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Insights on phase speed and the critical Reynolds number of falling films
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We revisit the studies of gravity-driven viscous falling films with and without imposed shear stress to provide
new perspectives on phase speed and the critical Reynolds number for surface instability. We use the traditional
long-wave expansion technique implemented for investigating the linear stability analysis [C. S. Yih, Phys. Fluids
6, 321 (1963)]. The principal purpose is to create a unified relationship between the leading-order phase speed
and the critical Reynolds number that will hold for falling films on impermeable substrates with or without shear
stress acting at the liquid film surface. The analytical result demonstrates that the critical Reynolds number for
the onset of surface instability is [5/(2c0)] cot θ , where c0 is the leading-order phase speed of the surface mode
and θ is the angle of inclination with the horizontal. Clearly, the critical Reynolds number of the surface mode is
explicitly dependent on the leading-order phase speed. Furthermore, we reveal that the basic parallel flow with or
without imposed shear stress is linearly unstable to infinitesimal disturbances if the modified Reynolds number,
ReM = (Re c0/ cot θ ) [Re is the Reynolds number, and θ �= π/2], is greater than its critical value of 5/2, which
is independent of the shear stress applied at the film surface. In addition, it is demonstrated that ReM controls the
surface instability in the long-wave regime for both shear-imposed and non-shear-imposed film flows.

DOI: 10.1103/PhysRevE.109.065103

I. INTRODUCTION

The topic of falling liquid film has a long history, dating
back to the pioneering experimental research work of Kapitza
[1]. Aside from its extensive applications in the technological
and chemical industries, it renders an excellent platform for
investigating the phenomenon of transition from a primary
flow to a secondary instability [2–6]. In this context, Yih [7]
and Benjamin [8] initiated the theoretical study many years
ago. In particular, Yih formulated the Orr-Sommerfeld bound-
ary value problem for the gravity-driven two-dimensional
incompressible viscous liquid film on an inclined plane and
analytically derived the critical Reynolds number, Rec =
(5/6) cot θ , for surface instability based on the average veloc-
ity of a steady parallel undisturbed flow as the characteristic
velocity scale. Clearly, the expression of the critical Reynolds
number, Rec, depends only on the inclination angle θ . More-
over, Yih demonstrated that the dimensional value of the
leading-order phase speed is three times the average velocity
of a steady basic parallel flow. As the linear instability of a
primary base flow under an infinitesimal disturbance is en-
sured by the critical Reynolds number, its precise prediction
is a crucial issue for researchers. In particular, the relationship
between the leading-order phase speed c0 and the critical
Reynolds number Rec has not been discussed in the literature.
In each study, the expression of c0 was substituted in the
computation of the critical Reynolds number in the first-order
long-wave calculation. As a result, Rec/ cot θ is a constant
when θ �= π/2. However, the magnitude of this constant alters
with the various choices of the characteristic velocity scale
used in the different studies of film flows [7–9]. Moreover, the
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expression, Rec/ cot θ , depends on the applied shear stress at
the surface of a shear-imposed film flow [10]. Therefore, the
expression, Rec/ cot θ , is not unique for both shear-imposed
and non-shear-imposed film flows. In the present work, our
idea is to retrieve a unified relationship between the leading-
order phase speed and the critical Reynolds number for falling
films with or without imposed shear stress on impermeable
substrates because the leading-order phase speed c0 is not
always constant. For example, c0 varies with the change in ap-
plied shear stress at the liquid film surface for a shear-imposed
film flow [10–12]. As a result, the critical Reynolds number is
not constant, but it alters with the imposed shear stress. Here,
we have discovered that the critical Reynolds number not
only depends on the inclination angle θ but also depends on
the leading-order phase speed c0. Indeed, we have developed
a new expression of the critical Reynolds number for the
surface mode, which can be read as Rec = [5/(2c0)] cot θ for
falling films with or without imposed shear stress. It should be
noted that the new expression of the critical Reynolds number
recovers the earlier known expression Rec = (5/4) cot θ [8]
once the leading-order phase speed is replaced by its value,
c0 = 2. Furthermore, it reproduces the findings of Smith [10],
Wei [11], Samanta [12], and Sivapuratharasu et al. [13] for a
shear-imposed film flow if the expression of the leading-order
phase speed is used. In other words, from the study of falling
film without shear stress, we can predict the expression of
the critical Reynolds number for a shear-imposed film flow
with the aid of the current relation Rec = [5/(2c0)] cot θ only
by using the expression of the leading-order phase speed,
c0, without computing the first-order long-wave solution. In
addition, we have found that the modified Reynolds number
ReM = Re c0/ cot θ dominates the linear stability or instabil-
ity of falling films in the long-wave regime with or without
imposed shear stress when θ �= π/2. Based on the definition
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FIG. 1. A schematic diagram of a two-dimensional shear-
imposed incompressible disturbed viscous liquid film flowing under
the streamwise gravitational force per unit volume. Here, h0 is the
height of the undisturbed liquid film layer and h(x, t ) is the height of
the disturbed liquid film layer. U (y) represents the streamwise base
velocity and τs is the dimensional imposed shear stress acting in the
streamwise direction.

