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Air drag controls the runout of small laboratory landslides
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Laboratory granular landslides are smaller-scale, simplified, yet well-controlled versions of larger and often
tragic natural landslides. Using systematic experiments and scaling analysis, we quantify the influence of grain
size, fall height, and landslide volume on runout distance. We also determine the minimum landslide size required
to observe this scaling, which we find is set by a combination of air drag, grain size, and fall height.

DOI: 10.1103/PhysRevE.109.064907

I. INTRODUCTION

A common goal of laboratory-scale granular landslide ex-
periments is to shed light on natural landslides. One prominent
qualitative feature they must then reproduce is the classical
positive correlation between landslide volume V and runout
distance L, while also taking into account the total fall height
H . Although laboratory experiments are able to reproduce the
same qualitative behavior [1,2], upscaling the results found in
the laboratory to what is observed in nature presents a serious
challenge [3–5]. Thus particular attention is paid to so-called
scale effects, wherein variables such as the nondimensional
stresses presumably retain a size dependence even after nondi-
mensionalization of all relevant variables and matching of key
parameters such as Froude or Reynolds numbers [6]. Notwith-
standing these obstacles, we have elsewhere found that by
additionally accounting for the grain size, we are able to bring
the normalized runout distance of dense laboratory flows into
quantitative agreement with the runout of a variety of natural
flows through a new scaling of L with H , the volume V , and
the size of the grains D [7]. This suggests that laboratory-scale
experiments can be fruitfully used to systematically investi-
gate not only the qualitative but also the quantitative behavior
of even large-scale landslides thousands of times larger. Here
we probe the limitations of this scaling, making estimates
of the parameter ranges necessary to observe this scaling in
laboratory granular landslides.

Following previous work [6], we focus on stresses and
in particular the role played by the viscous stress due to
the surrounding air. Börzsönyi et al. demonstrated that air
drag can significantly affect the phase and flow behavior of
strongly inclined laboratory granular flows [8]. Kesseler et al.
performed a systematic experimental and numerical study of
air drag on the runout of laboratory granular flows, using
a grain Reynolds number to encapsulate its role as a scale
effect [5]. Here we attempt a similar approach but use instead
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the framework supplied by the aforementioned scaling law to
which both dense laboratory granular flows and natural flows
conform [7]. We postulate a gas-liquid granular transition
controlled by air drag and gravity to explain deviations from
this scaling and determine the landslide parameters which set
this transition point. To ascertain this transition point we focus
on the scaling behavior of the landslide front speed U , which
we connect to the runout L by a simple estimate.

II. EXPERIMENTAL METHODS

We begin by describing our laboratory experiments for
which we systematically vary the fall height H , the total vol-
ume V , and the grain size D. We have found that the grain size
distribution is a key element to understanding the runout of
granular landslides, in particular through 〈D〉, 〈D3〉, and their
ratio S = 〈D3〉/〈D〉3. Our main observables are the runout
distance L, and the landslide front speed U . The experimental
setup is a simplified version of a natural landslide consisting
of a slope, a flat section, grains, and a container to house the
grains before releasing them by rapidly raising a sliding metal
gate. See Fig. 1(a) for a schematic of the experimental setup.

For each experiment we measure the total mass M with
an electronic scale and gently sprinkle the grains into the
rectangular box so that the surface is level. We measure V (in
the box), H , and L using a standard measuring tape with mil-
limeter precision. Because individual grains can escape and
travel farther than others, we identify the final front position as
the frontmost position where a layer of grains is still in contact
with the main mass (see Fig. 1(a) and Ref. [7]). In addition,
we also measure the landslide front position and speed U
using an overhead fast camera (Phantom v641) at a frame
rate of 100 Hz. Our grains are relatively spherical glass beads
which have been roughly presorted by the manufacturer ac-
cording to diameter D, ranging from ∼45 µm to ∼1.5 mm (see
Appendix A 1). We characterize each collection of grains by
measuring their size distributions using an imaging technique
(see Appendix A 1). This yields the frequency distribution
p f (D), which we then convert into the mass-weighted distri-
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FIG. 1. (a) Side-view schematic of the experimental setup. The grains are released from a rectangular box (I) of width 15 cm via a sliding
sluice gate at the front and slide down a flat glass plate (80 cm long and 65 cm wide), inclined at an angle θ � 34◦, and eventually reach the
junction (II) before coming to rest on a level flat glass plate (125 cm by 125 cm). The motion of the grains is observed with an overhead fast
camera to determine the front speed U at the junction. (b) Representative image series of an experimental granular landslide near the junction
(horizontal line in all images) at intermediate times (II). Time is from left to right and the flow direction is down. Images are 0.01 s apart. The
black dot identifies the front position. Here the total volume is V � 633 cm3 (M � 1000 g), and the grain size is 〈D〉 = 562 µm. (c) Time series
of front position for several different volumes for the grain size 〈D〉 = 328 µm. The time t = 0 is defined as the moment when the front crosses
the junction. Both the slope, from which we determine U , and the final distance depend on V . Inset: Zoom-in near the junction crossing. Below
V � 5 cm3 the slope is nearly constant.

