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Dislocation random walk under cyclic deformation
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Dislocation motion under cyclic loading is of great interest from theoretical and practical viewpoints. In this
paper, we develop a random walk model for the purpose of evaluating the diffusion coefficient of dislocation
under cyclic loading condition. The dislocation behavior was modeled as a series of binomial stochastic processes
(one-dimensional random walk), where dislocations are randomly driven by the external load. The probability
distribution of dislocation motion and the diffusion coefficient per cycle were analytically derived from the
random-walk description as a function of the loading condition and the microscopic material properties. The
derived equation was validated by comparing the predicted diffusion coefficient with the molecular dynamics
simulation result copper under cyclic deformation. As a result, we confirmed fairly good agreement between the
random walk model and the molecular dynamics simulation results.
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I. INTRODUCTION

Dislocation is one of the most typical lattice defects in
crystalline materials and causes a strong effect on the me-
chanical properties by promoting plastic deformation [1–21].
Especially, dislocations play an important role in fatigue
of metals, where dislocation microstructures are formed as
a precursor of fatigue crack initiation [22–25], and thus
it has been a key issue to control the dislocation motion
for improving the reliability and lifetime of metal products.
Thorough understanding of fatigue mechanism has been at-
tempted from both the scientific and industrial viewpoints
thus far. Experimental works have observed various types
of microstructures resulting from cyclic deformation such
as vein, persistent slip band (PSB), cell, labyrinth, etc., de-
pendent on the deformation condition [26–30]. Dislocation
patterning as a result of plastic deformation in crystalline
materials has been an interesting scientific issue and subjected
to a wide range of investigations from various aspects. In
particular, a number of theoretical studies have been dedicated
to this problem, which should be briefly reviewed here. One
of the major successful approaches is construction of con-
tinuum dislocation theories that describe collective motion
of dislocations under deformation. The development can be
found in a series of papers by Groma, Zaiser, and coworkers,
where they derived equations based on the motion of indi-
vidual dislocations, applying methods from statistical physics
[31–34]. Important fundamental rules of collective motion
of dislocations and plasticity such as the Taylor hardening
and the principle of similitude were explained by their the-
ories [31], demonstrating that the dislocation patterning that
arises during plastic deformation is dominated by long-range
interactions between dislocations. The important role that
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diffusional behavior of dislocations plays in the evolution of
dislocation densities was highlighted and proved to affect the
length scale selection of the dislocation density fluctuations
[33]. Their deterministic and stochastic models of dislocation
transport, constructed to discuss dislocation patterning, sug-
gested the physical origin of dislocation patterns answering
the long-term question, aka the energetic-vs-dynamic contro-
versy [34]. Besides the continuum theory, collective motion
of dislocations was also intensively investigated using discrete
dislocation dynamics simulations [35–38]. Characteristic be-
haviors of dislocation systems behind plastic deformation,
especially those as consequences of interaction with crystal
defects, were well described in such models. For example, dis-
location avalanches were found to exhibit different behaviors
due to the effect of quenched pinning [35,36]. The discrete
dislocation model elucidated dynamic hysteresis under cyclic
loading [37] and strain-rate dependence of dislocation plastic-
ity [38].

On the other hand, a model to reproduce dynamics of dis-
location density distribution based on the reaction-diffusion
theory has been proposed by Walgraef and Aifantis [39–42],
which is hereafter called the WA model. In contrast to the
aforementioned theoretical models, the WA model is a phe-
nomenological one where the system is typically described
as a continuum field of two types of dislocations called the
immobile and mobile dislocations. The temporal evolution of
their densities, ρi(x, t ) and ρm(x, t ), is given by the reaction-
diffusion equations,

∂ρi

∂t
= Di

∂2ρi

∂x2
+ f (ρi, ρm ), (1)

∂ρm

∂t
= Dm

∂2ρm

∂x2
+ g(ρi, ρm ), (2)

where Di and Dm denote the diffusion coefficients of the
immobile and mobile dislocations, respectively. The functions
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f and g are the reaction terms, which represent nucleation and
annihilation of dislocations and transform between immobile
and mobile dislocations, etc. The one-dimensional periodic
pattern (the ladder or wall structure in PSB) has been repro-
duced successfully by these equations, and the mathematical
condition of microstructure formation has been derived by
the linear stability analysis [43]. Several extended models
have been proposed (e.g., three or more types of dislocations,
two- or three-dimensional models) to describe more complex
dislocation patterns [41,42,44,45].

