with p ∈ {−1, 0, 1}. The position
x in the nozzle is indicated in an inset in each panel. The
density binning, with bin size σ , is illustrated at the top of
Fig. 9, which shows three adjacent bins at x, x + σ and x − σ ,
corresponding to p = −1, 0, 1 in the figure labels.

The self-correlation S(τ, x, 0) (yellow curves), correlating
only the temporal decay of the density correlations at x, is
mainly influenced by the flow velocity and decays faster for

higher flow velocities because density fluctuation are trans-
ported away more quickly.

The upstream correlations S(τ, x,−σ ) (blue curves) and
the downstream correlations S(τ, x, σ ) (green curves) are
more interesting. Both correlations are small at zero delay
time τ = 0, because a density fluctuation at x needs some time
to disperse to neighboring density bins. At position x = 10,
where the flow speed is still small, there is no noticeable
difference between upstream and downstream correlation. For
larger x, hence for larger flow speed, the forward correlation
increases and the backward correlation decreases, because the
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FIG. 10. Comparison of density fluctuation correlation S(τ, x, pσ ) for different offsets, p ∈ {−1, 0, 1} (left panels) and p ∈ {−2, 0, 2}
(right panels). At the top the respective binning is illustrated. In the insets the reference position x is indicated. The sonic horizon is situated
slightly downstream of the nozzle throat (x = 300) at x = 306, according to the thermodynamic calculation of the local speed of sound.

density fluctuation disperses with the flow or against the flow,
respectively.

According to the local speed of sound calculated in the
previous section, see Table II, there is a sonic horizon at
x = 306 for the nozzle size in Fig. 9. Indeed, for x = 300,
the backward correlation has no peak anymore but decreases
monotonously from a small nonzero value at τ = 0. For even
larger x, the upstream correlation decays more rapidly, yet it
never completely vanishes at t = 0. The reason for this appar-
ent contradiction to the existence of a sonic horizon is that the
distance between bins and the width of the bins are both σ .
The finite value at τ = 0 is an artifact caused by the density

bins being directly adjacent to each other; see the illustration
in Fig. 9: A density fluctuation at x will immediately have an
effect on the adjacent bins at x + σ and x − σ since they share
a boundary.

In order to remove this bias, we also calculated the correla-
tions with offsets δx = ±2σ , S(τ, x, 2σ ), and S(τ, x,−2σ ),
such that the upstream and downstream bins do not share
a boundary with the bin at x. In Fig. 10 we compare the
two choices of offsets. The left panels are take from Fig. 9
where δx ∈ {−σ, 0, σ }; the right panels show S(τ, x, δx) with
δx ∈ {−2σ, 0, 2σ }, with a twice-as-large τ range, because
density fluctuations have to travel twice as far. The upstream
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FIG. 11. Comparison of the density fluctuation correlations S(τ, x, δx) for two nozzle with throat width d = 31.25σ (left panels) and
d = 62.5σ (right panels), respectively. All lengths are scaled by two for the larger nozzle, such that we compare the correlations for equal
relative positions. At the top the density bin spacing is illustrated and the insets show the positions x.

and downstream correlations now vanish for zero time delay
τ = 0. The upstream correlation S(τ, x,−2σ ) right at the
throat at x = 300σ is very small but does not quite van-
ish, which is consistent with a location of the sonic horizon
predicted at x = 306σ according to the speed of sound. Fur-
ther downstream at x = 350σ , however, S(τ, x,−2σ ) indeed
vanishes within the error bars. This means that information
about density fluctuations cannot travel backwards beyond
the sonic horizon even on the microscopic scale of just a
distance of 2σ . A microscopic Laval nozzle does have a sonic
horizon.

