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From cavitation to astrophysics: Explicit solution of the spherical collapse equation
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Differential equations of the form R̈ = −kRγ , with a positive constant k and real parameter γ , are fundamental
in describing phenomena such as the spherical gravitational collapse (γ = −2), the implosion of cavitation
bubbles (γ = −4), and the orbital decay in binary black holes (γ = −7). While explicit elemental solutions
exist for select integer values of γ , more comprehensive solutions encompassing larger subsets of γ have been
independently developed in hydrostatics (see Lane-Emden equation) and hydrodynamics (see Rayleigh-Plesset
equation). I here present a universal explicit solution for all real γ , invoking the beta distribution. Although stan-
dard numerical ordinary differential equation solvers can readily evaluate more general second-order differential
equations, this explicit solution reveals a hidden connection between collapse motions and probability theory
that enables further analytical manipulations, it conceptually unifies distinct fields, and it offers insights into
symmetry properties, thereby enhancing our understanding of these pervasive differential equations.

DOI: 10.1103/PhysRevE.109.065102

I. INTRODUCTION

It may be surprising that the 21st century still holds criti-
cally important differential equations, which admit compact,
but barely known, explicit solutions. In this paper, I discuss
such a family of equations that govern all physical systems
described by a one-dimensional time-dependent coordinate
R(T ), subject to a restoring force that varies as a power law of
that coordinate. Formally, this is expressed by the nonlinear
ordinary differential equation (ODE),

R̈ = −kRγ , (1)

with fixed k ∈ R+ and γ ∈ R. Dots denote derivatives with
respect to time T . Using a capital T , normally reserved
for temperature, will help distinguish this time from a di-
mensionless time t (Sec. II A). We may call Eq. (1) the
“spherical collapse equation” by virtue of its most common
applications.

I will restrict the discussion to the case where R exhibits
a finite maximum R0—in many physical applications this is
equivalent to. stating that the system is “bound.” Equation (1)
being an autonomous ODE, we can always choose the origin
of time to coincide with R = R0, in which case the initial
conditions read,

R(0) = R0 and Ṙ(0) = 0. (2)

Equations (1) and (2) are manifestly time symmetric, i.e.,
R(T ) = R(−T ), where a solution exists. Often most relevant
is the time interval T ∈ [0, Tc], from the maximum radius
to the (first) collapse point, R(Tc) = 0. I will focus on this
interval for most of this paper.

Table I lists textbook examples of physical systems
governed by Eq. (1). Many of them are encountered at un-
dergraduate levels and used to illustrate cases, whose solution
R(T ) must be obtained via numerical ODE solvers, such

as Runge-Kutta solvers. The existence, let alone the form,
of an explicit solution is rarely noted, except, of course, in
trivial cases like the linear free-fall (γ = 0) and harmonic
oscillator (γ = 1).

An iconic example of Eq. (1) in astrophysics is the gravi-
tational collapse of a uniform collisionless sphere (γ = −2),
the so-called top-hat spherical collapse model [1]. A simple
parametric solution, {T (θ ), R(θ )} [2], has become the default
solution in cosmology. Its transcendental nature implies that
algebraic solutions of Eq. (1) do not generally exist, yet the
search for nonalgebraic [3] and approximate [4] solutions
continues.

Barely known to astrophysicists, an analogous collapse
equation (but with γ = −4) has long been studied in hydro-
dynamics [5]. This equation, named after Lord Rayleigh [6],
describes the collapse of an empty spherical cavity in an ideal
incompressible liquid. Recent approximations [7] have led to
the development of an infinite series that rapidly converges
toward the exact solution [8]. Shortly after, others presented
the first closed-form solution for cavities in three [9] and
N � 3 [10] dimensions, in terms of hypergeometric functions.

Equation (1) is also encountered in static systems. For
example, it is equivalent to the one-dimensional Lane-Emden
equation [11,12], describing the density profile of a self-
gravitating polytropic gas in a thin tube in hydrostatic
equilibrium. A classic solution for γ > −1 has been found
in the context of galactic disks [13].

Building on the special solutions found independently in
different fields, this paper presents a compact general ex-
plicit solution of Eq. (1). While overall straightforward, the
path to this solution involves some subtleties that enable
the generalization to all real γ . This allows us to discuss
various seemingly unrelated basic problems in physics and
astrophysics in unison. Section II overviews reformulations,
useful for the derivation of the general solution in Sec. III and
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TABLE I. Textbook examples of systems governed by Eqs. (1) and (2). Moving objects described by R(T ) are shown in blue, whereas
static objects described by this equation are shown in red. T0 is the characteristic physical scale (normally a characteristic time), such that
Eq. (1) reduces to the dimensionless Eq. (5) on normalization via Eq. (3). Where T0 depends on R0, the latter is the maximum, initial value of
R. In the case of the polytrope (bottom row), R and T have different meanings: R := ρ1/n is a measure of the gas density and T is the distance
from the center of mass. The last column shows the dimensionless collapse time, τ , such that the physical collapse time is Tc = τT0, where
R(Tc ) = 0. For most examples, analogous cases with other forces, such as electric forces instead of gravitational ones, can be found.