In the mathematical models, it is of essential importance
to determine proper ranges of the parameters. Recently, we
have proposed an inductive (top-down) approach to estimate
the diffusion and reaction parameters using the machine learn-
ing method [46]. Such a top-down approach is expected to
provide a proper parameter set to be consistent with the
experimental observation. Meanwhile, the diffusivity and re-
action rate should be governed by the microscopic dynamics
of individual dislocations, in principle. Thus, in addition to
the top-down approach, the parameters should be determined
or estimated by a bottom-up approach from the lower-scale
mechanics on the basis of microscopic dislocation motion. A
bottom-up derivation is important not only for parametriza-
tion but also for better understanding of fundamental physics
behind the fatigue phenomenon. However, the diffusion and
reaction properties have not been derived appropriately from
the lower-scale mechanics because of the lack of theoretical
models to bridge the scales of individual dislocations and
continuum dislocation density field. In other words, it has
not been discussed sufficiently thus far how to estimate the
diffusion and reaction parameters in a theoretical way.

In this paper, we analytically derive the diffusion coeffi-
cient of dislocations under the cyclic loading condition, as
part of an attempt to theoretically evaluate the diffusion and
reaction parameters. Particularly, the mobile dislocations are
investigated because they are expected to be diffused more
and interact less strongly with each other than the immobile
dislocations. The diffusion process is modeled as a random
walk (RW), i.e., a series of binomial stochastic processes, and
the diffusion coefficient is analytically obtained as a func-
tion of the loading condition and the microscopic material
properties. The obtained equation is validated by molecular
dynamics (MD) simulations, where we explicitly deal with the
dislocation motion under cyclic deformation.

This paper is organized as follows. In Sec. II, we intro-
duce the target material system and the preconditions to be
discussed, and we formulate the RW model to evaluate the
dislocation diffusion coefficient on the basis of the introduced
preconditions. In Sec. III, we validate the RW model pre-
diction by MD simulations. We conduct cyclic deformation
simulations of copper crystal with dislocations, where we
confirm the consistency between the RW model and the MD
simulation. The results are further discussed in Sec. IV, com-
pared with literature. Lastly, we conclude the paper in Sec. V.

II. DERIVATION OF RANDOM-WALK MODEL

A. Statement of preconditions

Figure 1 shows the schematic illustration of the system
investigated in this paper, where the motion of a mobile dis-

location is modeled. We regard a loading cycle as a series
of the elementary processes (i.e., a RW) undergone sequen-
tially by the edge dislocations. The stochastic trials are done
by assigning the elementary processes to the dislocations at
random. Below, we clarify the conditions and assumptions to
be considered.

(1) The system is two-dimensional. The dislocations in the
system are straight and infinitely long. Only one slip system
in a single crystal is taken into account. In other words, we
assume a pure one-dimensional diffusion caused by slip on a
single slip system. In addition, the effects of climbing motion
or cross slip are regarded as negligible. The effect of the
boundary condition is also negligible.

(2) The diffusion and reaction (interaction) contributions
are explicitly separated, and a pure diffusion process is dealt
with. This assumption is justified as a similar concept to the
Langevin equation for a particle diffusing in solvent.

(3) Diffusion is mainly attributed to the external mechani-
cal loading rather than thermal fluctuation. This assumption is
justified by the following brief thought experiment: If thermal
fluctuation was the main cause of diffusion, the dislocation
microstructures would be formed spontaneously without any
external loading, which is obviously contrary to the reality.

(4) The material behaves as a rigid perfectly plastic solid.
In other words, the plastic strain is sufficiently larger than the
elastic strain, and almost all the external strain is consumed as
the plastic deformation.