bution p(D) ∝ p f (D) × (4πρ/3)(D/2)3, where ρ is the grain
material mass density. We calculate average quantities such
as the average diameter 〈D〉 using p(D). While electrostatic
effects can be prominent for very small particle sizes [9],
the present experiments were performed for a range of room
humidities and temperatures and a range of different particle
sizes. The collapse which we find (see Fig. 2) is without
reference to such effects.

To determine the front speed U in the laboratory experi-
ments, we use a standard image processing tool (ImageJ) to
manually track the front position of the landslide. As shown
in Fig. 1(b), a series of zoomed-in images near the junction
between the inclined and flat section of the experiments, the
front is easily distinguished (represented by a black dot). We
fit a line to the front positions for the first three time steps after
the junction. We estimate U as the slope of this line, and thus
U is really an initial front speed which is necessarily followed
by deceleration after the junction. We estimate an error bar in
this determination of U by the difference between the speed
estimated by fitting three versus four points.

III. PRELIMINARY OBSERVATIONS

Elsewhere we considered only experiments and natural
field data at large V for which the flow is dense [7]. As shown
in Fig. 2(a), all of the experimental runout data for different H
and 〈D〉 at large V conform to the following scaling:

H

L
∼

[(
V

H3

)
S

]−1/6

. (1)

Here we consider a wider range of flow densities by reducing
V by several orders of magnitude. While at large densities, in

correspondence with natural flows, there is a positive corre-
lation between the runout distance L and V , we find different
behavior at small V . This manifests as a nonmonotonic [10]
deviation from the scaling [Eq. (1)] which can be seen in
Fig. 2(a). At low V , H/L increases with V , opposite to the
classical trend [11]. Moreover the point of departure appears
to depend on both D and H . Here we take as our main ob-
jective determining the point of deviation from Eq. (1) and
its dependence on typical landslide parameters. This will also
serve to determine the range of validity of the large (V/H3)S
scaling in Eq. (1).

Parallel to the scaling of the runout distance L in Fig. 2(a)
is the scaling of the front speed U shown in Fig. 2(b). In the
large V limit [12], UV →∞/

√
g〈D3〉1/3 becomes independent of

〈D〉 and H and depends only on (V/〈D〉3). We find empirically
that

UV →∞√
g〈D3〉1/3

∼ (V/〈D〉3)1/6. (2)

This scaling is consistent with the scaling of the front speed
found for a large avalanche of ping-pong balls on a ski
jump [13], and the power-law exponents in Eq. (1) and Eq. (2)
immediately suggest a connection between the runout dis-
tance L and the initial front speed U . On the other hand, the
front speeds in the low V/〈D〉3 limit, UV →0, become indepen-
dent of V/〈D〉3 but manifest a dependence on both H and 〈D〉
(see Appendix B).

The nonmonotonic behavior in L can easily be observed
in images of the final grain pile [see inset to Fig. 2(a)]. As
these images qualitatively suggest, the region of decrease
corresponds to a dense flow with many inter-particle interac-
tions, and the region of increase corresponds to a dilute flow
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FIG. 2. (a) Normalized runout distance H/L vs (V/H3)S for different values of 〈D〉 and H (data symbols with larger H are more transparent
and bigger). At large (V/H3)S, all data conform to a master curve ∼[(V/H3)S]−1/6 which we identify with the dense, liquid regime. At low
(V/H 3)S, the curves peel off the master curve according to their 〈D〉 and H . The departure from the master curve occurs horizontally at
[(V/H3)S]C and vertically at [H/L]C . We point out one such example with a dark, transparent star. The departure and the maxima of each
curve appear to depend on 〈D〉 and H in a similar way. Inset: Overhead images of the final landslide position for low, intermediate, and large
N for H = 31.46 cm, 〈D〉 = 562 µm. The upper part of each image corresponds to the junction between the inclined and flat sections and the
runout direction is oriented downwards. (b) Plot of normalized front speeds U/

