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Dynamo action driven by precessional turbulence
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We reveal and analyze an efficient magnetic dynamo action due to precession-driven hydrodynamic turbulence
in the local model of a precessional flow, focusing on the kinematic stage of this dynamo. The growth rate of
the magnetic field monotonically increases with the Poincaré number Po, characterizing precession strength, and
the magnetic Prandtl number Pm, equal to the ratio of viscosity to resistivity, for the considered ranges of these
parameters. The critical Poc for the dynamo onset decreases with increasing Pm. To understand the scale-by-
scale evolution (growth) of the precession dynamo and its driving processes, we perform spectral analysis by
calculating the spectra of magnetic energy and of different terms in the induction equation in Fourier space. To
this end, we decompose the velocity field of precession-driven turbulence into two-dimensional (2D) vortical and
three-dimensional (3D) inertial wave modes. It is shown that the dynamo operates across a broad range of scales
and exhibits a remarkable transition from a primarily vortex-driven regime at lower Po to a more complex regime
at higher Po where it is driven jointly by vortices, inertial waves, and the shear of the background precessional
flow. Vortices and shear drive the dynamo mostly at large scales comparable to the flow system size, and at
intermediate scales, while at smaller scales it is mainly driven by inertial waves. This study can be important not
only for understanding the magnetic dynamo action in precession-driven flows, but also in a general context of
flows where vortices emerge and govern the flow dynamics and evolution.
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I. INTRODUCTION

Understanding the generation, amplification, and self-
sustenance of magnetic fields in astrophysical and geophysical
objects is the endeavor of dynamo theory [1–3]. From the
magnetic field of our planet to distant stars and galaxies, mag-
netohydrodynamic (MHD) dynamo models offer insights into
the complex interplay between flows of conducting fluids and
fields, leading to the growth of the latter. To drive a dynamo,
the kinetic energy of a flow must be transformed efficiently
enough into magnetic energy, which in turn requires a strong
driving mechanism for the flow.

Among the known driving mechanisms for planetary
dynamos, precession-powered motion is a complementary
candidate [4,5] to the more generally accepted driving by ther-
mal convection [6]. Precession takes place when the rotation
axis of a system periodically changes its orientation, produc-
ing a body force that drives a flow in the (liquid) interior of
the precessing body [7]. In particular, precession-driven flows
are potentially able to convert large amounts of kinetic energy
(up to 1011–1021 W [5,8,9]) to sustain the geomagnetic field
[4]. This conversion can be due to instabilities [7,10] that give
rise to vortices and may also trigger turbulence.

*v.kumar@hzdr.de

Precession-driven flows have been studied both experimen-
tally [11–15] and theoretically via numerical simulations in
global settings [16–25] to interpret those experiments. The ca-
pability of these flows to drive dynamos was demonstrated for
laboratory flows in a specific parameter regime [15,19,21,26–
30]. An alternative approach widely used in studies of pre-
cessional flows in astrophysical and geophysical contexts is a
local model, which describes the dynamics of a small segment
of celestial bodies (stars, gaseous planets, or the liquid cores
of rocky planets) in a rotating Cartesian coordinate frame
[31–34]. In this model, the laminar background flow induced
by precession was shown to be subject to a precessional insta-
bility [35,36] and, consequently, this flow breaks down into a
nonlinear (turbulent) state, composed of two basic modes—
two-dimensional (2D) vortices and three-dimensional (3D)
inertial waves [32–34]. As shown in these papers, the dynam-
ical interplay among these two modes and the background
shear flow determines the sustenance and energetic balances
of the precessional turbulence.

