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Estimating random close packing density from circle radius distributions
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Circles of a single size can pack together densely in a hexagonal lattice, but adding in size variety disrupts the
order of those packings. We conduct simulations which generate dense random packings of circles with specified
size distributions and measure the area fraction in each case. While the size distributions can be arbitrary, we find
that for a wide range of size distributions the random close-packing area fraction φrcp under this general protocol
is determined to high accuracy by the polydispersity and skewness of the size distribution. At low skewness,
all packings tend to a minimum packing fraction φ0 ≈ 0.840 independent of polydispersity. In the limit of high
skewness, φrcp becomes independent of skewness, asymptoting to a polydispersity-dependent limit. We show
how these results can be predicted from the behavior of bidisperse or bi-Gaussian circle size distributions.
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I. INTRODUCTION

A classic question is to try to guess the number of marbles
in a jar. The mathematical version of that question is to ask
what is the volume fraction occupied by spheres in an amor-
phous configuration, often termed “random close packing.”
Our interest is in the two-dimensional version of this question,
the random close packing of circles. For the packing of circles
of identical sizes, they in general do not pack randomly but
rather into hexagonal regions, such as Fig. 1(a). To form a
“random close packing,” one needs a mixture of particle sizes,
such as shown in Fig. 1(b). The focus of our work is to under-
stand how the area fraction of such a packing depends on the
details of the distribution of particle sizes. The area fraction φ

is the space occupied by the circles divided by the total space
the system occupies. For a system of identical circles packed
in a perfect hexagonal lattice, the area fraction is π

√
3

6 ≈
0.907. Mixing in other circle sizes can disrupt hexagonal
ordering and result in lower values for φ; it is also plausible
that mixing in small particles that fit between big particles
could increase φ even in the absence of hexagonal ordering.

Nonrandom packings of circles have been studied fre-
quently. For example, Apollonian packings are disordered and
pack to high area fractions but require circles with specific
sizes and positions to fill space efficiently [1,2]. One can also
construct “Dionysian” packings that are mechanically stable
but at arbitrarily low area fractions [3]. Other algorithms
generate circle packings according to predetermined networks
and graphs [4]. Our interest is in random close packing, al-
though that term is now seen as imprecise [5,6]. Random close
packing has many applications in nature and industry [7–11].
In this context the idea of randomness is that circle positions
are initially chosen in an uncorrelated fashion, like an ideal
gas, and then allowed to move to result in a dense packing of
circles such that none are overlapped.

*Contact author: dmeer@emory.edu

In general, even algorithms that start with random initial
conditions usually converge onto hexagonal packings such as
Fig. 1(a), so long as the circles are all the same size [6]. To
disrupt hexagonal ordering, we turn to packings of circles
with a probability distribution of radii P(r). Distributions of
sizes are typically characterized by the polydispersity δ, which
can be defined through the first and second moments of the
distribution:

〈r〉 =
∫ ∞

0
P(r)rdr, (1)

〈�rn〉 =
∫ ∞

0
P(r)(r − 〈r〉)ndr, (2)

δ ≡
√

〈�r2〉/〈r〉. (3)

Note that the circles and voids between circles both scale with
r2, so the area fraction does not depend on 〈r〉.

In three dimensions, it is well known that increasing δ

increases the packing volume fraction [12–15]; see also ref-
erences in Ref. [16]. One might think this is also true in
two dimensions (2D), in that smaller particles can fit into
voids between the larger particles, as shown in Fig. 1(b), thus
increasing φ.

Of course, P(r) can be nearly any normalized function;
the only requirement is that P(r) be nonzero only for r > 0.
Knowing polydispersity δ only gives information about the
ratio of the first two moments of the distribution, with all other
moments unconstrained. It is conceivable that there could
be many different P(r) with the same δ but much different
achievable random close-packing area fractions φ. In 3D, a
perhaps surprising result was found by Desmond and Weeks
[16]: Knowing just the polydispersity and skewness of a
distribution was sufficient to determine φ3D of a random close-
packed sample to within ±0.002. The skewness is defined as:

S = 〈�r3〉
〈�r2〉3/2

. (4)
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(a) (b)

FIG. 1. (a) One hundred monodisperse circles compressed into
a hexagonally ordered configuration, φ ≈ 0.927. (b) A bidisperse
mixture (δ = 0.6, S = 0) where the smaller circles disrupt the order
and create a random packing with φ = 0.840. The green color indi-
cates ψ6, a measure of how hexagonally ordered the large circles are
relative to each other, and increases towards white. Small circles in
(b) are ignored in the calculation of ψ6 and are displayed as white.
The thin white square indicates the extent of the periodic boundary
conditions.

Skewness describes the asymmetry of the distribution. Large
positive skewness is for distributions with high probability for
values slightly smaller than the mean, balanced by a low prob-
ability for values much larger than the mean. Lower skewness
is the opposite; Fig. 1(b) shows an example of low S.

In this paper we present computational results of generat-
ing random close-packing configurations from a wide variety
of P(r), allowing us to go beyond prior work which fo-
cused on specific distributions such as power-law distributions
[17,18] or bidisperse [19]. Similarly to the 3D results of
Desmond and Weeks [16], we find that knowing δ and S is
sufficient to determine the random close-packing area fraction
φ to within ±0.002 in any packing that avoids hexagonal
ordering. Moreover, given that the φ(δ, S) observations for
a bidisperse size distribution (two distinct circle radii) agree
in large part with results for other size distributions, we use
analytic results applicable to bidisperse distributions to un-
derstand φ observed in the limits of lowest and highest S (for
fixed polydispersity). Of particular note is that the lowest area
fraction we find over all tested distributions is φ0 = 0.840.
This matches prior results from other groups [19], although
it is higher than the value 0.826 found for monodisperse
circles with a special construction technique [6]. We show
that the value of φ0 plays a role in understanding the formula
for φ(δ, S).