(5) The dislocation driven by shear deformation keeps
moving until being trapped by lattice defects (e.g., atomic
vacancies, impurity atoms, etc.). Thus, a dislocation travels
from one trapping site to a neighboring trapping site by the
distance between two defects, l (hereafter referred to as the
mean-free path). This process is regarded as the elementary
process of the dislocation diffusion. Each cycle consists of a
series of independent elementary processes. The direction of
dislocation motion (+l or −l) depends on the Burgers vector
and the loading direction.

(6) The motion of a dislocation is affected by the point
defects rather than other dislocations. This assumption is valid
if the dislocation density is sufficiently low, i.e., in the case of
the mobile dislocations.

(7) Each elementary process is assigned to dislocations at
random with an equal probability.

B. Derivation of diffusion coefficient

Based on the preconditions above, we develop a specific
model system for derivation of the diffusion coefficient, as
shown in Fig. 2(a). We assume a two-dimensional body of
rectangular-shaped single crystal with the edge lengths of
Lx and Ly, including N dislocations, which undergo cyclic
shear strain. Figure 2(b) shows schematically the relationship
between the time and the applied shear strain in a single load-
ing cycle. One cycle consists of four quarters; i.e., forward
loading and unloading and backward loading and unloading,
with the strain amplitude γmax.

First, we focus on the first quarter of a cycle [forward
loading, Q1 in Fig. 2(b)]; i.e., the process from the initial state
(zero strain) to the maximum strain γmax.
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FIG. 1. Schematic illustrations of the system to be discussed. (a) Dislocations in a material are displaced by external shear load. Once
a dislocation is driven, it moves until being trapped by lattice defects (vacancies, impurity atoms, etc.). The dislocation motion from one
defect to the next defect is regarded as the elementary process. The mean-free path l can be approximated at the average distance between
neighboring defects. (b) The plastic deformation process is regarded as a sequential series of the elementary processes assigned at random to
the dislocations. As an example, we describe a system with four edge dislocations, A–D. The red and blue arrows represent the displacement of
the dislocations in each elementary process under the loading and unloading conditions, respectively. The direction of the dislocation motion
is dependent on the loading and unloading condition and the direction of the Burgers vector. (c) In the schematic, each of the loading and
unloading processes consists of eight elementary processes to be assigned to the four dislocations. The number of trials is dependent on the
amplitude of the applied strain. (d) Focusing on a specific dislocation (e.g., A), the displacement history can be visualized as a function of the
trial number. Dislocation A is displaced by l to the right at trials 1, 6, and 8 at the loading stage, and to the left at trials 3 and 6 at the unloading
stage (The activated trials are indicated with bold letters). While displacement of the dislocations should be zero on average after unloading, a
nonzero residual displacement may be left, which is the origin of diffusion of dislocations in fatigue.

Dislocations move to release the applied shear strain. The
total amount of displacement of all the dislocations, Δ, can be
calculated geometrically as

Δ = LxLyγmax

b
, (3)

where b denotes the length of the Burgers vector. The detail of
derivation of this equation is shown in Appendix. The number
of elementary processes in a quarter cycle, m, is simply given
as the ratio of the total displacement Δ and the length of mean-
free path l of the dislocation motion:

m = Δ

l
= LxLyγmax

lb
. (4)

Thus, m trials are assigned to N dislocations at random.
Therefore, a dislocation is expected to move with probability
1/N or stay with probability 1 − 1/N in each elementary
process:

pelem(move) = 1

N
, (5)

pelem(stay) = 1 − 1

N
. (6)

Hence, the quarter cycle is regarded as a RW with drift
consisting of this elementary process. Since each dislocation
undergoes this process m times in the quarter cycle Q1, the
probability distribution of frequency (the number of times) to
move, pQ1(k), is given as a binomial distribution

pQ1(k) = mCk

(
1

N

)k(
1 − 1

N

)m−k

, (7)

where k represents the number of times that a (spe-
cific) dislocation moved (k = 0, 1, 2, . . . , m). From the de
Moivre-Laplace theorem [47], a binomial distribution can be
approximated by a normal distribution; pQ1(k) ≈ N (μ, σ 2),
with the mean μ := m