In the present paper, following our previous hydrodynam-
ical study of the precessional flow dynamics in the local
model [34], we consider the MHD extension of this model and
investigate a magnetic dynamo action enabled by this flow,
focusing mainly on the kinematic stage of such dynamo. We
demonstrate that this dynamo is powered by the precession-
driven turbulence resulting from the nonlinear saturation of
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the precessional instability and characterize the dependence
of its growth rate on the main control parameters of the flow,
such as the Poincaré number Po, which characterizes preces-
sion strength, and the magnetic Prandtl number Pm, equal to
the ratio of viscosity to resistivity. To understand the scale-
by-scale dynamics of the magnetic field, we perform spectral
analysis, studying the evolution of the magnetic energy spec-
trum and mechanisms of its amplification in Fourier space as a
function of these two parameters. Our most important finding
is that there is a remarkable transition from a dynamo driven
by 2D vortices at smaller Po to one at higher Po driven jointly
by 2D vortices, background precessional flow shear, and 3D
inertial waves, which operate at different scales.

The paper is organized as follows: The physical model,
the main equations, and the numerical setup are described in
Sec. II. Analysis of the precession-driven dynamo in physical
space is presented in Sec. III and in Fourier space in Sec. IV.
Conclusions are given in Sec. V.

II. PHYSICAL MODEL AND MAIN EQUATIONS

In the local model, a precession-driven flow is considered
in a Cartesian coordinate frame (x, y, z) rotating around the
vertical z axis and precessing around another tilted x axis
with angular velocities � and Po · �, respectively, where Po is
the Poincaré number introduced above measuring precession
strength. In this frame, precessional forcing gives rise to a
laminar background flow with a linear shear along the z axis,
which oscillates in time and is proportional to Po [31,32,34],

U0 = −2� · Po · z[sin(�t ), cos(�t ), 0].

The velocity perturbation u about this precession-driven base
flow and the magnetic field B are governed by the MHD equa-
tions for a conducting viscous and resistive incompressible
fluid, which in the rotating and precessing frame take the form
[32,34]

(∂t + U0 · ∇ + u · ∇)u

= − 1

ρ
∇� + 1

μ0ρ
(B · ∇)B + ν∇2u

− 2�ez × u − 2�ε(t ) × u + 2�uzez × ε(t ), (1)

(∂t + U0 · ∇)B = ∇ × (u × B) + η∇2B − 2�Bzez × ε(t ),
(2)

∇ · u = ∇ · B = 0, (3)

where ρ is the constant density of the fluid, � is the
sum of thermal and magnetic pressures, ν is the constant
kinematic viscosity, μ0 is the permeability of vacuum, and
η is the constant magnetic diffusivity. The vector ε(t ) =
Po[cos(�t ),− sin(�t ), 0] describes the effects of precession
in these equations: Coriolis acceleration due to precession,
−2�ε(t ) × u, and the stretching term 2�uzez × ε(t ) of the
perturbation velocity due to the shear of the background flow
U0 in Eq. (1), which jointly give rise to the precessional
instability [35–37]. A similar stretching term −2�Bzez × ε(t )
related to the shear in Eq. (2) describes the growth of the
magnetic field at the expense of free energy of the background
flow.

The flow is considered in a periodic cubic box with the
same length L in all directions, Lx = Ly = Lz = L. This box
represents a small portion of a global precessional flow far
from the actual boundaries of a system. In this case, we adopt
the mixed shear-periodic boundary conditions briefly summa-
rized below, which are commonly used in the local model of
the flow [32–34]. We cannot directly apply standard periodic
boundary conditions because the advection term U0 · ∇ on
the left-hand side of Eqs. (1) and (2) depends linearly on
z due to the flow shear. To circumvent this, we transform
(x, y, z) coordinates to the frame (x′, y′, z′) co-moving with
the streamlines of the background flow U0,

x′ = x − 2Po cos(�t )z, (4)

y′ = y + 2Po sin(�t )z, (5)

z′ = z. (6)