II. PROTOCOL

A. Simulation

Our computational methods [20] are a modification of
Ref. [21], which in turn is based on earlier work by Xu et al.
[22] and Clarke and Wiley [23]. We will describe the algo-
rithm as applied to 2D circle packing. We start by choosing a
circle size distribution P(r) and generate N random radii [24].
We choose a starting system size L such that the area fraction
is φ = π�ir2

i /L2 = 0.01. We then place circles randomly,
requiring that no overlaps occur; if placing a given circle
would overlap a previously placed circle, then we choose a

new random position in the L × L box and try again. If the size
ratio between the smallest and largest circle is more than 50,
then we instead using a larger L such that φ = 0.001 so that
the largest circles can avoid overlapping and keep the initial
positions spatially uncorrelated. We use periodic boundary
conditions.

We next shrink the box by a small amount, for example
Lnew = (1 − α)L with α = 0.01, and rescale all circle po-
sitions similarly, xnew = (1 − α)x and ynew = (1 − α)y. This
may cause some circles to overlap. We assign a potential
energy based on a finite range soft interaction potential. For
two circles i and j with a center-to-center separation distance
ri j and radii ri and r j , the interaction potential energy is given
by (ri + r j − ri j )2. The total potential energy is summed over
all overlapping circles.

The circles are then selected in random order. If a chosen
circle overlaps any other circles, then we calculate the net
force on the circle from its overlapping neighbors and do
a one-dimensional minimization of the potential energy by
moving that circle in the direction indicated by the net force.
This minimization is halted if a position is found for the circle
that does not have any overlaps. Alternatively, if a chosen
circle does not overlap any other circles, then the circle is
moved a small step in a random direction as long as this does
not cause any overlaps. The small step size is initially set to
be 0.01 and adjusted to smaller values on a per-circle basis for
circles that frequently have overlaps when attempting the step.
Allowing these free circles to take this random step results in
slightly denser final packings.

After all circles have been moved once, the potential
energy is evaluated for the entire system. If it is zero within
numerical tolerance, then we again shrink the box by the
factor α and continue. If the potential energy is nonzero,
then we repeat the attempt to minimize the potential energy
up to 50 times. If the potential energy is still nonzero, then
we conclude we are at an area fraction where circles must
overlap. In this case, we expand the box by 1/(1 − α) back
to an area fraction where no overlaps are required, decrease
α according to αnew = 0.8α, and then try shrinking the box
by this new factor of α. This lets us approach a state with the
smallest box size for which the circles can be placed without
overlapping and thus the highest possible area fraction φ. As
the simulation reaches higher φ and α → 0, we occasionally
try resetting α = 0.01. The larger value of α results in a state
where the forces on overlapping circles are larger and more
numerous and sometimes results in circles moving more
efficiently and thus allows the system to reach still higher area
fractions without overlapping circles. We repeat these reset-
ting α trials until the final area fraction changes by less than
0.0005, at which point we retain the state with the highest area
fraction for which there are no overlapping circles and define
this as random close packed. There are often rattler circles
which are not close to touching any other circles; these rattler
circles still contribute to φ. Note that prior work has shown
that the choice of interaction potential is not crucial [25]. The
final state determined by this algorithm has no overlapping
particles and thus is fully consistent with perfectly hard
circles.

For a given circle size distribution P(r), we repeat this pro-
cess many times for different numbers of circles N . For N =

064905-2



ESTIMATING RANDOM CLOSE PACKING DENSITY FROM … PHYSICAL REVIEW E 109, 064905 (2024)

(100, 200, 400, 800, 1600) we do M = (300, 140, 65, 30, 15)
trials. For a given N , we find the mean 〈φ(N )〉 over the M
trials. We then plot φ(N ) as a function of N−1/d using d = 2
for circle packing and d = 3 for sphere packing. This typi-
cally results in data fit well by a straight line, allowing us
to extrapolate to N−1/d → 0 and thus determine φrcp for an
infinite-sized system [21]. For δ > 0.8, the radii distributions
often have long tails, so to ensure proper sampling we only
use N � 400 for the extrapolation.

Additionally, the standard deviations from the M trials
provide an uncertainty of 〈φ(N )〉; we use the standard error
of the mean, σ (N )/

√
M, as the uncertainty of each 〈φ(N )〉.

The uncertainty of these data causes an uncertainty of the
N−1/d → 0 intercept, leading to an overall uncertainty of our
computed value for φrcp [24]. The trial numbers M are chosen
to that typically this uncertainty is less than 0.003 and in some
cases less than 0.001.

As a first check of our algorithm, we examine three-
dimensional results for monodisperse spheres: Our simulation
code gives φrcp = 0.6377 ± 0.0011. Desmond and Weeks
found φ = 0.634 [16]. Hermes and Dijkstra find φ = 0.635–
0.645 depending on their protocol [26]. Our results also agree
with a review article which quotes φMRJ ≈ 0.64 [27], in this
case the “maximally random jammed” state. Note that the
value of φ is well known to depend on computational protocol
[26–28] so we do not claim our result is universal but rather
provide it to compare with other work.

A highly effective means of estimating φ3D without gen-
erating actual 3D packings is given by Farr and Groot [29].
However, they note that their method works well in 3D and
not in 2D. This is the main reason we do direct simulation of
packings.

B. Choosing circle size distributions

Based on prior work by Desmond and Weeks [16], we
conjecture that polydispersity δ and skewness S are important
influences on random close packing of circles. Therefore we
desire to create a variety of circle size distributions P(r) with
specific values of δ and S. To do this, we consider circle size
distributions characterized by two parameters which we will
label as a and b below. This then lets us numerically or ana-
lytically determine the (a, b) values that give a desired (δ, S)
combination. In the descriptions below there are also mentions
of the mean circle size μ and a normalization constant P0

which are not adjustable parameters. The area fraction of a
packing is a nondimensional quantity and thus independent of
μ. Accordingly, we typically define circle size distributions so
that μ = 1, although occasionally we choose some other con-
vention for numerical convenience, recognizing that μ = 1 is
not otherwise a requirement. Likewise, given a and b, P0 is
chosen so that the integral of P(r) is 1 as required for a proba-
bility distribution. Several examples of these distributions are
shown in Fig. 2.