Physical system Schematic Meaning of R Time scale T0 γ τ

Cavitation bubble Bubble radius R0
√

ρ/�p, where ρ is the −4 ≈
Spherical cavity—empty or with low density of the liquid and 0.91468
constant inner pressure—imploding under �p = p∞ − pv , with far-field
the pressure of an incompressible pressure p∞ and constant
inviscid liquid without surface tension bubble pressure pv � p∞

Generalization to a spherical bubble (N − 2)−1/2R0
√

ρ/�p −N − 1 [Eq. (17)]
in N � 3 dimensions (e.g., Ref. [14])

Gravitational collapse Radius of
√

3/(4πGρ0 ), where ρ0 is the −2 π/
√

8 ≈
Collapse of a uniform sphere, also sphere initial density at the onset 1.11072

known as spherical top-hat, subjected of the collapse and G is the
only to gravitational forces gravitational constant

Two-body collision Distance between R3/2
0 /

√
G(M1 + M2), where −2 π/

√
8 ≈

Two point masses in gravitational the centers Mi denote the two masses 1.11072
free-fall toward each other, on of the two and G is the gravitational
a straight line without angular masses constant
momentum

Free-fall in spherical potential Distance from
√

(L/R0)α/α · R0/V , where L α − 1 [Eq. (17)]

Radial free-fall in a spherically symmetric center of and V are the length and velocity

gravitational power-law potential, potential scales of the potential
φ ∼ Rα , with index α �= 0 φ(R) = sgn(α) · V 2 · (R/L)α

Same for a logarithmic potential, e.g., R0/V , where V is the −1
√

π/2 ≈
the potential of a singular isothermal velocity scale in φ(R) 1.25331
sphere = V 2 ln(R/L)

Free-fall in uniform field Height from the
√

R0/g, where g is the norm 0
√

2 ≈
Straight fall in a constant acceleration ground of the constant acceleration, 1.41421

field, such as a vertical drag-free drop e.g. g = 9.81m s−2 on Earth
of an object on Earth

Acceleration by a dipole charge Distance
√

MR4
0/(4εkeQq), where M −3 1

Straight fall of a free charge toward a between free is the mass of the free charge
fixed dipole of charges, separated by a charge and Q>0, q>0 the dipole charge
distance ε � R along the trajectory dipole center and ke the Coulomb constant

Relativistic orbital decay Distance between
5c5R4

0
64

√
3G3M1M2 (M1+M2 )

, with −7 ≈
Orbital decay by gravitational radiation the centers Mi the two masses, G the 0.74683

of two masses at non-relativistic of the two gravitational constant and c
velocities, initially on circular orbits masses the speed of light

Harmonic oscillator Distance from
√

M/K , where M is the mass +1 π/2 ≈
Motion of a mass attached to an ideal the equilibrium and K the spring constant 1.57080
spring, initially at rest in an extended position
or compressed state

Polytrope ρ1/n, where ρ is
√

(1 + n)KR1−n
0 /(4πG) is n [Eq. (17)]

Density profile of a self-gravitating the gas density a length scale set by the parameters
polytropic gas in one dimension in and n the index of the equation of
hydrostatic equilibrium of p = Kρ1+1/n state p = Kρ1+1/n
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its discussion in Sec. IV. Section V concludes with a brief
synthesis and outlook.

II. SETTING THE STAGE

Before delving into the solutions of Eq. (1), it is worth
recalling basic, but pivotal, remarks on equivalent reformula-
tions. These will help the derivation (Sec. III) and discussion
(Sec. IV) of the solutions.

A. Dimensionless form

The first remark is that it is convenient to work in dimen-
sionless position and time coordinates, defined as

r := R

R0
and t := T

T0
, (3)

where R0 = R(0) is the maximum, initial value of R [cf.
Eq. (2)] and

T0 :=
√

k−1R1−γ

0 (4)

is the natural time constant. With this normalization, Eq. (1)
becomes

r̈ = −rγ , (5)

and the initial conditions [Eq. (2)] become

r(0) = 1 and ṙ(0) = 0. (6)

It is understood that dots above r(t ) now denote derivatives
with respect to t , rather than T . To help the following deriva-
tions, we introduce the variable

τ := Tc

T0
(7)

as a shorthand for the dimensionless collapse time.
The constant k has conveniently disappeared in the dimen-

sionless form of Eq. (5), reducing the family of ODEs to
a single control parameter γ . The natural disappearance of
k brings to light the inherently scale-free nature of Eq. (1)
implied by its power-law structure. This is the deeper reason
for Eq. (1) to be applicable from microscopic to astrophysical
scales.