of the modified Reynolds number ReM , we can say that the
modified critical Reynolds number is now a fixed constant
of 5/2, which is valid for the studies of falling films on an
inclined plane with or without imposed shear stress.

II. MATHEMATICAL FORMULATION

Suppose an incompressible shear-imposed viscous film
flows down a sloping plane having an angle θ with the
horizontal (see Fig. 1). We assume that the current film is
isothermal and that all the physical properties of the liquid
film, like density ρ, shear viscosity μ, and surface tension σ ,
are constants. As the liquid film is driven by the streamwise
component of the gravitational force, ρg sin θ , per unit vol-
ume, the flow is governed by the following nondimensional
mass conservation, momentum equations, and boundary con-
ditions in the Cartesian coordinate system [10,14]:

∂xu + ∂yv = 0, (1)

Re(∂t u + u∂xu + v∂yu) = −∂x p + (∂xxu + ∂yyu) + 1, (2)

Re(∂tv + u∂xv + v∂yv) = −∂y p + (∂xxv + ∂yyv) − cot θ, (3)

u = v = 0, at y = 0, (4)

(∂yu + ∂xv)[1 − (∂xh)2] − 4∂xu∂xh = τ
√

1 + (∂xh)2, at y = h(x, t ), (5)

Pa − p + 2

[1 + (∂xh)2]
[∂xu(∂xh)2 + ∂yv − (∂yu + ∂xv)∂xh] = We ∂xxh

[1 + (∂xh)2]3/2
, at y = h(x, t ), (6)

∂t h + u∂xh = v, at y = h(x, t ), (7)

where u(x, y, t ) and v(x, y, t ) are, respectively, the nondimen-
sional x- and y-direction velocity components of the disturbed
liquid film, p(x, y, t ) is the nondimensional pressure, and t is
the time. Here, Re = ρU0d/μ is the Reynolds number, We =
σ/(μU0) is the Weber number, Pa is the nondimensional am-
bient pressure, and τ = τs h0/(μU0) is the nondimensional
imposed shear stress. Clearly, τ will be zero for the non-shear-
imposed film flow [7]. To nondimensionalize the governing
equations, we have preferred U0 = ρg sin θh2

0/μ as the char-
acteristic velocity scale, which is obtained by balancing the
viscous term μ∂yyu and the streamwise gravity term ρg sin θ ,
h0 is the characteristic length scale, μU0/h0 is the characteris-
tic pressure scale, and h0/U0 is the characteristic time scale.

A. Base flow solution

To compute the base flow solution analytically, we assume
that the undisturbed flow is steady, unidirectional, and parallel
(see Fig. 2) with a constant liquid film layer thickness of
h(x, t ) = 1. In this situation, there is no cross-stream base
velocity [V (y) = 0]. The base flow assumptions simplify the
nondimensional governing equations (1)–(7) in the following
forms:

−∂x p + ∂yyu + 1 = 0, (8)

∂y p + cot θ = 0, (9)

u = 0, at y = 0, (10)

∂yu = τ, at y = 1, (11)

p = Pa, at y = 1. (12)

Solving Eq. (9) and using the boundary condition (12), we can
obtain the following base pressure solution:

P(y) = Pa + cot θ (1 − y). (13)

It should be noted that the base flow pressure is a function of
y alone. Hence, the term ∂x p is deleted from Eq. (8), reducing

FIG. 2. A schematic diagram of a steady two-dimensional shear-
imposed incompressible undisturbed viscous liquid film flowing
under the streamwise gravitational force per unit volume.
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it to the following form:

∂yyu + 1 = 0. (14)

After solving Eq. (14) and using the no-slip boundary con-
dition (10), we can obtain the following expression of the
streamwise base velocity:

U (y) = (cky − y2/2), (15)

where ck is a nondimensional constant. Clearly, to determine
the coefficient ck , we have not used the tangential stress
boundary condition (11) at y = 1. Actually, if this boundary
condition is used, we will lose the physical significance of
the coefficient ck . Moreover, the base shear stress, ∂yU = τ

at y = 1, is nonzero for the shear-imposed film flow, while
∂yU = 0 at y = 1 for the non-shear-imposed film flow. As our
purpose is to unify the results of film flows with and without
imposed shear stress in one form, we cannot use this boundary
condition. Otherwise, we will move on to the study of a
particular case [7,8,10]. Hence, the expression (15) of base ve-
locity is valid in both shear-imposed and non-shear-imposed
gravity-driven film flows. Now, the value of the streamwise
base velocity, U (y), at the liquid film surface, y = 1, can be
obtained as

U (1) = ck − 1/2, (16)

which implies

ck = U (1) + 1/2. (17)

Comparing with the expression of the leading-order phase
speed c0 of Smith [10] (given on page 473 in his refer-
ence), we can assert that the coefficient ck coincides with the
leading-order phase speed c0 of the surface mode. This result
will be justified further through the long-wave asymptotic
expansion [7].

III. PERTURBATION TECHNIQUE

Let us superimpose an infinitesimal perturbation on the
basic parallel film flow. Consequently, the flow variables of
the perturbation film flow can be decomposed as

u(x, y, t ) = U (y) + u′(x, y, t ),

v(x, y, t ) = v′(x, y, t ),

p(x, y, t ) = P(y) + p′(x, y, t ),

h(x, t ) = 1 + h′(x, t ),

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (18)

where the variables with prime notation denote the perturba-
tion flow variables, and the variables without prime notation
denote the base flow variables. Inserting (18) in (1)–(7) and
linearizing with respect to the base flow solution, we obtain
the following two-dimensional perturbation equations for the
gravity-driven viscous liquid film:

∂xu′ + ∂yv
′ = 0, (19)

Re(∂t u
′ + U∂xu′ + v′DU ) = −∂x p′ + (∂xxu′ + ∂yyu′), (20)

Re(∂tv
′ + U∂xv

′) = −∂y p′ + (∂xxv
′ + ∂yyv

′), (21)

u′ = v′ = 0, at y = 0, (22)

(∂yu′ + ∂xv
′ + h′D2U ) = 0, at y = 1, (23)

−p′ − h′DP + 2∂yv
′ − 2DU∂xh′ = We ∂xxh′, at y = 1,

(24)

∂t h
′ + U∂xh′ = v′, at y = 1, (25)

in which D = d/dy is the differential operator. Note that the
term DU is still retained in the perturbation normal stress
boundary condition (24) because DU is nonzero for a shear-
imposed film flow at the surface [DU = τ at y = 1]. In fact,
the above two-dimensional perturbation equations are valid
in viscous film flows with or without shear stress imposed at
the film surface [DU = 0 at y = 1 in the absence of applied
shear stress at the liquid film surface, i.e., when τ = 0]. The
perturbation normal component of velocity v′(x, y, t ) can be
determined from the perturbation mass conservation equa-
tion (19) by the following relation:

v′(x, y, t ) = −
∫ y

0
∂xu′dy. (26)

Substituting Eq. (26) in the perturbation evolution (25) for the
liquid film surface and using the Leibniz integral rule [15],
we get

∂t h
′ + U (1)∂xh′ + ∂x

∫ 1

0
u′dy = 0. (27)

As the disturbance is infinitesimally small and evolving
slowly downstream with respect to space and time, we can
assume O(∂x ), O(∂t ) � O(∂y) [9]. In other words, in the
leading order, the linearized two-dimensional perturbation
equations (19)–(25) are simplified into the following forms:

∂yyu′ = 0, (28)

u′ = 0, at y = 0, ∂yu′ = h′, at y = 1. (29)

For our convenience, we have written equations only for the
streamwise perturbation velocity. The solution of the pertur-
bation equation (28) with the help of boundary conditions (29)
becomes

u′(x, y, t ) = h′y, (30)

which shows that the leading-order streamwise perturbation
velocity component u′(x, y, t ) is linear in the cross-stream
direction y. After inserting the expression of u′(x, y, t ) in
Eq. (27), the perturbation kinematic equation can be converted
into the following form:

∂t h
′ + [U (1) + 1/2]∂xh′ = 0. (31)

Equation (31) represents a one-dimensional linear hyperbolic
wave equation, where the wave propagates with a constant
speed U (1) + 1/2, or equivalently, propagates with a speed
ck . Obviously, the above result is consistent with our statement
that the leading-order phase speed coincides with ck .