1. Bidisperse

This is a distribution composed of two types of circles
with different sizes and specified probabilities of each size.
Desmond and Weeks introduced a mathematical description
of bidisperse distributions in terms of two parameters: the size

(a) (b)

(c) (d)

FIG. 2. Examples of how the shape of the graph does not matter
as much as its statistics. An exponential distribution of sizes [panel
(a) and the pink curve in panel (d)] will have the same packing
fraction of φ ≈ 0.86 as a bidisperse Gaussian distribution [panel
(b) and the black curve in d)] if the polydispersity and skewness
(δ = 0.4, S = 1) match. An exponential distribution (panel (c) and
blue curve in d)] with the same polydispersity but different skewness
(S = 0.25) will pack differently, at φ ≈ 0.841. In the packing images
the color indicates the relative radius size. The thin white square indi-
cates the extent of the periodic boundary conditions. Panel (d) shows
the radius distribution functions P(r).

ratio of the two circles a = r−/r+ and the probability of one
of them P(r+) ≡ b [16]. In Ref. [30] we showed that these two
parameters can be replaced by δ and S as

r+ = 1 + δ

2
(S +

√
4 + S2), (5)

r− = 1 + δ

2
(S −

√
4 + S2), (6)

P(r+) =
√

4 + S2 − S

2
√

4 + S2
. (7)

These choices ensure μ = 1, and thus let us define P(r) for
a bidisperse distribution using these analytic formulas. With
two circle sizes, P(r−) = 1 − P(r+).

2. Bidisperse Gaussian

As a more realistic realization of physical mixtures of two
circles with different mean sizes, we consider a P(r) com-
posed of a sum of two different Gaussians with individual
means r− and r+, with size ratio a = r−/r+ and probabil-
ity P(r+) ≡ b of finding a circle from the larger of the two
species. The Gaussians have width 0.1r− and 0.1r+, that is,
δ = 0.1 for each individual Gaussian. To find the values of a
and b, we scan over a range of these values, considering each
P(r) and generating a large number of radii according to the
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distribution, and computing (δ, S). We tune a and b until (δ, S)
are within 0.1% of the desired values. For a few cases where
we want 0.05 < δ � 0.1, we use Gaussians with δ = 0.05.

3. Power law

Here P(r) = P0ra for 1 < r < b. We consider both a < 0
and a > 0 as needed to reach the desired (δ, S). Note that a =
0 is a flat top distribution, where every value of r in the range
1 < r < b is equally probable; this achieves S = 0.

4. Exponential

These are distributions P(r) = P0 exp(r/a) for 1 < r < b.

5. Gaussian

These are distributions P(r) = P0 exp[−(r − 1)2/a2] for
b < r < c. In general we take c = ∞ although some distri-
butions with low skewness S require finite values of the third
parameter c.

6. Linear

This distribution is defined as P(r) = Ar + B for r0 �
r � ar0, with a second parameter b = P(ar0)/P(r0). Once
parameters a and b are picked, the values of r0, A, and B
are determined by the conditions that the distribution be nor-
malized and that 〈r〉 = 1. In particular, following Ref. [16],
we can define c = 2(b − 1)/[(a − 1)2(b + 1)], d = 2/[(b −
1)(a + 1)] − c, and e = [c(b3 − 1)/3 + d (b2 − 1)/2], lead-
ing to r0 = 1/e, A = ce2, and B = de. Note that a power-law
distribution with a = 0 and a linear distribution with b = 1 are
identical flat top distributions with skewness S = 0.

7. Parabolic

This distribution is inspired by the observation that two
distributions above (bidisperse, bidisperse Gaussian) have two
peaks. Here we define P(r) = P0(r − 1)2 for a � r � b, thus
having one peak at a < 1 and a second peak at b > 1. In
this case 〈r〉 	= 1, although as noted above that is not a strict
requirement for P(r).

8. Tracers in a flat distribution background

We first define a flat top distribution P(r) = 1/(c2 − c1)
for c1 < r < c2, with c1 = 0.827 and c2 = 1.173. This distri-
bution has mean 1 and δ = 0.1, sufficient to prevent hexagonal
ordering as-is. We then choose radii from this distribution
randomly with probability b or choose the radius to be r = a
with probability (1 − b).

9. Tracers in 1 : 1.4

This distribution is tridisperse, with circle sizes 1, 1.4, and
a and probabilities (1 − b)/2, (1 − b)/2, and b. In general the
idea is that the “a” species is a minority, so we prefer b < 1/3.
The “majority” is the canonical bidisperse mixture with size
ratio 1:1.4 and equal numbers of circles [25,31,32]. For low
skewness typically a < 1 and for high skewness typically a >

1; for S ≈ 0 there are often two solutions (a, b) for a given
(δ, S). In these cases, for a given (δ, S) we take the solution
with the smaller b.

10. Tracers in 1:1.25

This distribution is tridisperse, with circle sizes 1, 1.25,
and a and probabilities (1 − b)/2, (1 − b)/2, and b. The “ma-
jority” circles are chosen to match the bidisperse distribution
which packs poorly as observed by Koeze et al. [19]. This
tracer distribution can achieve lower values of S for a given δ

as compared to the tracers in 1:1.4 distribution.

11. Quad-disperse

This distribution has four particles with size ratios
1:1.25:a:1.25a and number ratios c/2:c/2:b/2:b/2 with c =
1 − b. This avoids hexagonal ordering for all values of
b, which sometimes is a problem for the other tracer
distributions.

12. Lognormal

This distribution is defined as

P(r) = P0

r
exp [(ln r)/a + a/2]2/2, (8)

where we have only a single parameter a. We choose a to
match the desired polydispersity, given by the relation δ =√

exp(a2) − 1. Once a is known, the skewness is given by
S = [exp(a2) + 2]δ.