As a textbook example, let us consider the gravitational
collapse of a uniform pressure-free sphere, initially at rest
with radius R(0) = R0. The Newtonian equation of motion
reads

d2R

dT 2
= −GM

R2
, (8)

which is Eq. (1) with γ = −2 and k = GM. On expressing R

and T in their natural units R0 and T0 =
√

R3
0/(GM ), Eq. (8)

becomes indeed r̈ = −r−2.

B. Equivalent formulations

The second remark is that Eq. (5), and thus Eq. (1), can be
rewritten in other differential forms.

1. Integral of motion

Most importantly, Eq. (5) always exhibits an integral of
motion,

0 =
{

1+γ

2 ṙ2 + r1+γ − 1 if γ �= −1

ṙ2 + 2 ln r if γ = −1.

(9a)
(9b)

If differentiated with respect to t and solved for r̈, then Eq. (9)
becomes Eq. (5), except if ṙ = 0. Since Eqs. (9) are first-
order differential equations, only one boundary condition is
required, such as r(0) = 1.

2. Hybrid differential equation

If γ �= −1, then a hybrid ODE, mixing first and second
derivatives, can be obtained by rewriting r1+γ in Eq. (9a) as
rrγ = −rr̈ [Eq. (5)], hence

1 − 1 + γ

2
ṙ2 + rr̈ = 0. (10)

This is, for example, the standard form of the equation de-
scribing the collapse of a spherical cavitation bubble without
viscosity and surface tension [6], normally written in dimen-
sional form,

3

2

(
dR

dT

)2

+ R
d2R

dT 2
+ �p

ρ
= 0, (11)

where �p is the driving pressure and ρ the constant liquid
density (see first row in Table I). Expressed in natural units,
R0 = R(0) and T0 = R0

√
ρ/�p, Eq. (11) becomes Eq. (10)

with γ = −4. Thus Eq. (11) is equivalent to Eq. (1) with γ =
−4 and k = R3

0�p/ρ.

3. Lagrangian

Finally, with an eye on applications in physics, it is
worth noting that Eq. (5) derives from a time-independent
Lagrangian,

L(r, ṙ) = ṙ2

2
− φ(r), (12)

with the potential, defined up to an additive constant,

φ(r) =
{

r1+γ /(1 + γ ) if γ �= −1
ln r if γ = −1

. (13)

The Euler-Lagrange equation, d
dt (∂L/∂ ṙ) = ∂L/∂r, then gen-

erates Eq. (5) for all γ .
Selected potentials φ(r) are shown in Fig. 1. The existence

of two regimes, separated by the critical value γ = −1, is the
fundamental reason for the qualitatively different behavior of
r(t ) in these regimes. These regimes will be discussed in more
detail in Sec. IV A.

III. GENERAL SOLUTION

In this section, I present compact general solutions of
Eq. (1) with initial conditions of Eq. (2), following an ap-
proach similar to Ref. [9] but for general real parameters γ .
For convenience, all derivations and solutions are presented
for the dimensionless form in Eq. (5) with initial conditions
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FIG. 1. Potential φ(r), given in Eq. (13), for different values of
γ , equally spaced by �γ = 0.2. There are qualitatively distinct fam-
ilies at γ < −1 (red-yellow) and γ > −1 (blue-green), as discussed
in Sec. IV A. They are separated by an isolated critical curve for
γ = −1. Thin black lines highlight the colored curves with a printed
γ value.

stated in Eq. (6). Any solution r(t ) can be transformed to
the corresponding dimensional solution R(T ) via the linear
transformations of Eq. (3).

A. Inverse solution t (r)

1. Cases γ �= −1

This case can be solved, starting from the integral of mo-
tion in Eq. (9a), by reduction to quadrature, a standard method
expressing the solution of ODEs in terms of integrals. For gen-
eral first-order ODEs, ṙ(t ) = f (r(t ), t ), the integrals found
in this way must be evaluated numerically. Interestingly,
however, the limited form of Eq. (5) allows us, through ade-
quate substitutions, to express the emerging integrals through
the incomplete beta function B(x; α, β ) (derivation in Ap-
pendix A). This special function benefits from an extensive
mathematical literature available for further analytical ma-
nipulations of the solution. Moreover, by introducing the
shorthands

η = 1

|1 + γ | , (14)

and

α = 1

4
+ 3 − γ

4|1 + γ | , (15)

it turns out possible to compact the explicit solution r(t ) to
a universal form, valid for all γ �= 1, hence simplifying and
generalizing state-of-the-art hypergeometric solutions for γ =
−4 [9] and lower negative integer γ [10].