IV. ORR-SOMMERFELD EQUATION

In an analogous fashion with the work of Yih [7], we
introduce the perturbation stream function ψ ′(x, y, t ) from
the perturbation velocity components u′(x, y, t ) and v′(x, y, t )
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with the help of the perturbation mass conservation equa-
tion (19) by using the following relations:

u′ = ∂yψ
′, v′ = −∂xψ

′. (32)

Next, we assume the solution of the two-dimensional pertur-
bation equations (19)–(25) in the normal mode form:

ψ ′(x, y, t ) = φ(y) exp[ik(x − ct )] + c.c,

h′(x, t ) = η exp[ik(x − ct )] + c.c,

}
(33)

where c.c. denotes the complex conjugate. Here, k is the wave
number and c is the wave speed. Since we will perform tempo-
ral stability analysis, we will assume k is real, but c = cr + ici

is complex. Therefore, ci > 0 indicates a condition for linear
instability of base flow to infinitesimal disturbances. Other-
wise, it will be stable to infinitesimal disturbances if ci < 0.
Finally, ci = 0 implies a neutral stability condition for base
flow. After that, the normal mode solution (33) is inserted
in the perturbation equations (19)–(25) and the perturbation
pressure p′(x, y, t ) is eliminated from the momentum equa-
tions, which yield the following Orr-Sommerfeld equation and
associated boundary conditions for the gravity-driven viscous
liquid films [16]:

(D2 − k2)2φ = ikRe[(U − c)(D2 − k2) − D2U ]φ, (34)

φ = Dφ = 0, at y = 0, (35)

(D2 + k2)φ − η = 0, at y = 1, (36)

D3φ − 3k2Dφ − ikRe[(U − c)Dφ − DUφ] − ikη[k2We + cot θ − 2ikDU ] = 0, at y = 1, (37)

φ + (U − c)η = 0, at y = 1, (38)

in which φ(y) is the amplitude of the perturbation stream func-
tion ψ ′(x, y, t ) and η is the amplitude of the liquid film surface
deformation h′(x, t ). Again, the term DU is kept in Eq. (37)
because DU is nonzero for a shear-imposed film flow at the
surface [DU = τ at y = 1]. Hence, the above Orr-Sommerfeld
equation is valid in viscous film flows with or without shear
stress imposed at the liquid film surface [DU = 0 at y = 1 in
the absence of applied shear stress at the liquid film surface].

A. Long-wave solution

The Orr-Sommerfeld equation with boundary conditions
(34)–(38) is solved by using the long-wave asymptotic expan-
sion in the limit of k → 0. It is important to mention here
that we have used the expression, U (y) = (cky − y2/2), of
streamwise base velocity to solve the Orr-Sommerfeld bound-
ary value problem analytically because this expression is valid
in both shear-imposed and non-shear-imposed film flows. On
the basis of long-wave analysis, we expand the flow variables
in the following ways:

φ(y) = φ0(y) + kφ1(y) + · · · ,

c = c0 + kc1 + · · · ,

η = η0 + kη1 + · · · .

⎫⎪⎬
⎪⎭ (39)

Substituting the above series expansions (39) in Eqs. (34)–
(38), we consider the leading-order equations, i.e., equa-
tions of O(k0):

D4φ0 = 0, (40)

φ0 = Dφ0 = 0, at y = 0, (41)

D2φ0 = η0, D3φ0 = 0, φ0 + (U − c0)η0 = 0, at y = 1.

(42)

The solution of the leading-order equations (40)–(42) yields

φ0(y) = η0y2/2, c0 = U (1) + 1/2 = ck . (43)

The analytical expression (43) reveals that the leading-order
phase speed, c0, of the surface mode is exactly equal to ck .
Next, we consider the first-order equations, i.e., equations of
O(k1):

D4φ1 = iRe[(U − c0)D2φ0 + φ0], (44)

φ1 = Dφ1 = 0, at y = 0, (45)

D2φ1 = η1, at y = 1, (46)

D3φ1 = iRe[(U − c0)Dφ0 − DUφ0] + iη0 cot θ, at y = 1,

(47)

φ1 + (U − c0)η1 − c1η0 = 0, at y = 1. (48)