In this co-moving frame, the advection term is absent and
we can impose the usual periodic boundary conditions in the
(x′, y′, z′) coordinates with the period lengths Lx, Ly, and Lz,
respectively. After transforming back to the original frame
(x, y, z), these boundary conditions take the periodic form in
x and y,

f (x, y, z, t ) = f (x + Lx, y, z, t ) (x boundary), (7)

f (x, y, z, t ) = f (x, y + Ly, z, t ) (y boundary), (8)

but shear-periodic form in z,

f (x, y, z, t ) = f [x + 2Po · cos(�t )Lz, y − 2Po·
× sin(�t )Lz, z + Lz, t] (z boundary), (9)

where f ∈ {u,�, B}. These shear-periodic boundary condi-
tions resemble those used in the widely known shearing box
model of accretion disks [38]. We note that the use of this local
model with the associated shear-periodic boundary conditions
is expected to be valid for modes with length scales smaller
than the box size, but it becomes less suitable to describe
larger structures comparable to the box size. Nevertheless,
being devoid of real (rigid) boundary effects, this model is
well suited for understanding the basic influence of precession
on the dynamo action.

We normalize time by �−1, lengths by L, velocities by
�L, magnetic fields by �L(μ0ρ)1/2, and pressure by ρL2�2.
With these normalizations, the kinetic and magnetic energy
densities take the form Ev = u2/2 and Em = B2/2, respec-
tively. Besides the Poincaré number, the main parameters of
the flow are the Reynolds number Re = �L2/ν and mag-
netic Prandtl number Pm = ν/η. In real astrophysical and
geophysical objects, precession is usually weak and hence
the Poincaré number is small, Po � 1, while the Reynolds
number is quite high [32]. In a first attempt to approach such
a regime, we fix Re = 3 × 104 and explore a broad range of
Po = 0.075–0.4 and Pm = 0.1–10, while the dependence on
Re will be analyzed elsewhere.

We solve Eqs. (1)–(3) supplemented with the shear-
periodic boundary conditions (7)–(9) using the spectral code
SNOOPY [39] adapted to the considered model of a preces-
sional flow in Ref. [32]. Resolution for Pm < 1, i.e., when
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FIG. 1. Evolution of the volume-averaged kinetic 〈Ev〉 (dotted)
and magnetic 〈Em〉 (solid) energies at Re = 3 × 104 for (a) differ-
ent Pm at Po = 0.3 and (b) different Po at Pm = 3. The magnetic
field energy starts to grow after the saturation of the precessional
instability and increases exponentially by several orders of magni-
tude, indicating an efficient dynamo action due to precession-driven
turbulence.

the viscous scale is shortest, is set as in [34]: (Nx, Ny, Nz ) =
(128, 128, 128) at Po � 0.125 and (256, 256, 256) at Po >

0.125. On the other hand, for Pm > 1, i.e., when resistive
scale λη is shortest instead, resolution is increased by a factor
of Pm1/2. This is because the corresponding resistive wave
number kη = 2π/λη to be resolved in the code scales as
kη ∼ Pm1/2 at Pm > 1 [3] and therefore resolution is adjusted
accordingly. Solenoidal random velocity perturbations with
rms 1.12 × 10−4 and a very small random (seed) magnetic
field with rms 10−12 are initially imposed, so that the back
reaction of the magnetic field on the flow remains negligible
during the early growth phases of the field. This allows us to
analyze the dynamics of the dynamo in the kinematic stage,
which we mainly focus on in this paper.

III. DYNAMO DUE TO PRECESSION-DRIVEN
TURBULENCE

Figure 1 shows the evolution of the volume-averaged
kinetic 〈Ev〉 and magnetic 〈Em〉 energies at different Po and
Pm, which indicates a two-stage dynamo process at work.
In the beginning, the kinetic energy grows exponentially

FIG. 2. Dynamo growth rate γ in the (Pm, Po) plane at Re =
3 × 104 indicated by colored points, whereas there is no dynamo at
the empty points. The colored and empty points together represent
all the simulation runs done in this work.