13. Weibull distribution

This distribution is defined as

P(r) = b

a

( r

a

)b−1
exp

[
−

( r

a

)b
]
, (9)

for r > 0; b is termed the shape parameter, with b = 1 pro-
ducing an exponential distribution. a is termed the scale
parameter. Both a and b are required to be positive.

III. RESULTS: MINIMAL AREA FRACTION PACKINGS

We first consider simple circle packings that result in
low-area-fraction random close-packed configurations. One
such simple packing is bidisperse, and we start by compar-
ing our results to those of Koeze et al. [19]. These authors
performed simulations of random close-packed configurations
using bidisperse size distributions. Their simulations used a
fixed N = 1024 circles, and they quenched their samples at
fixed φ from an initially highly overlapped (completely ran-
dom) state, looking for the φ at which half the final states
are nonoverlapping. Many people have considered the canon-
ical bidisperse distribution comprised of circles with size
ratio 1:1.4 and equal numbers [25,31,32]. For this distribu-
tion, Koeze et al. find φ = 0.8394 ± 0.0002. We interpolate
our results to find φ(N = 1024) = 0.8394 ± 0.0003. This
striking agreement suggests that despite the different algo-
rithms, our methods find similar states. Our extrapolated value
for an infinite-size system is φ(N → ∞) = 0.8419 ± 0.0003.
Koeze et al. also identify a different system with the lowest
value of φ; this system has equal numbers of small and large
circles and size ratio 1:1.25. They do not state the value
of φ; for this state we find φ = 0.8402 ± 0.0003, which is
indeed slightly smaller than our infinite-system-size result for
the 1:1.4 size ratio. It is this size distribution that we use
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FIG. 3. (a) Random close-packing area fraction φ as a function of
δ for symmetric radii distributions P(r). The distributions are bidis-
perse (diamonds), Gaussian (squares), bidisperse Gaussian (circles),
and linear (triangles). (b) φ as a function of S for distributions with
δ = 0.1. The symbols are as in (a), along with power-law distribu-
tions (bow ties). (c) Sample averaged hexagonal order parameter
〈ψ6〉 as a function of δ for the data shown in (a). (d) 〈ψ6〉 as a function
of S for the data shown in (b).

as the “background” mixture of the third tracer distribution
described in the previous subsection. Finally, Koeze et al.
identify one other local minimum of φ within the parameter
space they scan, with 20% small circles and 80% large, size
ratio 1:2.5. We find φ = 0.8471 ± 0.0004 for this system.

Across the array of simulations, the results for the bidis-
perse 1:1.25 mixture is nearly the lowest value of φ we found.
The study of Koeze et al. just considered bidisperse distribu-
tions, but of course there are other circle size distributions that
might achieve a low area fraction. In particular, one wishes
to avoid hexagonal ordering (which would increase φ) so
some polydispersity is needed. Accordingly, we examine φ

for a variety of symmetric radii distributions P(r) with modest
polydispersity δ. The results of φ(δ) are shown in Fig. 3(a) for
four different distributions. There is a clear minimum at (δ ≈
0.10, φ ≈ 0.840). For the bidisperse distribution, δ = 0.10
requires equal numbers of small and large circles with size
ratio 1:1.222, quite close to the 1 : 1.25 minimal φ mixture
identified by Koeze et al. [19].

Figure 3(a) shows results for symmetric distributions (S =
0) and we wish to understand how slight skewness influences
φ. We fix polydispersity δ = 0.1 and vary S, giving the results
shown in Fig. 3(b). φ does not strongly depend on S, but
what dependence there is suggests that S = 0 minimizes φ.
Overall, we conjecture that any circle size distribution which
is symmetric (S = 0) and achieves polydispersity δ = 0.1
will lead to a random close-packing configuration with φ0 ≈
0.840. This includes the bidisperse distribution with size ratio
1:1.222, a Gaussian with δ = 0.1, and a linear distribution
with a = 1.419, b = 1 (flat top distribution).

At low polydispersity, hexagonal ordering can increase the
packing fraction. To measure this we compute the hexagonal
order parameter ψ6. The starting point for this order parameter
is to define nearest-neighbor circles through the Delaunay
triangulation. This triangulation method connects the centers
of circles in a unique tiling of triangles. In particular, each

triangle so formed is constructed so that no other circle centers
are within the circumcircle of the triangle. This triangulation
connects each circle to its nearest neighbors. Relative to an
arbitrary x axis, the Nk nearest neighbors k of circle j are
oriented at angles θ jk . ψ6 is then defined as

ψ6 = 1

Nk
�k exp(6iθ jk ), (10)

where i = √−1. For our purposes we consider just the mag-
nitude |ψ6| which is between 0 and 1. |ψ6| = 1 indicates
perfect hexagonal ordering, where all the θ jk are separated by
multiples of π/3 radians. From this point we drop the absolute
value signs, referring to this real number as ψ6. Figure 1 shows
two examples of packed circles colored by their ψ6 value
with white regions in the left image being nearly perfectly
hexagonal and darker green regions in the right image being
quite different from hexagonal.

For the low-polydispersity data of Figs. 3(a) and 3(b), the
sample averaged ψ6 are plotted in Figs. 3(c) and 3(d). The
larger values of φ at low δ seen in Fig. 3(a) are due to hexag-
onal ordering. The minimum in φ at δ = 0.1 appears to be a
trade-off between having enough polydispersity to decrease
hexagonal ordering without too much polydispersity so that
smaller circles efficiently fill in voids between larger ones.
The minimum in φ seen at S ≈ 0 in Fig. 3(b) coincides with a
minimum in 〈ψ6〉 seen in Fig. 3(d), showing that the symmet-
ric distributions minimize hexagonal ordering, helping them
achieve a minimal φ.