We also calculated the density fluctuation correlations for
a nozzle twice as large (length L = 1250σ and throat width
d = 62.5σ ). Figure 11 compares the corresponding results

with those shown in Fig. 10. For the comparison, we scaled
all lengths by two: The bins are 2σ wide, separated by 4σ ; see
the illustration at the top of Fig. 11. We compare S(τ, x, δx) of
the smaller nozzle with S(2τ, 2x, 2δx) of the larger one, i.e.,
at the same relative positions with the same relative upstream
and downstream offset, and showing twice the time window
for the larger nozzle. According to the speed of sound, the
sonic horizon for the larger nozzle is located at x = 603σ (see
Table II), very close to the throat at x = 600σ . The compari-
son in Fig. 11 shows that the density fluctuation correlations
are very similar for equal relative positions for both nozzles.
Also for the larger nozzle, the correlations are very small at
the throat. Further downstream at x = 350σ and x = 700σ ,
respectively, both nozzles exhibit no upstream correlations.
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Our calculations confirm that the thermodynamic determi-
nation of a sonic horizon, based on the equation of state, is
valid, although the anisotropy of the temperature indicates
that the rapid expansion through the nozzles hinder complete
local thermal equilibrium. The location of the sonic horizon is
consistent with the vanishing of upstream time correlations
of density fluctuations. The existence of a microscopically
narrow sonic horizon is a nontrivial result, considering the
large estimated Knudsen numbers.

V. CONCLUSION

We studied the expansion of a gas of Lennard-Jones par-
ticles and its transition from subsonic to supersonic flow
through microscopic Laval slit nozzles into vacuum. Our goal
was to assess to what extent Laval nozzles with throat widths
down to the scale of a few atom diameters still follow the
same mechanisms as macroscopic nozzles where, given a suf-
ficiently low outlet pressure, the gas flow becomes supersonic
in the nozzle throat. For our study we used nonequilib-
rium MD simulations. MD is computationally demanding but
makes the fewest approximations. We considered idealized
nozzles with atomically flat surfaces with perfect slip to avoid
boundary layer effects.

We introduced three thermodynamic regions for the
nonequilibrium molecular dynamic simulation: an inlet re-
gion, the nozzle region, and the outlet region. In the inlet and
outlet region, particle insertions and deletions are realized by
grand-canonical Monte Carlo sampling [29]. After equilibra-
tion this allows to study stationary flows.

We obtained the thermodynamic state variables temper-
ature, density, flow velocity, and pressure and their spatial
dependence, as well as the Knudsen number, Mach number,
velocity autocorrelation, and velocity distribution of the gas
for nozzles of different sizes. We found a well-defined sonic
horizon, i.e., the surface where the flow becomes supersonic,
and analyzed it via space-time correlations of density fluctua-
tions. We studied how the expansion dynamics depend on the
nozzle size. Lower temperatures and correspondingly higher
velocities and Mach numbers of the expanding gas are reached
for larger nozzles, converging to predictions for isentropic
expansion of an ideal gas continuum.

With nonequilibrium molecular dynamics we can observe
phenomena which cannot be studied in continuum fluid dy-
namics, which assumes local thermodynamic equilibrium. We
found that this assumption is violated for microscopic nozzles.
The kinetic energy in the three translational degrees of free-
dom cannot equilibrate completely and is slightly different for
each individual translational degree of freedom. The velocity
components are still Maxwell-Boltzmann distributed, with a
different width for each direction, which corresponds to an
anisoptropic temperature.

The LJ fluid in the inlet is in a vapor phase, but on ex-
pansion through the nozzle becomes supersaturated. At the
end of the nozzle it is in the vapor-solid coexistence phase.
Indeed, in the velocity autocorrelation function, VACF, we
see indications of metastable pairs of particles. Since the
expanding gas does not reach equilibrium in our microscopic
nozzles, no clusters are formed. Cluster formation could be
studied by enlarging the simulation and including the low

FIG. 12. Bin volumes of width σ used for calculating the
density ρ(x).

density region after the nozzle, giving the fluid enough time to
equilibrate.