Explicitly, Eqs. (5) and (6) solve to

t (r) = τ −
√

η

2
B

(
r|1+γ |; α,

1

2

)
, (16)

following the derivation provided in Appendix A. The col-
lapse time τ is obtained by solving Eq. (16) for τ at

TABLE II. List of dimensionless collapse times τ , given by
Eqs. (17) and (19), and dimensionless collapse point velocities ṙ(τ ),
given by Eq. (24). Exact solutions are given where they are algebraic,
at least up to a factor π .

γ τ (exact) τ (num) ṙ(τ ) (exact) ṙ(τ ) (num)

−∞ 0 0 −∞ −∞
−100 – 0.22019512 −∞ −∞
−10 – 0.64597784 −∞ −∞
−4 – 0.91468136 −∞ −∞
−3 1 1 −∞ −∞
−2 π/

√
8 1.11072073 −∞ −∞

−5/3 2/
√

3 1.15470054 −∞ −∞
−3/2 3π/8 1.17809725 −∞ −∞
−4/3 π

√
75/512 1.20239047 −∞ −∞

−1
√

π/2 1.25331414 −∞ −∞
−2/3

√
128/75 1.30639453 −√

6 −2.44948974
−1/2 4/3 1.33333333 −2 −2
−1/3 π

√
3/4 1.36034952 −√

3 −1.73205081
0

√
2 1.41421356 −√

2 −1.41421356
1 π/2 1.57079633 −1 −1
2 – 1.71731534 −√

2/3 −0.81649658
3 – 1.85407468 −1/

√
2 −0.70710678

4 – 1.98232217 −√
2/5 −0.63245553

10 – 2.62843161 −√
2/11 −0.42640143

100 – 7.20340190 −√
2/101 −0.14071951

∞ ∞ ∞ 0 0

(r, t ) = (1, 0),

τ (γ ) =
√

η

2
B

(
α,

1

2

)
. (17)

Here B(α, β ) is the (complete) beta function, i.e., the incom-
plete B(x; α, β ) evaluated at x = 1. Selected explicit values of
τ are listed in Table II.

Substituting Eq. (17) back into Eq. (16), the latter
can be transformed to the special solution for γ > −1
found in modeling polytropic gas densities in galactic
disks [13].

2. Special case γ = −1

In this case, Eq. (9b) integrates to

t (r) = τ (−1) erf (
√− ln r ), (18)

where

τ (−1) =
√

π/2 (19)

is the collapse time, reached for r → 0+. This collapse time is
equal to the limit of Eq. (17) for γ → −1. Likewise, Eq. (18)
is the limit of Eq. (16) for γ → −1, showing that these singu-
larities of Eqs. (16) and (17) at γ = −1 are removable.

B. Explicit solution r(t )

To invert the solutions t (r) it is convenient to normalize
Eq. (16) by τ , which yields

t

τ
= 1 − I

(
r|1+γ |; α,

1

2

)
, (20)
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FIG. 2. Exact solutions of the normalized collapse Eq. (5)
with initial conditions of Eq. (6), evaluated on t ∈ [0, τ (γ )] using
the explicit Eq. (21). Colored curves correspond to different val-
ues of γ , separated by �γ = 1. The dashed vertical line marks
the collapse time

√
π/2, corresponding to the critical exponent

γ = −1 that separates the divergent behavior of ṙ(τ ) from the
convergent one.

where I (x; α, β ) ≡ B(x; α, β )/B(α, β ) is called the
regularized incomplete beta function [a simple but useful
step pointed out by Roberto Iacono (private communication)].
Equations (20) and (18) can be readily inverted to a compact
general explicit solution in terms of well-known special
functions,

r(t ) =
{

Q
[
1 − |t |

τ (γ ) ; α, 1
2

]η
if γ �= −1

exp[−erfi2(
√

2/πt )] if γ = −1,

(21a)

(21b)

where erfi(x) is the inverse error function and Q(x; α, β ) is the
inverse regularized incomplete beta function. Equation (21b)
is the limit of Eq. (21a) for γ → −1, again showing that this
singularity of Eq. (21a) is of a removable type.

The absolute value |t | in Eq. (21a) does not follow from
Eq. (20), only valid for t ∈ [0, τ ]. It is an ad hoc extension
of r(t ) to the domain t ∈ [−τ, τ ], exploiting the time-reversal
symmetry of Eqs. (5) and (6). Equation (21b) is already time
symmetric and hence valid on t ∈ [−τ, τ ].

The significance of Eq. (21) relies in the fact that
the regularized incomplete beta function I (x; α, β ) is the
cumulative density function of the beta distribution, a
common distribution function in probability theory, re-
lated to, but not to be confused with, the beta function.
Hence, the function Q(x; α, β ) is the quantile function of
the beta distribution. This connection to the beta distri-
bution, which has been intensively studied in probability
theory, makes Eq. (21) a practical solution for further
analytical manipulations. Moreover, the quantile function
Q(x; α, β ) is readily accessible to all modern program-
ming languages, making this solution easy to implement.
Two examples in PYTHON and R code are given in
Appendix B.