√
g〈D3〉1/3 vs V/〈D〉3 for laboratory experiments at various 〈D〉

and H (symbols as in (a)). At large V , U/
√

g〈D3〉1/3 ∼ (V/〈D〉3)1/6. At low V the U data peel off the (V/〈D〉3)1/6 curve at a value of (V/〈D〉3)
determined by H and 〈D〉 (see Sec. III). A fit of (V/〈D〉3)1/6 to high (V/〈D〉3) experimental data (−−) yields R2 � 0.95. Inset: A plot of UV →0

vs H for different 〈D〉 (same symbols as main figure) reveals a strong dependence on 〈D〉. Likewise the slope of the line 1/2 + c is smaller
(c � −0.1576) than the 1/2 expected when only gravity is relevant, suggesting additional significant stresses.

with fewer interactions. We thus postulate that the transition
between the regimes of increasing and decreasing normalized
runout are manifestations of an overall gas-liquid granular
transition [8], and we refer to these two regimes as gaseous
(dilute) and liquid (dense). We will test this hypothesis by
determining the scaling of the intersection of the gaseous and
liquid regimes, roughly corresponding to the maxima denoted
by [(V/H3)S]C and [H/L]C in Fig. 2(a), and comparing this to
our experimental data. We will take advantage of the close
connection between L and U in both the large and small
(V/H3)S regimes to estimate at which point the dense scaling
[Eq. (1)] fails.

Breakdown of landslide scaling: The dilute limit

Here we consider the dilute limit. It is natural to assume
that inter-grain forces, which are apparently important in the
dense limit V → ∞, have become irrelevant, as reflected by
the independence from (V/〈D〉3). A dependence on H as
seen in Fig. 2(b) is natural and would follow from consid-
ering gravity only, but instead of the expected dependence
UV →0 ∼ H1/2, we find UV →0 ∼ H1/2+c, with c < 0. Follow-
ing Refs. [5,8] we postulate the role of air drag, modeled as the
drag on a single sphere [14–16], in addition to gravity. With
these minimal ingredients we perform a scaling analysis for
UV →0 = F (g, H, 〈D〉, νair, ρair, ρP), where including νair and
ρair anticipates the role of air drag.

Performing a standard dimensional analysis (see Ap-
pendix B for details), we assume a power-law dependence
on the ratio 〈D〉/H and introduce a grain-size-dependent

Reynolds number Re = √
gH〈D〉/νair ,

UV →0√
gH

∼
( 〈D〉

H

)a

Re2(a+c). (3)

The exponent c � −0.1576 ± 0.071 is determined empiri-
cally from the data in the inset to Fig. 2(b). To determine
an appropriate value of a we plot in Fig. 3 the normalized
values of UV →0/

√
gH Re2(a+c) vs 〈D〉/H . If the scaling in

Eq. (3) is correct, then UV →0/
√

gH Re2(a+c) ∼ (〈D〉/H )a, and
so the data, in this log-log plot, will appear as a straight line
with slope a. The best fit for a determined in this way yields
a � 0.205 ± 0.05 (solid symbols in Fig. 3). Note that values
of c = 0 and a = 0 correspond to the solution for a single
grain descending a height H in the absence of air drag.

We now equate the scaling of the front speed for
the gaseous regime, UV →0 [Eq. (3)], and for the liquid
regime, UV →∞ [Eq. (2)]. This determines the dependence of
[(V/H3)S]]C and (H/L)C on 〈D〉 and H through the parame-
ters 〈D〉/H and Re. Setting the high and low V scaling for the
front speeds equal,

[
√

g〈D3〉1/3(V/〈D〉3)1/6]C ∼ UV →∞ ∼ UV →0

∼
√

gH

( 〈D〉
H

)a

Re2(a+c), (4)

yields

[
(V/H3)S

]1/6

C ∼
( 〈D〉

H

)a

Re2(a+c). (5)
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FIG. 3. Plot of UV →0/
√

gHRe2(a+c) vs 〈D〉/H used to determine
the value of the exponent a empirically. In accord with Eq. (3),
UV →0/

√
gHRe2(a+c) should be proportional to (〈D〉/H )a, so that in

this log-log plot the slope of the line should be a. Adjusting a as
a fitting parameter shows that a value of a � 0.205 (solid symbols)
yields a good fit, whereas slightly different values of a do not (open
symbols). The goodness of fit for a � 0.205 also justifies the scaling
predicted in Eq. (3).