The investigation of the sonic horizon with the help
of space-time-dependent correlations of density fluctuations
showed that the position of the sonic horizon obtained
from calculating the local speed of sound matches the posi-
tion where density correlations practically cannot propagate
against the flow. A microscopic distance on the order to the
LJ particle size σ is already enough to completely suppress
the backward correlations. The vanishing of backward time
correlations does of course not happen abruptly at the sonic
horizon; instead the backward correlations decrease gradually
with the increasing flow velocity toward the sonic horizon.
At the same time the forward correlations increase with the
flow velocity. For larger microscopic nozzles, the simple
macroscopic description relating the cross section to the Mach
number is quite accurate. For smaller nozzles the position of
the sonic horizon is shifted downstream.

In future work, it will be interesting to study nozzles with
rough walls. The gas expansion through microscopic nozzles
will be strongly affected by the boundary layer near the walls.
Another topic of practical interest is the coexpansion of a car-
rier noble gas seeded with molecules to investigate the cooling
efficiency of rotational and vibrational degrees of freedom
of the molecules. This models the cooling of molecules for
molecular beam spectroscopy. We note that nozzles for molec-
ular beam spectroscopy are significantly larger than those
studied here, with nozzle diameters of the order of tens of
micrometers, instead of tenths of nanometers. Increasing the
outlet region will allow to study not only the condensation of
the gas into clusters but also the effect of a finite exit pressure
on the position of the sonic horizon [13].
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APPENDIX A: DENSITY CALCULATION

The density ρ(x) as function of position x in the nozzle is
calculated by binning the x coordinate of all particles. Since
we are interested in stationary flow situations, we can take
time averages of the number of particles in the bin of volume
Vbin(x). The binning volumes are slices, usually of thickness
σ , which are centered at x, as illustrated in Fig. 12. This
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average can be written as

ρ(x) =
〈

1

Vbin(x)

∑
i:pi∈Vbin (x)

1

〉
t

≡ 〈1〉t,Vbin (x), (A1)

with the sum counting all particles pi in the volume of
bin Vbin(x) and the bracket denoting the time average. For
calculations of space-time density correlations we need the
instantaneous density at x at time t , which we obtain by
omitting the time average in Eq. (A1),

ρ(x, t ) = 1

Vbin(x)

∑
i:pi∈Vbin (x)

1. (A2)

The determination of Vbin(x) is not trivial, since the wall is
not a well-defined hard boundary but realized by the LJ poten-
tial (4). Choosing z = 0 in Eq. (4) for the volume calculation
would overestimate the real volume effectively available for
the particles, because it neglects the thickness of the “skin”
due to the finite value of σ . We determined that z = 0.8σ is
the most suitable choice in the following way: We simulated a
small nozzle (the size depicted in Fig. 12) with a constriction
so narrow that almost no particle pass through in the course
of a simulation. The wall position z, and hence the effective
volume Vbin(x), is determined such that the density ρ(x) in
the left half of the nozzle, obtained from (A1), is constant
as expected for an equilibrium simulation in a closed geom-
etry. If the skin thickness were over- or underestimated, then
we would obtain a density increase or decrease towards the
constriction, respectively.

APPENDIX B: PRESSURE CALCULATION

The pressure is calculated from the diagonal elements of
the stress tensor which is calculated for each individual parti-
cle i as [30,40]

Siab = −miviavib − 1

2

∑
j:p j∈Vi

j �=i

(riaFi jb − r jaFi jb) (B1)

where a, b ∈ {x, y, z} are the Cartesian components. The first
term is the ideal gas contribution and is biased by the col-
lective flow speed. Since only the thermal motion should
contribute to Siab, the flow velocity must be subtracted from vi;
see Appendix C below for the calculation of the flow velocity.
The second term is the virial contribution from the LJ inter-
action. The summation is over all particles j within rc from
particle i, where rc is the cut-off radius of the LJ potential.
This defines the cut-off volume Vi of particle i. ria is compo-
nent a ∈ {x, y, z} of the coordinate of particle i and Fi jb the
component b of the force of the pairwise interaction between
particle i and j. We calculate the pressure p(x) at position x
in the nozzle by averaging the diagonal elements of the stress
tensor Siab over all particles i within the bin volume Vbin(x),

p(x) = −
〈
ρ(x)