as a result of the linear precessional instability, while the
magnetic energy decreases. After several precession times
∼(ε�)−1, the exponential growth saturates due to nonlinearity
[advection term (u · ∇)u in Eq. (1)] and, as a result, the flow
settles down into a quasisteady turbulence composed of 2D
vortices and 3D inertial waves ([32,34]; see Sec. IV below).
Note that the dynamo action—exponential growth of the
magnetic field—starts only after saturation of the precession
instability and is driven by the nonlinear (turbulent) velocity
perturbations. After several hundred rotation periods, the
magnetic field growth saturates nonlinearly due to the
back reaction of the Lorentz force on the flow, which is
discernible by the small drop in 〈Ev〉 at the saturation point
of 〈Em〉 (Fig. 1). The growth rate of the magnetic energy,
γ = d ln〈Em〉/dt , in the kinematic regime and its nonlinear
saturation level increase, and hence the dynamo is more
efficient, with increasing Po and/or Pm. This dependence on
Po and Pm is further explored in Fig. 2, which shows γ in
the (Po, Pm) plane and summarizes all of the simulation runs
done. Note, also, in this diagram that the critical Poc for the
dynamo onset decreases with increasing Pm.

Figure 3 shows the structures of the vertical vorticity ωz =
(∇ × u)z in physical space at Po = 0.15 and, at the same in-
stants, the induced vertical field Bz during the kinematic stage
in two runs at Pm = 3 and 7. We observe vertically nearly
uniform larger-scale columnar vortices embedded in a sea of
smaller-scale 3D inertial waves, as is typical of precession-
driven turbulence [32–34]. The traces of these vortices are
visible in the magnetic field since vortices are, in fact, the
main drivers of the dynamo at this small Po, as it will be shown
in Sec. IV B (see Fig. 5). Note that although the magnetic field
is induced mainly by these large-scale vortices, the character-
istic length scale of the field structures is still smaller than that
of the vortices and decreases with increasing Pm. This behav-
ior is also observed in the spectral analysis in the next section.

IV. SPECTRAL ANALYSIS

To analyze dynamo action across length scales, we decom-
pose the magnetic field into spatial Fourier modes both in the
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FIG. 3. Spatial distributions of the vertical vorticity ωz = (∇ ×
u)z at Po = 0.15 in two runs at (a) Pm = 3 and (c) Pm = 7, alongside
the corresponding induced vertical field Bz in (b) and (d), respec-
tively. For each Pm, the snapshots of ωz and Bz are shown at equal
instants during the kinematic regime. The characteristic length scale
of the magnetic field structures is smaller than that of vortices and
further decreases with increasing Pm.

co-moving (x′, y′, z′) and original (x, y, z) reference frames
[32,34],

B =
∑

k

B̄ exp(ikxx′ + ikyy′ + ikz0z′)

=
∑

k

B̄ exp[ikxx + ikyy + ikz(t )z]. (10)

In the co-moving frame, the variables are all periodic and
hence this decomposition has a standard form with the con-
stant wave numbers kx, ky, and kz0, whereas in the (x, y, z)
coordinates, the vertical wave number kz varies with time.
Indeed, using the invariance of the mode phases under the co-
ordinate transformation, we can determine the wave numbers
in the original frame by substituting transformation (4)–(6)
in Fourier decomposition (10), regrouping the terms, and
equating the coefficients of x, y, and z in the phases of both
exponents. As a result, we find that the horizontal wave num-
bers kx and ky, which do not depend on time, are the same in
both frames, whereas the vertical wave number kz(t ) oscillates
in time about an average value kz0,

kz(t ) = kz0 + 2Po[−kxcos(t ) + kysin(t )], (11)

thereby ensuring that the spatial Fourier modes satisfy the
shearing-periodic boundary conditions (7)–(9) in the (x, y, z)
frame (� = 1 in our units). Physically, the time variation
of kz is, brought about by the background shear flow U0,
which advects the spatial Fourier modes (via the term U0 · ∇),

causing the wave-vector component along the direction (z) of
the flow shear to change periodically in time.