Figure 2 shows r(t ) on the interval t ∈ [0, τ (γ )] for all
integer γ from −4 to +4. Key properties of these solutions
will be discussed in Sec. IV.

C. Noteworthy special solutions

For completeness, I note that for select values of γ ,
Eq. (21a) can be reduced to well-known more compact
solutions,

r(t ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
1 − t2 if γ = −3

1 − t2/2 if γ = 0
cos(t ) if γ = 1

cn
(
t, 1

2

)
if γ = 3,

(22a)
(22b)

(22c)

(22d)

where cn(x, y) is the Jacobi elliptic cosine function.
To my knowledge, Eqs. (22a)–(22c) are the only explicit

closed-form solutions, i.e., solutions in terms of commonly
accepted basic functions. These three functions respectively
describe an arc of a circle [Eq. (22a)], a parabola [Eq. (22b)],
and a harmonic oscillation [Eq. (22c)]. Textbook examples of
corresponding physical systems are given in Table I.

Equation (22d) is a special case of the Duffing equa-
tion [15], describing an undamped and unforced anharmonic
oscillator. General solutions in terms of the Jacobi elliptic
family have recently been derived [16].

For some other values of γ , parametric solutions have been
found well before explicit solutions. A famous example is the
case of γ = −2, describing, e.g., the spherical gravitational
collapse (see Table I). In this case [2],

t = θ + sin θ√
8

, r = 1 + cos θ

2
. (23)

Varying θ from 0 to π generates the collapse phase, whereas
varying it from −π to 0 generates the symmetric growth
phase. More lengthy parametric solutions have also been pre-
sented for other nontrivial cases, such as empty spherical
cavitation bubbles (γ = −4) [17].

IV. DISCUSION

The general solution of Eqs. (5) and (6) given by Eq. (21)
warrants a brief discussion. As a preliminary remark, the lin-
ear transformation [Eq. (3)] between the normalized form r(t )
and its dimensional analog R(T ) makes it straightforward to
apply all properties of r(t ) to R(t ) and vice versa. For instance,
as mentioned in Sec. I, any solution of Eqs. (1) and (2) is in-
variant under time reversal. This symmetry equally applies to
dimensionless coordinates, i.e., r(t ) = r(−t ), for all t , where
a solution r(t ) exists. For efficiency, I will therefore limit the
discussion in this section to the normalized form r(t ) and to
positive times.

A. Behavior at collapse point

As illustrated in Fig. 2, the steepness of the func-
tion r(t ) monotonically increases as the time sweeps from
t = 0 (r = 1) to the collapse time t = τ (r = 0). Equation (9)
shows this immediately and reveals that in the limit t → τ−,
the velocity ṙ becomes

ṙ(τ ) =
{

−√
2/(1 + γ ) if γ > −1

−∞ if γ � −1
. (24)

Some explicit values of ṙ(τ ) are listed in Table II.
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The divergent behavior of ṙ(τ ) for γ � −1, which can
often be interpreted as a positively diverging kinetic energy
(∝ ṙ2), is mimicked by a negatively diverging potential φ(r).
In fact, following Eq. (13),

lim
r→0+

φ(r) =
{

0 if γ > −1
−∞ if γ � −1

, (25)

as is apparent in Fig. 1.
Equations (24) and (25) highlight the existence of two

distinct regimes in the domain γ ∈ R, separated by the critical
value γ = −1. This value corresponds to the only singularity
of Eq. (21a), which is removed by Eq. (21b). The dimension-
less collapse time for γ = −1 is exactly

√
π/2 [Eq. (19)], the

value shown by the dashed vertical line in Fig. 2. Following
Eq. (24), all curves reaching r = 0 to the left of this line do so
vertically, whereas those to the right of the line come down at
a finite slope.

The two regimes separated by γ = −1 correspond to dif-
ferent classes of physical problems (cf. Table I), explaining
why, to my knowledge, they have never been addressed si-
multaneously in previous literature.

The regime γ < −1, sometimes including γ = −1, often
describes a spherical collapse—gravitational or hydrody-
namic in nature (see Table I). In this case, the collapse motion
r(t ) near t = τ is sometimes referred to as “violent collapse”
or “catastrophic collapse.” This description is quite literal, a
sad example being the implosion of the Titan submersible near
the wreck of the Titanic in the North Atlantic Ocean (June
18, 2023). This implosion was likely approximated by Eq. (1)
with γ = −4, predicting a collapse time Tc ≈ 5 ms, based on
a capsule radius R0 ≈ 1 m, a driving pressure �p ≈ 350 bar
and a water density ρ ≈ 103 kg m−3.