3
(Sixx + Siyy + Sizz )

〉
t,Vbin (x)

, (B2)

where 〈〉Vbin (x) denotes the average over Vbin(x). We also
average over the three diagonal elements because we assume
an isotropic stress tensor. Remembering that the temperature
is not isotropic in the nozzle, the assumption of an isotropic

FIG. 13. Bin volumes Vbin(x, y) with side length σ in the x and y
directions.

stress tensor may not be valid. Inserting the stress tensor (B1)
into the expression (B2) for the local pressure, we obtain

p(x) = ρ(x)kBT (x) + 1

3

〈 ∑
j:p j∈[Vi∩Vbin (x)]

j �=i

riFi j

〉
t,Vbin (x)

+ 1

6

〈 ∑
j:p j∈[Vi\Vbin (x)]

j �=i

r jF ji

〉
t,Vbin (x)

, (B3)

where in the calculation of the local virial we have to
distinguish between neighbor particles p j which are also in
the same binning volume Vbin(x) as particle pi (giving rise to
the first virial expression with the common prefactor 1

3 ) and
those which which are not (the second virial expression with
the prefactor 1

6 ). For the first virial expression we could use
Fi j = −F ji and swap the summation index i and j leading to
a factor 2. For the particles p j which are not in volume Vbin(x)
this cannot be done, and each force Fi j contributes just once.

APPENDIX C: CALCULATION OF VELOCITY

The velocity field v(x, y) in the nozzle depends on both the
x and y coordinates. The velocity is not only a key quantity for
Laval nozzles but also required for obtaining the temperature
T , because v(x, y) needs to be subtracted from the particle
velocities for the calculation of T ; see Appendix D. Figure 13
illustrates the bin volumes Vbin(x, y) for the calculation of
v(x, y), as opposed to the bin slices in Fig. 12. The time-
averaged flow velocity v in a bin volume Vbin(x, y) can be
calculated as

va(x, y) =
〈

1

N (x, y)

∑
i:pi∈Vbin (x,y)

vai

〉
t

, (C1)

where a ∈ {x, y, z}, vai is the velocity component a of particle
pi, and N (x, y) the number of particles in Vbin(x, y) at a given
time. The magnitude of the flow velocity is

v(x) =
√

〈vx(x, y)〉2
y + 〈vy(x, y)〉2

y . (C2)

On average there is no flow in the z direction, vz(x, y) = 0.

APPENDIX D: TEMPERATURE CALCULATION

In order to investigate how the gas cools on expanding
supersonically through the nozzle, we need to calculate the
position-dependent temperature T (x). The microscopic defi-
nition of the temperature is the kinetic energy of the random
part of the particle velocity, hence we need to subtract the flow
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velocity v(x, y) discussed in Appendix C:

kBT (x, y) = m

〈
1

3N (x, y) − 3

∑
i:pi∈Vbin (x,y)

[vi − v(x, y)]2

〉
t

.

(D1)

We are interested only in the x dependence of the temperature
and therefore we average over y,

T (x) = 〈T (x, y)〉y. (D2)

Note that subtracting the flow velocity removes three trans-
lational degrees of freedom, which we account for by

subtracting 3 from the number of degrees of freedom of the
N (x, y) particles in binning volume Vbin(x, y).

In Eq. (D1) we average over the contribution of the three
velocity components, which is fine in an isotropic system. In
order to test whether the temperature is isoptropic or not (and
indeed we find it is not), we calculate the direction-dependent
kinetic temperature,

kBTa(x, y) = m

〈
1

N (x, y) − 1

∑
i:pi∈Vbin (x,y)

[via − va(x, y)]2

〉
t

,

(D3)
where a ∈ {x, y, z}. Again, we are interested only in how Ta

varies with position x along the nozzle, hence we average over
y, Ta(x) = 〈Ta(x, y)〉y.
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