As is commonly done in turbulence and dynamo theory,
below we will use the spherical shell average of any spec-
tral quantity f̄ (k) (energy spectra, dynamical terms, etc.) in
Fourier space, which at a time t is defined in a standard
way as

∑
k�|k|�k+k f̄ (k), with the summation assumed over

Fourier modes inside spherical shells with a given wave-
number magnitude (radius) |k| = k = (k2

x + k2
y + k2

z )1/2 and
width k [40]. Here, ki = nik, i ∈ {x, y, z}, are the dis-
crete wave numbers in the cubic box with integer ni =
0,±1,±2, . . . ,±(Ni/2 − 1) and k = 2π/L is the grid cell
size in Fourier space, i.e., the minimum nonzero wave number
in this box.

Figure 4 shows the shell-averaged magnetic energy spec-
trum Em(k) = |B̄|2/2 in the middle and at the end of the
kinematic stage, together with the corresponding growth rate
γ (k) versus k at different Po and Pm. Note that in all the cases,
the growth rate is nearly constant and positive, γ (k) > 0, at
lower and intermediate k � 100, indicating the dynamo to
be at work at these wave numbers, and decreases, turning
negative, at higher k due to resistive dissipation (see Fig. 5). At
small Po = 0.15, the growth rate weakly increases with Pm,
mostly at higher wave numbers [Fig. 4(a)]. As a result, the
energy spectra at Pm = 3 and 7 have nearly the same shape
and magnitude at small and intermediate wave numbers, both
during and at the end of the growth phase, while at high wave
numbers, they are steeper at Pm = 3 than at Pm = 7. The
magnetic energy spectrum and γ (k) depend more strongly
on Pm at higher Po = 0.3 and 0.4, as seen in Figs. 4(b) and
4(c), respectively. For a given Po and increasing Pm, the
positive growth rate also increases and extends to higher k
because of decreasing resistive dissipation (at a given Re).
So, the spectra grow faster and are shallower at high k for
higher Pm.

Comparing now the behavior of the magnetic energy spec-
tra for different Po and a given Pm in Fig. 4, we notice that
with increasing Po, γ (k) moderately increases, although the
maximum km up to which there is still a dynamo does not
appear to change much from Pm = 0.7 to 3. This critical
wave number increases with Po at higher Pm = 7 because
of stronger driving by waves at high k (see below), so the
magnetic spectra are shallower at high k for Po = 0.3 and 0.4
than those for Po = 0.15.

To summarize, in all the cases, the magnetic energy spec-
trum spans a broad range of scales, from the smallest wave
numbers corresponding to the system size up to the highest
ones of resistive dissipation. Hence, the precession dynamo
appears to be neither only of large-scale nor only small-scale
type. The spectrum reaches a maximum at intermediate wave
numbers, 10 � k � 100, with a specific value in each case
depending on Po and Pm and being lower for lower values
of these two parameters. Below we examine which modes of
motion in the precession-driven turbulence are mainly respon-
sible for the dynamo growth at different k’s.

A. Decomposition into vortical and wave modes

The precession-driven hydrodynamic turbulence repre-
sents a special case of forced rotating turbulence, where
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FIG. 4. Top row: Shell-averaged magnetic energy spectra in the middle (dashed) and at the end (solid) of the kinematic stage of the dynamo
at various Pm for (a) Po = 0.15, (b) 0.3, and (c) 0.4. Bottom row: The corresponding growth rate γ (k) of the spectral magnetic energy vs k.
There is no dynamo at Po = 0.15 and Pm = 0.7, hence the yellow curve is absent in (a).

precession acts as a forcing agent over a broad range of wave
numbers. Rotating turbulence has been very extensively stud-
ied in the literature (see a review [40] and references therein).
One of the main tools of analysis is the decomposition of
a turbulent flow field into two basic types of perturbation
modes—vortices and inertial waves [40–42], which play key
roles in the turbulence dynamics and energetic balances. An
analogy between forced rotating turbulence and precession-
driven turbulence has motivated the application of the similar
mode decomposition method to the latter [32–34]. In the
kinematic regime, Lorentz forces are negligible, so following
those studies we can classify these two basic modes as done
in the hydrodynamic case:

FIG. 5. Shell-averaged spectra of the dynamical terms in spectral
magnetic energy given by Eq. (12): energy injection from the back-
ground shear flow, P, resistive dissipation DM , and the contributions
from 2D vortices, I2D, and 3D inertial waves, I3D, in the middle of the
kinematic stage at (a) Po = 0.15, Pm = 3; (b) Po = 0.15, Pm = 7;
(c) Po = 0.3, Pm = 3, and (d) Po = 0.3, Pm = 7.