The scaling of [(V/H3)S]C in turn yields the scaling of
(H/L)C . Using the dense liquid result [Fig. 2(a)] for the nor-
malized runout (H/L)C ∼ [(V/H3)S]−1/6

C , this yields

(
H

L

)
C

∼
( 〈D〉

H

)−a

Re−2(a+c). (6)

We test these predictions in Fig. 4 by normalizing (H/L)C

and [(V/H3)S]C according to Eqs. (5) and (6) and plotting
vs 〈D〉/H . This yields excellent collapse of the newly nor-
malized critical values, the putative intersection of the liquid
and gaseous regimes. Starting from the hypothesis that the
nonmonotonic behavior, and in particular the maxima of the
curves in Fig. 2(a), is a manifestation of a granular gas-liquid
transition, we were able to arrive at a prediction for the scal-
ing of these maxima which agrees well with experiments.
Previous studies have argued that air drag in laboratory land-
slides may prohibit them from being compared to natural
landslides where air drag is less relevant due to the much
larger 〈D〉 [5]. Here we have performed a complete analysis
to find the scaling that will determine whether a granular
flow is to be considered gaseous or liquid, and thus provide
a useful tool for constructing laboratory analogs of natural
landslides which are typically in the dense flow regime. If
the normalized volume of grains (V/H3)S be larger than
[(V/H3)S]C ∼ (〈D〉/H )6aRe12(a+c) in Eq. (5), then the system
is in the granular dense regime and the excellent agreement
between our laboratory experiments in this dense regime and
field data [7] indicate that here the effect of air drag is mini-
mal, thus enabling a direct comparison.

IV. CONCLUSION

In summary, we have performed an extensive experimental
study of laboratory landslide runout combined with a simple
scaling analysis to further our understanding of the domi-
nant parameters and phases that control granular landslides.
Performing experiments over a wide range of landslide size
revealed unexpected nonmonotonic behavior, an increase in
runout distance with decreasing landslide size, in direct con-

FIG. 4. Plots of the critical values of the effective friction (H/L) and (V/H3)S, newly normalized according to the predicted scalings
[Eqs. (5) and (6)]. (a) Log-log plot of (H/L)CRe2(a+c) vs 〈D〉/H . According to Eq. (6) the slope of this curve should be −a, which agrees well
with the data. (b) Log-log plot of [(V/H3)S]1/6

C Re−2(a+c) vs 〈D〉/H . According to Eq. (5) the slope of this curve should be a, which agrees
satisfactorily with the data.
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FIG. 5. (a) Example particle images used to determine grain size distributions. The particle size is determined by fitting an ellipse to the
grains falling through a narrow gap between two glass plates. These grains correspond to the 〈D〉 = 1127 µm grain distribution in (b). (b) Plot
of grain size distribution weighted by mass (or equivalently by volume). The skewness 〈D3〉/〈D〉3 is also included. Several distributions are
slightly bimodal and then sieved to produce another set of grains with a more uniform grain size distribution. The data in Fig. 2 include both.

trast to the classical trend. We demonstrated that this is a
manifestation of a granular gas-liquid transition. Both gravity
and air drag play an important role so that the volume of
grains at which the gaseous behavior turns into the universal
liquid behavior depends on both H and 〈D〉 in a predictable
way. Analyzing only the dense, granular liquid phase, we
found that the runout is controlled by the mass-weighted grain
distribution (〈D〉 and 〈D3〉), the fall height H , and volume of
grains V . By contrast a semiempirical analysis of the dilute,
granular gaseous phase found that the role of the drag due to
the surrounding air needs to be taken into account through
the grain Reynolds number, which includes the kinematic
viscosity νair. The ability to distinguish whether a laboratory
granular landslide is gaseous or liquid is of particular im-
portance as it provides direction in designing experiments to
compare with natural landslides.
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APPENDIX A: MATERIALS AND METHODS