The infinite velocity at the collapse point for γ � −1 is
unphysical, as all real-world systems modelled by Eq. (1) start
deviating from this model near the collapse point. Secondary
mechanisms, which might have been negligible for most of
the collapse motion, suddenly become dominant, prevent-
ing the singularity. For example, in the case of collapsing
cavitation bubbles, these mechanisms include shock waves
(liquid compressibility), sonoluminescence, sonochemistry,
vapor compression, and microjetting [18]. In the case of
matter collapsing by self-gravity, the mechanisms preventing
the divergence could be asymmetries, smoothing the collapse
point, and pressure forces, possibly enhanced by strong ra-
diation and phase transitions, e.g., to a neutron star. If these
mechanisms cannot prevent Ṙ(T ) from approaching the speed
of light, then general relativistic effects take over, transform-
ing the collapsing mass into a static black hole [19]. This is
likely the fate of the cores of massive stars (�25M�) [20]
and possibly also primordial gas clouds (∼105M�), collapsing
directly into black holes [21].

B. Continuation past collapse point

The solution of Eq. (21) is valid only on the interval
t ∈ [−τ, τ ]. However, Eq. (5) integrates smoothly past the
collapse point t = τ to negative values of r if γ ∈ N0.

For non-negative even γ , the sign of r̈ remains negative
as r < 0. Hence the “collapse” motion continues through
the point t = τ with ever increasing velocity, such that

FIG. 3. Dimensionless collapse time τ = Tc/T0 as a function of
the control parameter γ . Plotted in semilog coordinates, this function
exhibits a nontrivial point symmetry about (γ = −1, τ = √

π/2),
marked by the dashed lines. See Sec. IV C.

limt→∞ ṙ = −∞. The simplest example would be an object
dropped to the ground (defined as R = 0) into a vertical shaft
(R < 0) with constant acceleration g (γ = 0, see Table I).

For positive odd γ , however, r(t ) passes through r(τ ) = 0,
while inverting the sign of r̈. Symmetry considerations imply
that r(t ) then describes an oscillating curve of wavelength
λ = 4τ , made of reflections of the arc r(t ∈ [0, τ ]). This
curve satisfies r(0) = 1, r(τ ) = 0, r(2τ ) = −1, r(3τ ) = 0,
r(4τ ) = 1, and so forth. For γ = 1, the oscillation is harmonic
[Eq. (22c)], and for all larger odd γ , it is anharmonic [e.g.,
Eq. (22d)].

Noninteger positive γ generally lead to complex solutions
r(t ) ∈ C if integrated past the collapse point. In fact, im-
mediately past this point, the acceleration has the complex
argument arg(r̈) = (γ + 1)π , implying that its imaginary part
only vanishes for integer γ .

For negative γ , Eq. (21) diverges as r → 0. This is a
coordinate singularity, which can, in principle, be removed
through regularization techniques, such two-body and N-body
regularization in astrophysical gravitational simulations [22].

C. Collapse time symmetry

Figure 3 shows the dimensionless collapse time τ as a func-
tion of the control parameter γ . With τ on a logarithmic axis,
this function becomes a symmetric S shape, which owes its
symmetry to the beta function identity B(α, β )B(α + β, 1 −
β ) = π/[α sin(πβ )]. Applied to Eq. (17), this identity implies
that any point (γ , τ (γ )) can be mapped onto a corresponding
point,

(γ , τ ) →
(

γ ′ = −2 − γ , τ ′ = π

2τ

)
, (26)

which also lies on the function τ (γ ). This mapping is symmet-
ric under the exchange of primed and nonprimed variables.
The only invariant point of this symmetry transformation,
γ = γ ′ = −1 and τ = τ ′ = √

π/2, is marked by the dashed
lines in Fig. 3. This point coincides with the special case of
Eq. (19), the singularity of Eq. (21a), and the transition of
ṙ(τ ) from a finite to a diverging value (Sec. IV A).

065102-6



FROM CAVITATION TO ASTROPHYSICS: EXPLICIT … PHYSICAL REVIEW E 109, 065102 (2024)

D. General symmetry

A noteworthy property of Eq. (5) is its formal invariance
under a substitution r → r′ := rδ , if δ = (1 − γ )/2, provable
by invoking Eq. (10). The restriction to collapse motions,
implying r, r′ � 1 and r̈, r̈′ < 0, limits the applicability of
this substitution to positive δ, i.e., to γ < 1. A few ele-
mentary steps show that this substitution corresponds to the
transformation

(γ , t, r) →
(

γ ′ = γ + 3

γ − 1
, t ′ = t

√
1 − γ

2
, r′ = r

1−γ

2

)
.

(27)

Like Eq. (26), this mapping is symmetric under the exchange
of primed and nonprimed variables, and likewise this sym-
metry transformation exhibits a single invariant point at γ =
γ ′ = −1, where (r′, t ′) = (r, t ).