(i) The vortical modes vary only in the horizontal (x, y)
plane and are uniform (aligned) along the vertical z axis,
having the form of a columnar vortex. In the linear regime,
in the absence of precession, these modes are strictly station-
ary with zero frequency, ω = 0, and in geostrophic balance.
However, in the presence of precession, they oscillate in time
with a small amplitude around the stationary solution due to
the periodic variation of the background flow U0 [and hence
kz(t )]. The velocity of the vortical modes, denoted as u2D,
typically has a dominant horizontal component over the ver-
tical one, uh = (u2

x + u2
y )1/2 	 uz. This slow manifold is also

referred to as the 2D and three-component (2D-3C) field in
the literature, since it varies only in x and y perpendicular
to the rotation z axis, but still involves all three components
of velocity. Accordingly, the Fourier transform of the vortical
modes’ velocity, ū2D(kx, ky, t ), is, in fact, a function of only kx,
ky, and time t with zero time-averaged vertical wave number,
i.e., 〈kz(t )〉 = kz0 = 0.

(ii) The inertial wave modes vary both in the horizon-
tal (x, y) plane and along the z axis. In the linear regime,
they oscillate in time with nonzero frequencies ω = 2�kz/k
and are therefore considered to form the fast manifold. In
the presence of precession, inertial waves are driven by the
precessional instability [35,36] and grow, extracting energy
from the background flow U0. The velocity of these modes,
denoted as u3D, has, in general, comparable horizontal and
vertical components, uh ∼ uz, while its Fourier transform ū3D

has nonzero average, 〈kz(t )〉 = kz0 
= 0.
In the turbulent state, the dynamics of vortices and waves

become coupled due to strong nonlinearity, which ensures
energy transfers between these two modes with different wave
numbers and hence variation of their amplitudes with time. As
a result, the timescales of the modes change, forming approxi-
mately continuous spectra in frequency. A detailed analysis of
the energy spectra and nonlinear dynamics of the vortical and
inertial wave modes as well as energy transfers between them
in physical and Fourier space in precession-driven turbulence
was performed in [32,34]. It was shown that for a given Re, at
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sufficiently low Po, the dominant modes in the turbulent state
are the vortical ones, as most of the turbulent energy resides
in these modes. On the other hand, inertial waves become
dynamically more important at higher Po, with their energy
increasing relative to that of vortices, due to the stronger
precessional instability driving these waves. We will show
below that the vortical and wave modes play a central role
in driving the precession dynamo and determining its spectral
dynamics. In particular, the transition in the dynamo behavior
with increasing Po is brought about by the changes in the
hydrodynamical precession-driven turbulence regimes.

B. Driving mechanisms of the precession dynamo

To understand the roles of the background flow as well as
the vortices and inertial wave modes in driving the precession
dynamo, we first obtain the equation for the magnetic en-
ergy spectrum EM by substituting Fourier transform (10) into
Eq. (2) and multiplying both sides by the complex conjugate
B̄∗. Then, in the electromotive force (EMF) ∇ × (u × B),
the velocity is divided into vortical u2D and wave u3D parts,
u = u2D + u3D, giving

dEM

dt
= P + DM + I2D + I3D, (12)