N and the variance σ 2 := m
N (1 − 1

N ). The
dislocation displacement ξQ1 is given as ξQ1 = lk, and thus
we obtain the following probability distribution of dislocation
displacement as PQ1(ξQ1) ≈ N (+lμ, l2σ 2). The distributions
of displacement for other three quarters (Q2, Q3, and Q4) can
be obtained in the same way as PQ2(ξQ2) = N (−lμ, l2σ 2),
PQ3(ξQ3) = N (−lμ, l2σ 2), and PQ4(ξQ4) = N (+lμ, l2σ 2).
The residual displacement distribution after one cycle, ξ , can
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FIG. 2. (a) Geometry to be investigated for derivation of diffu-
sion behavior. Since the interaction between dislocations is regarded
as ignored, the position of dislocations can be set arbitrarily.
(b) Schematic illustration of applied shear strain as a function of time
in one cycle. Regions Q1–Q4 represent quarter cycles consisting of a
single cycle: forward loading, forward unloading, backward loading,
and backward unloading in the order.

be obtained as ξ = ξQ1 + ξQ2 + ξQ3 + ξQ4. From the supposi-
tion of independence of each trial, the four distributions are
additive, and the probability distribution of the displacement,
Pcycle(ξ ), is obtained as N (0, 4l2σ 2); i.e.,

Pcycle(ξ ) = 1√
2πς2

exp

(−ξ 2

2ς2

)
, (8)

ς2 = 4l2σ 2. (9)

Note that the nonzero drifts (±lμ) in quarter cycles are
completely canceled after the whole cycle. The diffusion co-
efficient per cycle, D, is directly obtained from the definition
[48]

D = 1

2
ς2 = 2γmaxl

bρ

(
1 − 1

N

)
, (10)

where ρ is the number density of dislocation; ρ := N
LxLy

. Es-
pecially, for sufficiently large systems (N → ∞), we obtain

D ≈ 2γmaxl

bρ
. (11)

This is the main result of this paper. The diffusion coefficient
is expressed as a functions of parameters whose physical
meaning is clear. The strain amplitude γmax and the length
of the Burgers vector b are uniquely determined from the
material and the test condition to examine. The mean-free path
l and the dislocation density ρ are dependent on the micro-
scopic structure of materials. In general, since point defects

TABLE I. Structural parameters and loading condition for MD
simulations of cyclic loading deformation.

Lx [nm] Ly [nm] N γmax l [nm] ρ [nm−2] Cycles

Case 1 19.9 20.1 2 0.01 4.98 0.0050 200
Case 2 19.9 20.1 2 0.02 4.98 0.0050 200
Case 3 19.9 20.1 2 0.05 4.98 0.0050 50
Case 4 19.9 20.1 2 0.01 9.95 0.0050 200
Case 5 19.9 20.1 2 0.02 9.95 0.0050 200
Case 6 19.9 20.1 2 0.05 9.95 0.0050 200
Case 7 15.3 15.1 2 0.02 5.10 0.0087 50
Case 8 30.7 30.2 2 0.02 5.11 0.0022 50
Case 9 19.9 40.3 4 0.02 4.98 0.0050 50
Case 10 19.9 40.3 4 0.02 9.95 0.0050 50

are distributed in three-dimensional space at random or in a
certain order, it is difficult to calculate l directly and exactly
for an arbitrary placement of defects. While one can easily
guess from a simple dimensional analysis that the mean-free
path is proportional to the cubic root of the point defect den-
sity, the exact form of equation is not established. In the MD
simulation in the next section, the point defects are manually
placed in an ordered way to uniquely determine l (see the next
section for details). We also note that the obtained diffusion
coefficient D is not per unit time but per one cycle, unlike
usual diffusion phenomena.

It is interesting to consider the system with only one dislo-
cation (N = 1) as an extreme case. In this case, no randomness
is introduced to the deformation process because the disloca-
tion motion is uniquely determined: The dislocation moves
forward by a certain distance during loading and moves back
by exactly the same distance during unloading. Thus, we
expect D = 0 for N = 1, which is consistent with Eq. (10).
Since the degree of freedom increases with increasing N , D is
expected to rise with increasing N .