Grain size distributions

Using a weight scale and measuring the volume displaced
by a large number of grains, we determine the mass den-
sity of all laboratory grains (glass grains from OTS) to be
ρ = 2.48 ± 0.01 g/cm3. We determine the size distribution of
the grains used in our laboratory experiments by imaging the
grains [see Fig. 5(a)]. We sprinkle the grains in between two
vertical glass plates and observe them with a steady illumi-
nation and fast camera. In this way the particles generally do
not touch and we can accurately estimate their size. We fit
an ellipse to each grain and defined the diameter D of each
grain as the average between the semimajor (a) and semiminor
(b) axes [see Fig. 5(a)]. We used our own Python scripts

that utilize the OpenCV library [17] to process the images
to determine D. This yields the number-weighted probability
distribution p f (D). We confirm this estimate of p f (D) by
counting and measuring the total weight of grains on a sen-
sitive scale (Adam Equipment PW 254) and verify that the
average diameter determined from p f (D),

∫ ∞
0 p f (D)dD, is

within 2% of the estimate from the manual counting method.
We then convert the size distributions to the mass-weighted
distribution p(D) [see Fig. 5(b)]. Taking the mass-weighted
averages allowed us to satisfactorily collapse all of the data.

APPENDIX B: SCALING ANALYSIS FOR THE DILUTE
LIMIT: FURTHER DETAILS

In order to treat the dependence of UV →0 on H and 〈D〉 sys-
tematically, we perform a standard dimensional analysis [18],
writing UV →0 as an unknown function F given by

UV →0 = F (g, H, 〈D〉, νair, ρair, ρP). (B1)

where νAir and ρAir are the kinematic viscosity and den-
sity of air respectively, and ρP is the grain density.
Buckingham’s � theorem [18] enables us to rewrite this
general but uninformative equation as a new nondimensional
function of nondimensionalized variables with fewer argu-
ments. We choose the following nondimensional groups:

UV →0√
gH

,
ρair

ρP
,

√
gH〈D〉
νair

,
〈D〉
H

. (B2)

The first ratio is the dilute front speed UV →0 normalized by√
gH . We choose to normalize the dilute front speed using

H rather than D because the overall drop height is a more
relevant length scale than the grain size in the absence of
inter-particle interactions. The three remaining parameters are
the ratio of densities, the ratio of grain size to fall height, and a
Reynolds number Re = √

gH〈D〉/νair where the characteristic
speed is given by

√
gH , proportional to the value a grain

would have at the junction in the absence of air drag. This
yields

UV →0√
gH

= �

(
ρair

ρP
, Re,

〈D〉
H

)
. (B3)

064907-5



CERBUS, BRIVADY, FAUG, AND KELLAY PHYSICAL REVIEW E 109, 064907 (2024)

We now consider whether the function � can be further sim-
plified by separating into three independent functions for each
new variable. Because ρair/ρP is constant in our experiments
we call this function a constant C. Calling the undetermined
functions of 〈D〉/H and Re, f〈D〉/H and fRe respectively, we
have UV →0/

√
gH = C f〈D〉/H fRe. The analysis can be simpli-

fied even further by making assumptions about f〈D〉/H and
fRe. Since 〈D〉/H � 1 and Re � 1, we make the (usual)
assumption of incomplete similarity such that UV →0 retains its
dependence on the small and large parameters in power-law
form [18]. This yields U/

√
gH ∼ (〈D〉/H )aReb. This will set

a constraint on the possible exponents, since UV →0 ∼ H1/2+c,
such that −a + b/2 = c and thus b = 2(a + c), reducing the
number of fitting parameters to one, a. This yields the main

prediction for UV →0:

UV →0√
gH

∼
( 〈D〉

H

)a

Re2(a+c). (B4)

We test Eq. (B4) by plotting in Fig. 3 the normalized speed
(UV →0/

√
gH )Re2(a+c) vs 〈D〉/H . The value of c is already

determined empirically from the relation UV →0 ∼ H1/2+c [see
inset to Fig. 2(b)], yielding c � −0.1576 ± 0.071, where the
uncertainty is determined by the variation over the differ-
ent 〈D〉. We vary the parameter a and find that a value of
a � 0.205 yields a good fit to the experimental data, account-
ing for the dependence on both H and 〈D〉 (see Fig. 3).
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