where P = �(B̄∗
B̄z + B̄B̄∗

z ) · [ε(t ) × ez] describes energy ex-
change between the magnetic field and the background flow
due to shear, when P > 0 energy is injected from the flow into
the field. The second term DM = −2k2EM/(Re · Pm) < 0 is
always negative and describes resistive dissipation. The third
I2D and fourth I3D terms describe magnetic energy production,
respectively, by vortical and inertial wave modes and are given
by I2D = i[B̄∗ · k × (u2D × B)k − B̄ · k × (u2D × B)∗k]/2 and
I3D = i[B̄∗ · k × (u3D × B)k − B̄ · k × (u3D × B)∗k]/2, where
the subscript k denotes the Fourier transforms of the EMF
contributions coming from the velocity fields u2D and u3D

associated with these two subsets of modes.
Figure 5 shows the shell-averaged spectra of these four

terms P(k), DM (k), I2D(k), I3D(k) in the middle of the kine-
matic stage. Depending on Po and Pm, either only vortices
or jointly vortices, waves, and the background shear are re-
sponsible for the magnetic field amplification. At smaller
Po = 0.15, I2D is positive and much larger than I3D and P,
i.e., I2D 	 P, I3D, implying that vortices predominantly drive
the dynamo, whereas the driving by shear and inertial waves is
relatively small [Figs. 5(a) and 5(b)]. As seen from this figure,
this process is most efficient at intermediate 10 � k � 200,
where I2D is appreciable. As Pm increases, I2D extends a bit to
higher k, although its dependence on Pm is weak at this Po,
consistent with the behavior of the magnetic energy spectra
in Fig. 4(a). It also follows from this trend that the total
(over all k) driving by vortices is larger than that of inertial
waves,

∫
I2Ddk/

∫
I3Ddk = 7.78 and 10.45 at Pm=3 and 7,

respectively.
The dynamics changes qualitatively at higher Po = 0.3—

the contribution of inertial waves and the shear in driving the
dynamo becomes more appreciable relative to vortices since
the corresponding terms I3D and P are now comparable to I2D,
as seen in Figs. 5(c) and 5(d) for the same Pm, but they operate
at different wave numbers. Specifically, the waves amplify the

magnetic field at higher k � 100, while the shear operates at
intermediate wave numbers, 10 � k � 200. With increasing
Pm, I3D dominates more over I2D and P at large k, with its
peak also shifting to higher k. So, at larger Pm, the 3D waves
become the main driver of the dynamo at small scales, while
the vortices and the shear dominate at lower and intermediate
k [Fig. 5(d)]. Accordingly, in this regime, the total driving by
vortices and waves is comparable,

∫
I2Ddk/

∫
I3Ddk = 1.06

and 0.73 at Pm=3 and 7, respectively, although the second
value is smaller due to the increased role of waves with in-
creasing Pm.

Thus, Fig. 5 clearly shows a remarkable transition in the
precession dynamo dynamics from a predominantly vortex-
driven regime at lower Po = 0.15 to a more complex regime
driven jointly by vortices, waves, and shear at higher Po =
0.3. This is actually related to the transition in the precession-
driven turbulence regimes, as noted in Sec. IV A, from the
vortex-dominated state at lower Po to the state at higher Po
where vortices and waves coexist and nonlinearly transfer
energies between each other and the background flow.

V. CONCLUSIONS

In this paper, we have revealed and analyzed magnetic dy-
namo action powered by precession-driven turbulence, which
is capable of exponentially amplifying the magnetic field. We
showed that during the kinematic stage, the growth rate of the
dynamo increases with the Poincaré (Po) and the magnetic
Prandtl (Pm) numbers for the considered ranges of these two
parameters. The critical Poc for the dynamo onset decreases
with increasing Pm, that is, the dynamo sets in at lower Po the
higher Pm is.