At the limit of monodisperse circles, we find ψ6 = 0.880 ±
0.010. The value is less than one due to random defects and
grain boundaries. The area fraction we find for monodis-
perse circles is φ = 0.862 ± 0.002, less than the ideal packing
φideal = π/(2

√
3) ≈ 0.907 again due to the defects and grain

boundaries. An example of such a packing is shown in
Fig. 1(a).

While we cannot rule out the existence of some circle size
distribution that achieves a still lower φ, it seems plausible
given our results that φ0 = 0.840 is a lower bound on random
close packing in 2D. An easy way to achieve this packing
is the bidisperse mixture, equal numbers of small and large
disks, with size ratio 1:1.222 [with the latter number equal to
11/9 to achieve δ = 1/10, as per Eqs. (5)–(7)]. However, note
that mechanically stable disordered packings have been found
with lower area fractions using special techniques [3,6].

IV. RESULTS: HIGHER POLYDISPERSITY

As described above, we choose a variety of values for the
polydispersity and skewness (δ, S), choose appropriate radii
distributions that achieve those values, and simulate to find
the area fractions φ for each case. Figure 4 shows the results
for a representative polydispersity δ = 0.4. Ten different types
of radii distributions are shown, and the majority of the data
collapses fairly well onto a master curve.

A. Small skewness and hexagonal ordering

The data in Fig. 4 can be traced to as large a positive skew
as desired, but it is impossible to find distributions with skew
below −2.1 for this polydispersity. This has to do with the
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FIG. 4. The packing φ as a function of skewness for δ = 0.4,
with the analytical fit line (solid) and least-squares fit line (dashed)
discussed in Sec. IV D. Both fit curves asymptote to the dotted line
which indicates φ1. The bidisperse data (upward triangles) deviates
at low skewness due to hexagonal ordering; the run-to-run variabil-
ity of the amount of hexagonal order increases the uncertainty of
φ to ±0.006 for these data. The horizontal dashed line indicates
φ1 = 0.859.

requirements for low skewness distributions, which requires
a large number of large circles, and only a small number of
small circles—and the size of the small circles needs to be
especially small, see for example the two packings shown in
Fig. 5. In fact, for a bidisperse sample the smallest size of the
small circles is r− → 0: Circles cannot have negative radius,
but their radius can be arbitrarily small. In this case, Eq. (6)
can be solved for r− = 0, leading to the minimum possible
skewness,

S0 = δ2 − 1

δ
. (11)

While this is derived from the bidisperse distribution, this is in
fact the mathematical lower bound for skewness for any dis-
tribution P(r) subject to the constraint r � 0, and this bound
is only achieved using a bidisperse distribution [30,33]. For

(a) (b)

FIG. 5. Two packings with δ = 0.4 and S = −1.75. (a) This
bidisperse sample packs at φ ≈ 0.87, with a high degree of order.
(b) A bidisperse Gaussian packing with φ ≈ φ0. For both images
particles are colored according to their ψ6 value, with lighter green
corresponding to higher ψ6. There are small white particles in each
image [radius r+/10 in terms of the large particle radius r+ in panel
(a), and r+/22 in panel (b)] that are ignored in the calculation of ψ6.

δ = 0.4, we have S0 = −2.1, and this is indeed the smallest
skewness value shown for the bidisperse data in Fig. 4.

For the bidisperse distribution (triangles in Fig. 4) as
S → S0, the limit is the packing of a monodisperse sample
with some hexagonal order, which as noted previously is
φ ≈ 0.862 for our simulation protocol. The scatter around this
value seen in Fig. 4 for the triangle symbols reflects the larger
uncertainty for these nearly hexagonal packings; variations in
the density of defects and grain boundaries results in large
fluctuations of φ. The hexagonal packing results in an in-
creased φ for the bidisperse data for S � −1. For sufficiently
small S, the smaller sized circles are small enough to fit
into the voids between the large circles, allowing the more
numerous large circles to organize into hexagonal arrays.

B. Small skewness and amorphous packing

Examining the distributions other than the pure bidisperse,
the data of φ(S) collapse remarkably well in Fig. 4 across the
variety of radius distributions. The reason for this collapse
is unknown, although it is similar to what was observed by
Desmond and Weeks for 3D packings [16]. That being said,
given that the data collapse, we can understand some features
of the master curve by considering specific distributions. The
black diamonds in Fig. 4 correspond to bidisperse Gaussian
distributions, chosen to match δ = 0.4 (for this figure) and the
desired S. As with the pure bidisperse, the bidisperse Gaussian
reaches the most negative value of skewness when the smaller
circle mean size goes to zero.

Only bidisperse distributions allow S to approach S0. For
the bidisperse Gaussian case the large circle species is not a
single size but rather a Gaussian with polydispersity δi = 0.1.
This modifies the minimum possible skewness to be bounded
by

S1 = δ4
(
1 + 3δ2

i

) − δ2
(
1 + 3δ4

i

) + δ2
i

(
1 − δ2

i

)
δ3

(
1 + δ2

i

)2 (12)

with the derivation of this equation given in the Appendix.
In fact, this result for S1 is not specific for the large circle
species being described by a Gaussian, but, rather, it is cor-
rect for any distribution function for the large circle species
having polydispersity δi and initial skewness Si = 0, which
is combined with a Dirac delta function centered at r = 0.
For the bidisperse-Gaussian data presented in Fig. 4 (black
diamonds), we have δ = 0.4 and δi = 0.1, leading to S1 ≈
−1.896 which is slightly larger than S0 = −2.1. This then
explains the lowest S data plotted for the bidisperse Gaussian
results; one cannot achieve a lower value of S with this distri-
bution type.