Here, we have assumed that the Weber number We is of order
O(1), and thereby, the term involving the Weber number does
not appear in the first-order normal stress boundary condition
(47). However, this term is essential for computing the cut-off
wave number, or equivalently, for figuring out the second
boundary of the unstable region when the Reynolds number
exceeds the critical value Rec. After solving the first-order
equations (44)–(47), one can obtain the expression of φ1(y),
which is later inserted in the first-order kinematic boundary
condition (48). This leads to the expression of c1 in the
following form:

c1 = i
[

2
15 c0Re − 1

3 cot θ
]
. (49)

Finally, we use the neutral stability condition, ci ≈ |kc1| = 0,
in the limit of k → 0, which evaluates the expression of the
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TABLE I. Expression of the critical Reynolds number, Rec =
5

2c0
cot θ , for the surface mode corresponding to different types of

falling film flow problems. This expression is calculated in the long-
wave limit (k → 0).

Falling film models c0 Rec = 5
2c0

cot θ

Yih [7] 3 5
6 cot θ

Benjamin [8] 2 5
4 cot θ

Ruyer-Quil and Manneville [9] 1 5
2 cot θ

Smith [10] (1 + τ ) 5
2(1+τ ) cot θ

critical Reynolds number, Rec, for the surface mode

Rec = 5

2c0
cot θ. (50)

Equation (50) demonstrates that the critical Reynolds number,
Rec, above which the surface instability begins, is explicitly
dependent on the leading-order phase speed c0 and the incli-
nation angle θ . Since the expression of the critical Reynolds
number (50) is computed by using the general streamwise
base velocity profile U (y) = (cky − y2/2), we can expect that
it will recover all the existing results of shear-imposed and
non-shear-imposed film flows. To examine that, the critical
Reynolds number for the different types of falling film flows is
calculated in the long-wave limit based on the current formula
(50) and reported in Table I. From the results provided in
Table I, we can conclude that gravity-driven viscous liquid
film with or without imposed shear stress can be combined
in a class of flow problems whose critical Reynolds number
is Rec = 5

2c0
cot θ . We have further validated our analytical

results with the numerical results of Bruin [17] in Table II
when the inclination angle is sufficiently small (given on
page 269 in his reference). Clearly, the current expression
provides an accurate value of the critical Reynolds number
for the surface mode when we compare our results with the
numerical results of Bruin [17]. If we set θ = π/2, the critical
Reynolds number Rec becomes zero, and therefore, the falling
film on a vertical substrate will be unstable to an infinitesimal
disturbance for any nonzero value of the Reynolds number.
Furthermore, the expression [Rec c0/ cot θ ] becomes a fixed
constant value of 5/2 for the gravity-driven film flowing
down an inclined plane with or without shear stress imposed
at the liquid film surface (θ �= π/2). To support our claim,
the analytical result is further verified through the numeri-
cal solution of the Orr-Sommerfeld boundary value problem
(34)–(38) for the shear-imposed film flow [16]. As a result,
in the numerical simulations, we have taken DU = τ at y = 1
because the results are computed for the shear-imposed film

TABLE II. Magnitude of the critical Reynolds number, Rec =
5

2c0
cot θ , for the surface mode when the inclination angle keeps a

small value. Here, 1′ = (1/60)◦ and c0 = 2.

Falling film model θ = 1◦ θ = 4′ θ = 3′ θ = 1′ θ = 0.5′

Current result 71.6125 1074.3 1432.39 4297.18 8594.37
Bruin [17] 72 1070 1430 4300 8600

FIG. 3. Variation of the expression Re cr/ cot θ on a semilog
scale with wave number k when the imposed shear stress τ varies.
Solid, dashed, and dotted curves represent the results for τ = 0,
τ = 0.1, and τ = 0.2, respectively. The solid point represents the
value, Re c0/ cot θ = 5/2, at k = 0.