III. VALIDATION BY MOLECULAR
DYNAMICS SIMULATION

A. Simulation setup

To verify Eqs. (10) and (11), we conduct MD simula-
tions of cyclic loading, in which all the related parameters
(γmax, l, b, ρ, and N) are explicitly controlled. We dealt with
edge dislocations in a face-centered cubic (FCC) copper (Cu)
single crystal as a typical case of fatigue and examined ten
cases (Cases 1–10) with different conditions as shown in
Table I. We adopted the interatomic potential based on the
embedded atom method developed by Mishin et al. [49]

Figure 3 shows an example of the simulation cells. We
prepared a simulation cell of FCC Cu consisting of approx-
imately 34 000–140 000 atoms with one or two pairs of
edge dislocations (i.e., N = 2−4) in all cases. Since N is not
sufficiently large, we verify Eq. (10) instead of Eq. (11). The
most typical slip system {111}〈110〉 was considered as the
active slip system. The lattice constant of Cu was evaluated
as 0.363 nm at the temperature of 300 K (room tempera-
ture), and thus we obtained the length of the Burgers vector
as b = 0.257 nm. The simulation cell size along the x and
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x [11̄0]

y [111]

z [1̄1̄2]

vacancy dislocation

FIG. 3. Simulation cell of cyclic loading analysis for cases 1 and
2. Atoms are colored by the central symmetry parameter (CSP). The
red atoms indicate the vacancies or stacking faults, and the blue
atoms indicate the ideal FCC structure. Dislocations are split to two
partial dislocations each, between which stacking fault regions are
formed (indicated in red).

y axes was varied to examine the effect of the dislocation
density ρ, while the size along the z axis was set equally
for all cases as Lz = 1.8 nm. Thus, the dislocation density
is evaluated as ρ = N/LxLy and listed in Table I. In these
simulation cells, the slip plane (111) is on the xz plane, and the
slip direction [11̄0] is along the x axis. The periodic boundary
condition was imposed on all three directions. Note that there
are only two or four independent dislocations in the simulation
cell, although the periodic boundary condition replicates the
system infinitely. In this situation, the number of the disloca-
tions is also regarded as N = 2 or 4 accordingly. In addition,
atomic vacancies were introduced in the vicinities of the path
of dislocation motion to explicitly determine the mean-free
path l . Since the dislocations are trapped by vacancies, l
is expected to be equal (or close) to the distance between
vacancies. Note that, in the case of N = 2, the dislocations are
kept nearly equivalent to each other through a cycle, and thus
nearly ideal diffusion behavior is observed even though they
interact with each other. We put two or four vacancies at equal
distances along the x direction near the path of the dislocation
motion, and then the mean-free path l was calculated by

dividing Lx by the number of vacancies. Cyclic shear strain
γzx was applied to the simulation cell at the constant strain rate
dγ /dt = ±5 × 10−5 ps−1 at the temperature of 300 K up to
50–200 cycles . The maximum shear strain (strain amplitude)
γmax was varied in the range of 0.01–0.05. All MD simulations
were performed on the LAMMPS code [50].

B. Simulation results

Figure 4 shows the temporal evolution of the displacement
of dislocations at cycle 1 in case 2, as an example. The po-
sition of dislocations was calculated as the center of mass of
the stacking fault which was formed between the partial dislo-
cations (see Fig. 3). Dislocations move continually, driven by
the applied shear strain, and a nonzero residual displacement
ξ is left after the cycle. Although unclear, the dislocation
motion is discretized to some extent by being trapped in the
vicinity of vacancies, which is consistent with the precondi-
tions considered in Sec. II A. Also, after other cycles, some
displacement is left as well, and the diffusion coefficient is
evaluated from the variance of the probability distribution of
the dislocation displacement. Note that the Peierls potential
is sufficiently small compared to the kinetic energy (thermal
fluctuation), and thus the effect of the Peierls potential is
negligible. Figure 5 shows the probability distribution func-
tion of the displacement of dislocations after each cycle. The
distribution (and thus the standard deviation ς ) obtained by
the MD simulation is in good agreement with that predicted by
the RW model. Figure 6 compares the diffusion coefficients,
D, evaluated by the MD simulations and the RW model. While
the discrepancy in D is not very small (note D ∝ ς2), it is
still within an acceptable range for the practical use, i.e., to
estimate the order of magnitude of D for the reaction-diffusion
models.