The symmetry of Eq. (26) can help identify new solutions
based on existing ones, an example being the derivation of
Eq. (22a) from Eq. (22b) and vice versa.

When applying Eq. (27) to dimensional quantities R and
T instead of r and t , the physical constant k [Eq. (1)] must
also be transformed as k′ = kδR1+γ

0 . For example, Rayleigh’s
Eq. (11) can be written as

d2Z

dt2
= −5�p

2ρ
Z1/5, (28)

where Z := R5/2.

E. Polynomial approximations

In some practical cases, it may be useful and sufficient to
substitute the exact solution r(t ) given in Eq. (21) by simple
approximations r̃(t ). A possible choice is

r̃(t ) =
{

(1 − x2)p if γ � −1

q(1−|x|)−(q−1)(1−|x|) q
q−1 if γ > −1,

(29a)

(29b)

where x = t/τ [with τ given in Eqs. (17) and (19)] and where
p ∈ (0, 1) and q > 1 are shape parameters.

These are arguably the simplest polynomials, which si-
multaneously satisfy six essential properties of the exact
solution: (1) time symmetry, r̃(t ) = r̃(−t ) if t ∈ [−τ, τ ];
(2) negative curvature ¨̃r(t ) < 0 if t ∈ (−τ, τ ); (3) r̃(0) = 1;
(4) r̃(τ ) = 0; (5) ˙̃r(0) = 0; and (6) limt→τ

˙̃r(t ) is finite if and
only if γ > −1.

Let us first consider Eq. (29a) (case γ � −1), where the
exponent p needs to be specified. Choosing p equal to p1 =
2/(1 − γ ) (only for γ strictly below −1) ensures the correct
asymptotic behavior of ˙̃r as a function of r̃ in the limit t → τ .
Earlier, I introduced this approximation specifically for γ =
−4 (thus p = 2/5) [7]. Equation (29a) can then be seen as the
first term in a rapidly converging series, which tends toward
the true solution if using exact analytical coefficients [8].

Alternatively, setting p equal to p2 = τ 2/2 (for all γ �
−1) satisfies ¨̃r(0) = r̈(0) = −1. For γ = −2, the case of the
gravitational collapse, this choice is p = (π/4)2 ≈ 0.6169.
This is nearly identical to an analogous recent approxima-
tion [23], which reads r(t ) = (1 − t2)p with p = 1.8614/3 ≈
0.6205 determined via a fitting technique.

FIG. 4. Exact versus approximate solutions of the normalized
collapse equation [Eq. (5)] with initial conditions of Eq. (6), eval-
uated on the normalized time interval t ∈ [0, τ (γ )]. The selected
values of γ are the same as in Fig. 2. Solid lines are the exact
solutions given in Eq. (21), whereas dashed and dotted lines use the
approximation of Eq. (29) with parameters p1 and q1 (dashed) and
p2 and q2 (dotted).

For Eq. (29b) (case γ > −1), we have similar options for
the parameter q. Setting it to q1 = ηB(η, 1

2 ) [with η defined
in Eq. (14)] ensures that ˙̃r(τ ) = ṙ(τ ). Alternatively, setting it
equal to q2 = τ 2/(τ 2 − 1) ensures ¨̃r(0) = r̈(0) = −1.

As shown in Fig. 4, both of the above choices for p and
q provide reasonable approximations of the exact solution. In
general, the best pick depends on the application. If γ = −3
(hence p1 = p2 = 1

2 ) or γ = 0 (hence q1 = q2 = 2), then the
two options are identical and Eqs. (29a) and (29b) become
the exact solutions of Eqs. (22a) and (22b), respectively. In-
terestingly, these two solutions are related to each other via
the symmetry transformation of Eq. (27).

A more quantitative discussion of the approximations is
beyond the scope of this paper but can be found elsewhere
for γ = −4 [7,8].

V. CONCLUSION

This paper investigated the differential Eq. (1) with bound-
ary conditions stated in Eq. (2). I have called this the spherical
collapse equation in reference to its most common applica-
tions (cf. Table I).

I have shown that this equation exhibits a unified explicit
solution, invoking the beta distribution, a fundamental proba-
bility density function in statistics. Elements of the derivation
can be found elsewhere, spread over decades of literature
across several unrelated fields. The contribution of this work is
to unify previously known parametric, implicit and explicit so-
lutions from hydrodynamics (cf. Rayleigh-Plesset equation),
hydrostatics (Lane-Emden equation) and astrophysics (top-
hat spherical collapse model), all limited to different subsets
of γ , into a single concise solution [Eq. (21a)], universally
valid for all real γ �= −1. For γ = −1 this solution is singular,
but its limit γ → −1 exists, allowing the singularity to be
removed via Eq. (21b).