Thus we understand the lower left corner of the master
curve of Fig. 4: As S → S1, the system is composed of a
large circle species represented by a Gaussian distribution
with δi = 0.1, and a small circle species that becomes neg-
ligible in size. The packing is similar to the sketch in Fig. 6(b)
where the small particles do not affect the packing structure
but rather exist as rattlers in the voids between the large
particles. The data in this limit have φ → φ0, our minimum
area fraction which is exactly that found by distributions with
(δi = 0.1, S = 0) as discussed in Sec. III. Thus the lower
corner of the master curve must be at the point (S1, φ0) as
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FIG. 6. Cartoons of the theoretical limits of f1 (a) and f2 (b). In
f1, the background field of circles pack randomly and are disrupted
by a large circle packing at φ = 1. In f2, the large circles pack
randomly, and the small circles do not disrupt the packing or fill in
the voids.

no lower S is possible without choosing δi in such a way that
would increase the packing from φ0. The general overlapping
of the data at higher S in Fig. 4 is intriguing, as many of the
distributions we simulate cannot reach S1 yet seem to fall onto
the same curve which is heading toward (S1, φ0).

C. High skewness

The data of Fig. 4 appear to be heading to an asymptote
for large S. This asymptotic limit can be understood by con-
sidering pure bidisperse distributions. We expressed the sizes
(r+, r−) of bidisperse circles in terms of polydispersity and
skewness in Eqs. (5) and (6). Equation (7) quantifies how of-
ten each particle size appears [P(r+) = 1 − P(r−)], allowing
us to calculate the relative proportion N , the total number of
small circles in a system per one large one:

N = P(r−)

P(r+)
=

√
4 + S2 + S√
4 + S2 − S

. (13)

As skewness grows large, to leading order the results of
Eqs. (5), (6), and (13) become

r+ ≈ δS, (14)

r− ≈ 1, (15)

N ≈ S2. (16)

Thus, for large S we arrive at a bidisperse system with many
small circles for each large circle.

To compute the area fraction in this situation, note that for
δ � 1 the small circles are so numerous that they dominate the
area of the system; see Fig. 6(a). Nonetheless, the large circles
are still frequent and large enough to contribute to the overall
area fraction. A large circle is essentially its own region with

FIG. 7. The data for the packing fraction for many different circle
size distributions with polydispersity from bottom to top given by
δ = 0.2 (pink diamonds), 0.3 (orange squares), 0.4 (yellow circles),
0.6 (green upward triangles), 0.8 (cyan hourglasses), and 1.5 (blue
downward triangles). The lines are best fits to Eq. (20). Inset: The
fitting errors defined in Eq. (23) as well as the data for δ = 1.0 (pur-
ple bowties) and δ = 1.2 (magenta stars). The large black symbols
are calculated from the least-squares fitting for p, and the smaller
colored symbols at slightly higher error values are from the analytic
expression for p using Eq. (22).

φ = 1. Assuming a perfectly bidisperse system, the “sea”
of small circles is monodisperse and would form hexagonal
patches. To consider only random packings, we consider
instead a situation where the small circles have a mean radius
of r− and a polydispersity δi = 0.1, as is the case for the
bidisperse Gaussian and our “tracers in 1:1.25” distribution.
Given that r+/r− 
 1, it is reasonable to approximate the
small circles as still following the bidisperse formulas while
packing at area fraction φ0. Therefore, Fig. 6(a) suggests a for-
mula for the packing fraction φ1 of this system by computing
the total area of circles divided by the area occupied:

f1(δ, S) = Nr2
− + r2

+
(Nr2−/φ0) + r2+

lim
S→∞

f1(S) = φ1(δ) = φ0 + δ2φ0

1 + δ2φ0
. (17)

Indeed, this matches the asymptotic behavior of the large
S data of Fig. 4, with δ = 0.4 and φ0 = 0.840 leading to
φ1 ≈ 0.859. The slight increase in the squares at S � 4 seen
in Fig. 4 is because for the bidisperse data, the background
“sea” is starting to form hexagonal order, emphasizing the
utility of the other distributions for suppressing hexagonal
ordering at high skewness.

All of this has been discussed in the context of Fig. 4
which is for the specific polydispersity δ = 0.4. The trends are
similar for other polydispersities as shown in Fig. 7: a lower
left corner at [S1(δ), φ0] and an asymptote at f1(δ) for large
S. The exception to these results is the δ = 0.1 data shown in
Fig. 3(b), which as previously discussed reaches the minimum
φ0 at S = 0 and otherwise has larger φ due to hexagonal
ordering.
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We note that there is a packing exactly intermediate be-
tween the two cases of Fig. 6: where the large particles are
random close packed at φ0, and likewise the small particles are
also random close packed at φ0 in the voids between the large
particles. This ideal intermediate case packs at φ0 + (φ0)(1 −
φ0) = 2φ0 − φ2

0 = 0.9744. Setting φ1 = 2φ0 − φ2
0 in Eq. (17)

and solving for δ gives δ = 1√
1−φ0

. If our minimum packing
is φ0 ≈ 0.840 ± 0.001, then this gives a polydispersity of
maximum packing δ′ ≈ 2.500 ± 0.008. Of course, achieving
this packing requires the small particles to allocate in correct
proportions to the voids, which is improbable.

The main point is that for δ � 2.5, we expect the packing
to cross over to the situation shown in Fig. 6(b) with large
particles packing at φ0 and small particles existing as rattlers
in the voids. The packing fraction in this situation is given by

f2(δ, S) = Nr2
− + r2

+
(r2+/φ0)

, (18)

lim
S→∞

f2(δ, S) = φ2(δ) =
(

1 + 1

δ2

)
φ0. (19)

In the S → ∞, δ → ∞ limit, the small particles become neg-
ligible and the packing fraction becomes φ0, similar to the
behavior noted at S → S1 for any δ.

Of course, Eq. (19) gives the asymptotic behavior. One can
imagine packings constructed with specific size distributions
designed to pack more densely than bidisperse. Consider a
tridisperse system where r1 
 r2 
 r3. The smallest particles
can fill in the voids for a medium particles, which in turn fill
in the voids for the largest particles. Therefore, the pack can
exceed 2φ0 − φ2

0 , the “maximum” deriving from bidisperse
particles, but this will have specific finite values for δ and S
depending on the details. Simulating highly polydisperse and
skewed particle distributions, and the massive amount of parti-
cles that is required to avoid finite-size effects, is prohibitively
expensive in computation power, so we leave this as an open
question for future work. For that matter, we have limited our
simulations to δ � 1.5 due to similar considerations, so our
data are not at high enough δ to see a large S asymptote to φ2.