The above results demonstrate the validity of the devel-
oped RW model despite the intensive simplification in the
formulation.
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FIG. 4. Displacements of dislocations as a function of time at cycle 1 in case 2 for (a) entire cycle and (b) t = 0−0.8 ns. Two data series
(blue and red) are two corresponding dislocations with opposite Burgers vectors (see inset). The residual displacement after cycle, ξ , is
indicated by an arrow on the right of t = 1.6.
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FIG. 5. Probability distribution of displacement of dislocations obtained by random walk (RW) model [Eqs. (8) and (9)] and molecular
dynamics (MD) simulation for (a)–(i) cases 1-10 in the order.
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IV. DISCUSSION

A. Comparison with literature

Indeed, Schiller and Walgraef [51] attempted to estimate
the diffusion coefficient of the mobile dislocation. They cal-
culated Dm = v2

m/2c, where vm denotes the effective velocity
of the mobile dislocations and c is a parameter related to the
reaction terms. The velocity was estimated from the Orowan
equation [52]. In this way, however, it is difficult to explicitly
take into account the effect of the test condition (especially,
the strain amplitude γmax, which characterizes the disloca-
tion pattern). Another problem in the precedent evaluation
[51] is that the time dependency is inevitably introduced into
the equation, which is not consistent with the experimental
fact that the fatigue behavior is insensitive to the strain rate
[53–55].

On the other hand, the present model can naturally intro-
duce the effect of the test condition (strain amplitude) and
omit the time dependency. In other words, we established the
diffusion model successfully without considering the complex
dynamic effects (time-dependent motion) such as mobility,
velocity, effective mass, etc. That was achieved by simply sup-
posing that the diffusion of dislocations is mainly attributed to
the plastic deformation by the cyclic loading. The parameters
to be determined, i.e., the mean-free path l and the disloca-
tion density ρ, are static properties, which can be estimated
relatively easily.

B. Extensions of the model

1. Elastoplastic solids

It is worth noting that the material properties affect the
diffusion coefficient in a quite simple way. Only the Burg-
ers vector and the mean-free path, which is not an intrinsic
property, appear in Eq. (11), but there is no effect of ener-
getical character, i.e., the interatomic potential function, of
the material. Although this absence of the potential function
dependency is neither trivial nor intuitive, the reason can be
clearly explained: That is attributed to the assumption of the
rigid perfectly plastic solid, where the deformation behavior
is uniquely determined regardless of the potential function

form. If the elastic deformation is not negligible compared
with the strain amplitude, this assumption is needed to be
modified accordingly. Our model can be easily extended from
a rigid perfectly plastic solid (as formulated in Sec. II B) to an
elastoplastic solid. For example, for an elastic perfectly plastic
solid, the plastic strain exerted on the material, γplast, is given
by subtracting the elastic strain γelast from the total strain γ ;
i.e., γplast = γ − γelast. Thus, we obtain the modified equation

D ≈ 2(γmax − γelast )l

bρ
(12)

from Eq. (11). It is another problem how to decompose the
total strain into the elastic and plastic components. In the
case of general elastoplastic materials, the detailed effects
of the elastic and plastic contribution can be evaluated from
the shear stress-strain relationship, which is obtained by MD
simulations.

C. Dislocation dipole

The present RW model is valid only under the precondi-
tions mentioned in Sec. II A, where the interaction between
dislocations is sufficiently weak compared with the interaction
between point defects and a dislocation. Such a condition is
realized if the dislocation density is sufficiently small and
dislocations can move nearly independently of each other.
The mobile dislocations are expected to exist in such an en-
vironment, and thus our model is a good approximation to
describe the behavior of a mobile dislocation. Meanwhile, it is
expected to make several modifications to apply the model to
the case of the immobile dislocations, i.e., dislocation dipoles.
This is mainly because the motion of the immobile disloca-
tions are strongly confined by the counterpart dislocation of
the dislocation dipole, which breaks down the assumption of
no interaction between dislocations (Sec. II A). It should also
be noted that the length scale of dislocation motion is gov-
erned by the average distance between dislocations (≈ρ−1/2)
[33,56] rather than the distance between the point defects l in
the case of strongly interacting dislocations, and the nonlinear
effect of ρ on the diffusion coefficient D is not negligible any
longer. In such a situation, dislocation patterning is expected
to obey a scaling law regarding ρ−3/2. In addition, the diffu-
sion motion of the immobile dislocations might be described
as a barycentric motion of the dislocation pair. Nevertheless,
the fundamental behavior of the diffusion can be modeled in
a similar way to the present formulation, i.e., as a random as-
signment of the sequential elementary processes. The detailed
formulation for the immobile dislocations and its validation
will be left as a future work.