This general character (γ ∈ R) of the explicit solution uni-
fies seemingly unrelated physical applications. In this regard,
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this work provides context for recently found apparent analo-
gies between cavitation bubbles and processes in astronomy
and cosmology [24–27].

The existence of a general explicit solution of Eq. (1) is
barely known, particularly in astrophysics and cosmology,
where only parametric solutions like Eq. (23) are commonly
taught. Not only is the solution of Eq. (21) more elegant and
faster to evaluate than numerical integration, but its explicit
form can serve as a basis for further analytical manipulations
and derivations to analyze particular problems. Illustrating
this point, the theory of galaxies has benefited from Free-
man’s analytic solution for the circular velocity of exponential
disks [28]. This velocity can also be computed by direct
numerical integration, but the explicit expression in terms of
Bessel functions has greatly simplified further studies.

The explicit solution also offers insights pertaining to sym-
metry properties (Secs. IV C and IV D) and a connection
between spherical collapse motions and probability theory.
Finally, Eq. (21) can serve as an exact benchmark for testing
numerical integration techniques and simulation codes, e.g.,
for hydrodynamic and gravitational simulations.

An avenue for research in pure mathematics is an extension
to complex-valued functions r(t ), where additional symme-
tries in the complex plane exist for γ ∈ N.
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APPENDIX A: ANALYTICAL DERIVATION

Equation (9a) can be rewritten to separate time from posi-
tion coordinates,

dt2 = 1 + γ

2(1 − r1+γ )
dr2, (A1)

During the collapse (0 < r < 1), the right-hand side is posi-
tive for any γ �= −1. Since the collapse is characterized by a
shrinking radius (dr < 0) with growing time (dt > 0), we are
interested in the negative branch,

dt = −
[

1 + γ

2(1 − r1+γ )

]1/2

dr. (A2)

Let us integrate this equation backward in time from the
dimensionless collapse time τ to an earlier time t > 0,∫ t

τ

dt = −
[ |1 + γ |

2

]1/2 ∫ r(t )

0

dr

|1 − r1+γ |1/2
. (A3)

The lower bound of the second integral is zero by definition
of the collapse time. To simplify the notation of the following
equations let us introduce the positive constant

η = 1

|1 + γ | , (A4)

and let s := r|1+γ | ∈ [0, 1]. With these substitutions, r = sη

and dr = ηsη−1ds, and hence

∫ t

τ

dt = −
√

η

2

∫ s(t )

0

sη−1ds

|1 − s±1|1/2
, (A5)

where the sign of the exponent in the denominator is equal
to the sign of 1 + γ . If this sign is negative, then we mul-
tiply the numerator and denominator of the fraction by s1/2.
Then,

∫ t

τ

dt = −
√

η

2

∫ s(t )

0

sα−1ds

(1 − s)1/2
, (A6)

with α = η, if γ > −1, and α = η + 1
2 , if γ < −1. We can

readily unify these two cases in the single equation

α = 1

4
+ 3 − γ

4|1 + γ | . (A7)

We have defined α in this way to make the right-hand integral
of Eq. (A6) identical to the definition of the incomplete beta
function, B(x; α, β ) = ∫ x

0 yα−1(1 − y)β−1dy. Hence, Eq. (A6)
solves to Eq. (16).

APPENDIX B: CODE EXAMPLES

The quantile function Q(x; α, β ), which forms the heart of
the explicit Eq. (21a), is readily accessible in most program-
ming languages: qbeta in R, scipy.stats.beta.ppf in
PYTHON, BETA.INV in EXCEL, InverseBetaRegularized
in MATHEMATICA, InvIncompleteBeta in the ALGLIB li-
brary for C++, C#, JAVA, PYTHON, DELPHI, etc. For reference,
this section provides a few explicit code examples for plotting
the collapse functions shown in Fig. 2.

1. Gravitational collapse

The gravitational collapse of a uniform pressure-free
sphere is governed by Eq. (8). The solution r(t ) in natural

units R0 and T0 =
√

R3
0/(GM ) is given by Eq. (21a) with γ =

−2. Perhaps the most compact implementation is achieved in
the statistical language R, where three lines suffice to evaluate
and plot this explicit solution:

The resulting plot is analogous to the yellow line for γ = −2
in Fig. 2. Most astrophysicists might be more accustomed to
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PYTHON, where this code could read:

2. Cavitation bubble collapse

Readers closer to cavitation dynamics than astrophysics
may consider the example of a spherical cavity collapsing in
an incompressible liquid of density ρ, without viscosity and
surface tension. Assuming a constant driving pressure �p, the
bubble evolution is governed by Eq. (11); hence the collapse

motion r(t ) in natural units R0 and T0 = R0
√

ρ/�p is given
by Eq. (21a) with γ = −4. The corresponding R script reads:

This code reproduces the red line for γ = −4 in Fig. 2. In
PYTHON, this could be implemented as:
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