flow. To compute the numerical results, we have used the
continuation software AUTO 07p [18]. In this continuation
technique, we have provided a known solution for k = 0, i.e.,
the leading-order long-wave solution of the Orr-Sommerfeld
equation is specified as an initial solution. Thereby, we have
used cr = (1 + τ ) and ci = 0 at k = 0 in the STPNT sub-
routine of the AUTO software. After that, we continue the
parameters up to the desired values. Since this is a contin-
uation technique, the initial solution automatically captures
the exact solution for a nonzero k as the parameters continue.
In Fig. 3, we have depicted the variation of the expression
[Re cr/ cot θ ] on a semilog scale with wave number k when
the imposed shear stress τ changes, where cr is the phase
speed of the surface mode. Here, the numerical results are pro-
duced for the glycerin-water mixture with kinematic viscosity
ν = 5.02 × 10−6 m2/s, surface tension γ = 69 × 10−3 N/m,
density ρ = 1130 kg/m3, and inclination angle θ = 5.6◦ [19].
Clearly, all the different curves for the expression Re cr/ cot θ
approach the fixed constant value, Re c0/ cot θ = 5/2, in the
long-wave limit of k → 0, because the phase speed cr of the
surface mode tends to c0 at k → 0. This fact is completely
in favor of the long-wave analytical result given in Eq. (50).
Moreover, we can observe that all the curves coalesce in
the neighborhood of k = 0. Keeping this result in mind, we
introduce a new parameter, which can be called the modified
Reynolds number, defined as

ReM = Re c0

cot θ
, (51)

provided θ �= π/2. The reason behind the choice of this
new parameter, ReM , in the long-wave regime (k → 0) is
that [Re cr/ cot θ ] tends to [Re c0/ cot θ ] as the wave num-
ber k approaches zero. Using this new parameter, ReM , the
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FIG. 4. Variation of the expression k2[ 2
15 Re cr − 1

3 cot θ ] with
wave number k when the imposed shear stress τ varies. Solid,
dashed, and dotted curves represent the results for τ = 0, τ = 0.1,
and τ = 0.2, respectively. The solid point represents the value,
k2[ 2

15 ReM − 1
3 ] cot θ = 0, at k = 0.

first-order expression (49) can be recast into the following
form:

c1 = i
[

2
15 ReM − 1

3

]
cot θ. (52)

Hence, the basic parallel flow of falling film with or without
imposed shear stress under long-wave infinitesimal distur-
bances will be linearly unstable if ReM > 5/2 when θ �= π/2.
Otherwise, it will be linearly stable to long-wave infinitesimal
disturbances if ReM < 5/2. It is evident that the expression
of c1 is explicitly independent of the imposed shear stress τ

even for a shear-imposed film flow [10], but it depends on the
new parameter ReM and the inclination angle θ . As the phase
speed cr tends to c0 at k → 0, the mathematical expression
k2[ 2

15 Re cr − 1
3 cot θ ] approaches the temporal growth rate

kci = |k2c1| = k2
[

2
15 ReM − 1

3

]
cot θ,

in the limit of k → 0. For this reason, we have computed
the expression k2[ 2

15 Re cr − 1
3 cot θ ] numerically for different

values of the imposed shear stress τ . The results are displayed
in Fig. 4. As expected, all the different curves for the expres-
sion k2[ 2

15 Re cr − 1
3 cot θ ] merge in the small neighborhood of

k = 0 when the imposed shear stress τ changes, and they at-
tain a constant value |k2c1| = k2[ 2

15 ReM − 1
3 ] cot θ at k → 0.

Apparently, it seems that the surface instability for the current
class of flow problems (gravity-driven viscous liquid films
with or without imposed shear stress) is dominated by the
new parameter ReM in the long-wave regime and its critical
value is a fixed constant of 5/2, which is independent of the
imposed shear stress even if a constant shear stress is applied
at the liquid film surface.

V. CONCLUSIONS

The studies of gravity-driven viscous falling films with or
without imposed shear stress are revisited to unify the existing
results of the critical Reynolds number for the surface mode in
one form. The approach is fully analytical. However, the nu-
merical simulations are also carried out for the shear-imposed
film flow. We see that the critical Reynolds number, Rec, for
the surface mode depends not only on the inclination angle,
θ , but also on the leading-order phase speed, c0. Its new
analytical expression is [5/(2c0)] cot θ , which clearly recovers
the previous results for gravity-driven incompressible viscous
liquid films with and without imposed shear stress as soon
as the expression of leading-order phase speed is substituted.
The numerical results of shear-imposed film flow are also
presented to support the analytical theory. According to our
results, we can predict that gravity-driven falling films with
or without imposed shear stress belong to a class of flow
problems whose linear stability or instability is triggered by a
new parameter ReM = Re c0

cot θ in the long-wave regime (k → 0)
when θ �= π/2. More specifically, the basic parallel flow of
the aforementioned class of flow problems will be susceptible
to instability by infinitesimal disturbances if ReM > 5/2. In-
deed, the critical value of ReM is a fixed constant of 5/2, and
it is independent of the imposed shear stress even if a constant
shear stress is imposed at the film surface in the streamwise
direction.
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