V. CONCLUSION

We aimed theoretical derivation of the diffusion proper-
ties of dislocations in crystalline materials undergoing cyclic
deformation. By introducing drastic simplifications, we for-
mulated the dislocation motion under cyclic loading as a
one-dimensional RW, and analytically derived the diffusion
coefficient per cycle as a function of loading condition (shear
strain amplitude) and material properties (the Burgers vector,
the dislocation density and the mean-free path). There, the
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diffusive nature was attributed to the random assignment of
displacement to individual dislocations. The validity of the
derived equation was confirmed by the MD simulations of
cyclic deformation of copper single crystal with dislocations.
The diffusion coefficients obtained by the MD simulation
were in fairly good agreement with the prediction by the RW
model, indicating the validity of the proposed model. Our
model enables semiquantitative estimation of the diffusion
coefficient of dislocations, which can be applied to the larger-
scale simulations such as the reaction-diffusion models.

In derivation of the diffusion coefficient in Sec. II B, we did
not make any assumption for a specific material or a specific
crystal structure. Therefore, the developed equations are ap-
plicable not only for metals but also for general materials, as
long as the preconditions in Sec. II A are valid. For example,
it is known that dislocation microstructures are formed in
silicon by fatigue as well as metals [11,57]. In such functional
materials, the fatigue microstructures may also influence the
functional aspect. Moreover, recent experiments reported that
various kinds of ionic crystals which have been recognized as
brittle thus far (e.g., zinc sulfide [58], zinc oxide [59], etc,)
can exhibit large plastic deformation under certain conditions.
In those materials, the motion of dislocations is expected to
attract more attention in the future for the mechanical and
functional reliability design of the applications.
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APPENDIX: RELATIONSHIP BETWEEN APPLIED
STRAIN AND DISPLACEMENT OF DISLOCATIONS

Here, we derive the relationship between applied shear
strain and the total displacement of dislocations, i.e., Eq. (3),
by demonstrating the equivalence between the motion of in-
dividual dislocations and the plastic strain in a homogenized
body.

FIG. 7. Schematic illustration of system on thought experiment.
Motion of a dislocation through the entire body (a) causes crystal slip
as much as the length of the Burgers vector b (b), which is equivalent
to the plastic deformation by shear strain γ = Ly/b (c).

First, we conduct a thought experiment, supposing that an
edge dislocation passes through the body (with the size of
Lx and Ly) from left to right, as shown in Fig. 7(a). Then,
the upper half of the body is displaced by the length of the
Burgers vector, b [Fig. 7(b)]. Therefore, it is deduced that the
displacement of a dislocation by Lx is equivalent to the plastic
shear strain of b/Ly [Fig. 7(c)]:

Δ = Lx ↔ γ = b

Ly
. (A1)

Next, we just note that the displacement of a dislocation Δ is
proportional to the strain γ ,

Δ = Cγ , (A2)

where C is a constant coefficient, which is directly calculated
from Eq. (A1) as

C = Δ

γ
= LxLy

b
. (A3)

Thus, we obtain Eq. (3) with γ = γmax.
We can discuss the system with two or more dislocations

in the same way. As a conclusion, the plastic strain is simply
dependent on the sum displacement of all the dislocations,
regardless of the number of dislocations and their condi-
tion. The derived equation is equivalent to the time-integrated
Orowan equation [52,60–62] from the initial state (γ = 0) to
the maximal-strain state (γ = γmax).
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