D. Empirical fit

As discussed, the master curve of φ as a function of S for
fixed δ has a characteristic shape with known results as S →
S1 and S → ∞. However, the data are not clear as to what
functional form bridges these two limits. To investigate this,
the data of Fig. 4 are replotted in Fig. 8, which highlights the
behavior as S → ∞ and thus φ → φ1. The horizontal dashed
line indicates the uncertainty of the φ data; the points below
this line are such that φ1 − φ is indistinguishable from zero.

We note that Eq. (19) can be taken in the limit S → S1

where it can be seen that as S increases from a low value, the
contribution of the small particles to the area fraction rises
quadratically (until the small particles are large enough to
perturb the packing of the large particles). This suggests a
function form that grows quadratically at small S and slowly
asymptotes at large S, with a nearly-linear regime in the
middle section. The log-normal function satisfies these sug-

FIG. 8. The data of Fig. 4 replotted as φ1 − φ as a function of
S − S1 to highlight the approach to the asymptotic limit at large S.
The lines are the analytical fit for p [blue solid line, Eq. (22)], the
least-squares fit (pink dashed line), and the measurement error for
φ (black dotted). Inset: p fit parameter (circles) for many δ with the
analytical curve [solid blue, Eq. (22)] and least-squares parabolic fit
to the data [dashed pink, Eq. (21)].

gestions, so we fit our data to

φLN = φ1 − (φ1 − φ0) exp[−(ln x)2] (20)

with x ≡ (S − S1 + p)/p, and p is the sole fitting parameter.
This works well, as seen by the dashed lines in Figs. 4 and 8.
The dependence of p on δ is given by

p ≈ 1.8(δ − 0.84)2 + 0.99. (21)

An alternative way to derive p is to require the concavity at
S1 in Eq. (21) be equal to the concavity of the continuous
packings at S1. This can be accurately approximated by using
Eq. (18) to determine the concavity of f2(S0), which is more
easily computed. Setting the concavities equal leads to the
following equation for p:

p = (δ2 + 1)2

δ

√
1 − φ0

1 + δ2φ0
. (22)

Equation (22) creates a natural, parameterless fit shown by the
solid lines in Figs. 4 and 8. This predicted fit is quite close to
the least-squares fit (dashed lines). The inset to Fig. 8 shows
the least-squares fitting values of p (symbols), the approxima-
tion to p given by Eq. (21) as the dashed line, and the analytic
result given by Eq. (22) as the solid line. It is clear that Eq. (22)
describes the results for p(δ) nearly as well as the empirical
quadratic fit.

We quantify the fitting quality by computing a least-
squares error and normalizing by the total theoretical range
of our pack, φ1 − φ0. Thus the error is given as

σ =
√

1
N

∑
(φsim − φfit)2

φ1 − φ0
. (23)

The errors from this equation are plotted in the inset of Fig. 7
for the situation where p is set by Eq. (22) using the smaller
colored symbols, and for the situation where p is determined
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FIG. 9. Replotted data from Desmond and Weeks [16] showing
3D volume fraction φ as a function of skewness S for values of poly-
dispersity δ as indicated. The circles indicate bidisperse distributions,
the triangles indicate linear distributions, the squares are Gaussian
distributions, and the diamonds are log-normal distributions. The
lines are a two parameter fit of the form φ(δ, S) = φ∗

rcp + aδ2(S − S0)
with φ∗

rcp = 0.632, a = 0.0832, and S0 given by Eq. (11).

by minimizing σ using the larger black symbols. By construc-
tion the black symbols are the best case for σ , but nonetheless
the errors using the analytic result for p(δ) are almost as good.
Accordingly, we suggest Eq. (20) with Eq. (22) as the best
method to estimate φ based on polydispersity δ and skewness
S for a new particle size distribution, using φ0 = 0.840. We
note that we do not have certain knowledge that the log-
normal function [Eq. (20)] is the best way to describe the data,
but as noted above, it is the simplest function that satisfies the
obvious characteristics of the data.

V. IMPLICATIONS FOR 3D PACKINGS

Our understanding of the 2D results suggest a new interpre-
tation for the 3D data of Desmond and Weeks [16], who found
that φ3D was a function of δ and S. Their data are replotted in
Fig. 9. In Ref. [16] they provided a fitting function for their
data with three fit parameters:

φ3D(δ, S) = φ∗
rcp + c1δ + c2Sδ2, (24)

where φ∗
rcp = 0.634 is the packing fraction for monodisperse

circles and c1 = 0.0658 and c2 = 0.0857 are empirical con-
stants. Our new insight is that for any δ, one can consider a
bidisperse distribution with the smallest circle size reaching a
limit of zero, and thus S → S0 with the minimum skewness
S0 given by Eq. (11). In this limit φ3D → φ∗

rcp. We refit the
data plotted in Fig. 9 using the constraint of φ3D(δ, S0) = φ∗

rcp
as a fixed value and find a new fitting function with only two
fitting parameters:

φ3D(δ, S) = φ∗
rcp + c(S − S0)δ2, (25)

with the new value φ∗
rcp = 0.632 and parameter c = 0.0832.

Plugging in Eq. (11) into Eq. (25) shows that Eqs. (24) and
(25) are nearly the same for the values of δ � 0.4 consid-
ered in Ref. [16]. This new fit gives the solid lines shown
in Fig. 9.