Although our model is local, it captures two basic ingre-
dients of precessional turbulence: 2D vortices and 3D inertial
waves. Thus, this model is able to cover a broader range of
length scales than global ones—from the system size, through
intermediate scales mainly occupied by vortices, down to
the shortest dissipation scales mainly occupied by inertial
waves in our model. Previous works on the precession dy-
namo in global settings [15,16,18,19,21,26–30] emphasized
the significance of large-scale vortices as a primary driver for
large-scale magnetic field amplification, suggesting that the
nature of the dynamo is closely linked to this flow pattern.
This work, going beyond those findings, has demonstrated the
strong influence of the precession on the dynamo properties
over a broad range of scales, thereby providing deeper in-
sights into the dynamo action (growth rate, energy spectra,
driving mechanism) over these scales. To achieve this, we
have performed spectral analysis of the dynamics in Fourier
space, quantifying the growth rate of the magnetic energy
spectrum and the contributions from vortices, base flow shear,
and waves in driving the dynamo as a function of wave num-
ber. The main result of such a spectral analysis is a notable
transition in the precession dynamo dynamics from a predom-
inantly vortex-driven regime at smaller Po � 0.15 to a more
complex regime at larger Po � 0.15, where vortices, inertial
waves, and background shear act in cooperation to amplify
the magnetic field at different scales. Vortices and shear drive
the dynamo mostly at large (system-size) scales and especially
at intermediate scales, being therefore less sensitive to Pm,
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while waves operate mainly at smaller scales, hence they de-
pend more strongly on Pm. This dynamo transition is closely
related to the intrinsic changes in the precession-driven tur-
bulence regimes from the vortex-dominated one at smaller Po
to one at higher Po where vortices and inertial waves coexist,
exchanging energy due to nonlinear transfers [32,34].

The sequence of processes leading to the dynamo action
in the present problem (a precessional flow subject to insta-
bility → turbulence → vortices → dynamo) resembles that
taking place in rotating convection. As shown in [43], thermal
convection in the presence of rotation leads to turbulence and
the formation of large-scale vortices, which in turn amplify
the magnetic field as a result of induction (stretching) by
vortical structures. Thus, these two different (convection and
precession) processes share a common generic mechanism—
vortex-induced dynamo—which we have analyzed in this
paper. Thus, this study can be important not only for un-
derstanding the magnetic dynamo action in precession-driven
flows, but also in a general context of flow systems where
vortices emerge and govern the flow dynamics and evolution.

Our results can offer only qualitative insights regarding
precession dynamo experiments due to differences in the
regimes that are investigated and the setups that are employed.
Notably, in the present study, the magnetic Reynolds number
Rm = Pm · Re, which controls dynamo onset and dynamics
in those experiments, takes values Rm = 3 × 103–3 × 105

corresponding to the considered range of Pm = 0.1–10 and
Re = 3 × 104, that far exceed the current capabilities of ex-
perimental facilities (e.g., DRESDYN dynamo experiment
[44,45]). Additionally, in experiments, one has to deal with
real boundaries of the flow domain, which are excluded in
our periodic box. The presence of boundary layers, as high-
lighted by Gans [46], can be advantageous in experiments by
lowering the Rm threshold of the precession dynamo and thus
making it easier to excite due to shear in these layers, which,
stretching magnetic field lines, expedites the amplification of
the field. What we can take away from this study as a guiding
principle for future dynamo experiments with precessional

driving is that the developed turbulence within the bulk flow
itself is conducive to dynamo action. So, an ideal experimental
device should reach a high enough precession parameter Po to
sustain both the vortices and inertial waves contained in this
turbulence, which, as we showed, are capable of efficiently
amplifying the magnetic field over a broad range of scales.

Finally, we note that in the present paper, our main goal has
been to uncover the dynamo action due to precession-driven
turbulence and find conditions under which it exists. However,
the ranges of Po, Pm, and Re considered here differ from
those in precessing stars and planets. Still, our results can
contribute to a better understanding of natural dynamos due
to precession. The first step towards extrapolating the present
analysis to relevant parameter regimes would be to investigate
the effect of increasing Re (which is huge in real astrophysical
and geophysical objects, e.g., larger than 1010 in stellar inte-
riors [47]) on the dynamo threshold, growth rate, and driving
mechanisms in the (Po, Pm) plane. This will allow us to see
whether the precession dynamo can extend to even smaller Po
and Pm (and larger Re) typical of weakly precessing stars and
planets than those considered in this work.
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