However, our analysis of the bidisperse distribution reveals
that the linear dependence of φ3D on S cannot be strictly

true. For the smallest values of S approaching S0, assuming
a bidisperse distribution, the small circles are much smaller
than the voids between the large circles, the 3D equivalent of
Fig. 6(b). In this situation, the small spheres contribute their
volume to the volume fraction but do not otherwise perturb the
structure. It is straightforward to calculate their contribution.
Consider a cube with edge length L packed randomly with
N+ large spheres at φ∗

rcp and with N− small spheres in the
voids. By construction, L3 = N+( 4

3πr3
+)φ−1

rcp . Assuming the
small species easily sit within the voids, the volume fraction
contribution of the small species is φ− = N−( 4

3πr3
−)L−3 =

(N−/N+)(r3
−/r3

+)φrcp. The ratio N−/N+ is equal to the ratio of
the probabilities of the two circle sizes P−/P+. From Eqs. (5),
(6), and (7), it can be worked out that for S ≈ S0, P−/P+ ≈ δ2,
and r− grows from zero linearly with (S − S0) to lowest order
in (S − S0). Thus φ− grows approximately as (S − S0)3. This
demonstrates that the linear trend φ ∼ S is only roughly cor-
rect over the larger range of S shown in Fig. 9 and qualitatively
incorrect as S → S0.

VI. CONCLUSION

We have computationally generated a large number of
close-packed states from a wide variety of radius distribution
functions. In some cases where there are many particles of
similar size, hexagonal ordering occurs and the area fraction
φ can be fairly large. In cases where hexagonal ordering
is avoided, we find the area fraction is well predicted by
the polydispersity δ and skewness S of the radius distribu-
tion function. In particular, the analytic description of the
master curve is given by Eqs. (20) and (22) using our ob-
served minimum possible random close-packing area fraction
φ0 = 0.840. These results allow one to predict the random
close-packing area fraction for any radius distribution func-
tion, so long as there is not significant hexagonal ordering.
Apart from the polydispersity and skewness, the prediction is
independent of the underlying shape of the radius distribution
function.

A radius distribution has an infinite number of moments, so
it is intriguing that knowing just two of them (δ and S) collapse
our φ data independent of distribution type. We do not know
why this collapse works so well. Nonetheless, the observation
of the agreement between various radius distributions with
matched δ and S allows us to understand the shape of the
master curve by considering the simplest distributions which
obey it. In particular, the bidisperse radius distributions and
bidisperse Gaussian distributions are mathematically useful.
However, we stress that our results apply to a broader range
of radius size distributions including for example power-law
distributions for which radii cover a wide range of values
without any bimodal character.

The bidisperse Gaussian distribution mixes together two
distinct species, each of which is described by a Gaussian.
One can imagine generalizations of the idea of mixing two
species. The minimal packing fraction φ0 could be replaced
by the observed packing fraction of a single species. For
example, one could use the results of Fig. 3 which show
the area fraction for single-particle species of low to moder-
ate polydispersity. Alternatively, one might consider random
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loose packing where φ0 is replaced by a smaller number.
Having a new value of φ0 would then allow one to follow
the reasoning outlined in Sec. IV C and use Eqs. (20) and
(22) to predict random close packing for mixtures of two
species. In this broader sense, these two equations represent a
prediction for random close-packed samples with a sole fitting
parameter, φ0, which would allow one to generalize our results
to different computational algorithms or potentially differing
experimental conditions.
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APPENDIX: DERIVATION OF S1

We wish to derive information about an initial distribu-
tion Pi(x) with mean μ = 1 added with some weight α to a
Dirac delta function �(x) at x = 0 at weight 1 − α to form a
new combined Pc(x). This delta function implies the behavior
mimics a limit as skewness approaches its minimum. The
initial function has polydispersity and skewness δi, Si. As we
modify α, we want to find the lowest possible skewness of the
entire system for a given total polydispersity. Our combined
function is therefore given as:

Pc(x) = αPi(x) + (1 − α)�(x). (A1)

This equation implies an average μ = α. Let us make a no-
tation simplification for integrals over the initial or combined
functions, useful for calculating moments:∫ ∞

−∞
f (x)Pi,c(x)dx = 〈 f (x)〉i,c, (A2)

where i or c denotes which function is used in the integration.
We thus denote the moments of our combined distribution
as

mn = 〈(x − α)n〉c. (A3)

Now we can begin expressing the polydispersity of Pc(x),
when we note 〈(x − α)n〉c = 〈α(x − α)n〉i + (1 − α)(−α)n,

δ =
√

m2

μ
=

√
α〈(x − α)2〉i + (1 − α)α2

α〈x〉i + (1 − α) ∗ 0
. (A4)

We can establish the following equations to help us in these
calculations:

〈α〉i = α, (A5)

〈x〉i = 1, (A6)

〈(x − 1)2〉i = δ2
i , (A7)

〈(x − 1)3〉i = Siδ
2/3
i . (A8)

These can be rearranged to give expressions for 〈x2〉i and 〈x3〉i

in terms of δi, Si and constants. This then lets us evaluate the
averages in Eq. (A4) leading to

δ =
√

δ2
i + 1

α
− 1. (A9)

We can then solve for α:

α = δ2
i + 1

δ2 + 1
. (A10)

This is useful as we can later get an expression for the skew-
ness which will not explicitly depend on α.

Now we can do the same method for skewness:

S1 = m3

m3/2
2

= α〈(x − α)3〉i − (1 − α)α3

[α〈(x − α)2〉i + (1 − α)α2]3/2 . (A11)

Again we can use the results of Eqs. (A5)–(A8) to compute
the averages, leading to

S1 = Siδ
3
i + (3 − 3α)δ2

i + 2α2 − 3α + 1

α1/2
[(

δ2
i + 1

) − α
]3/2 . (A12)

Equation (A10) can be used to substitute for α. The distribu-
tions of interest have Si = 0, leading to the minimum packing
occurring at skewness

S1 = δ4
(
1 + 3δ2

i

) − δ2
(
1 + 3δ4

i

) + δ2
i

(
1 − δ2

i

)
δ3

(
1 + δ2

i

)2 . (A13)

If one considered initial distributions with an arbitrary Si, then
this leads to an extra term,

S′
1 = S1 + Si

δ3
i (1 + δ2)2

δ3
(
1 + δ2

i

)2 . (A14)
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