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Considerations on the relaxation time in shear-driven jamming
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We study the jamming transition in a model of elastic particles under shear at zero temperature, with a
focus on the relaxation time t;. This relaxation time is from two-step simulations where the first step is the
ordinary shearing simulation and the second step is the relaxation of the energy after stopping the shearing. 7y is
determined from the final exponential decay of the energy. Such relaxations are done with many different starting
configurations generated by a long shearing simulation in which the shear variable y slowly increases. We study
the correlations of both 7y, determined from the decay, and the pressure, p;, from the starting configurations as
a function of the difference in y. We find that the correlations of p; are longer lived than the ones of 7, and find
that the reason for this is that the individual 7, is controlled both by p; of the starting configuration and a random
contribution which depends on the relaxation path length—the average distance moved by the particles during
the relaxation. We further conclude that it is y,, determined from the correlations of 7;, which is the relevant one
when the aim is to generate data that may be used for determining the critical exponent that characterizes the

jamming transition.
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I. INTRODUCTION

In the everyday world there are many examples of disor-
dered systems that change from a flowing state to a rigid state
due to a change of some control parameter. The examples are
as different as shaving cream and grains in silos. An early
suggestion was the existence of the “jamming phase diagram”
[1] with the conjecture that the transition from flowing to
rigid in disordered systems has the same properties whether
the control parameter is density, shear stress, or temperature.
It was however later shown that the shear-driven jamming
transition, which takes place due to the change in density at
zero temperature, is a different phenomenon than equilibrium
glassy behavior [2,3]. Another fundamental insight is that the
shear-driven jamming transition of soft particles is perfectly
sharp only in the limit of vanishing shear rate [4].

A path towards a better understanding of these systems
is the study of simple models of disordered collections of
particles through computer simulations. A complication is
however that the study of zero-temperature processes requires
different methods than the ones used in molecular dynamics.
In standard molecular dynamics the velocity of the parti-
cles automatically makes the system explore phase space and
the measurement of different kinds of quantities along this
trajectory gives ensemble averages of these quantities. For
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macroscopic particles of granular matter the thermal velocity
is however negligible and ensembles of configurations need
to be generated by other means. One way to achieve this is by
constantly shearing the system, commonly done with Lees-
Edwards boundary conditions [5], which allow for shearing
of the system indefinitely with periodic boundaries in all di-
rections.

The shear-driven jamming transition is characterized by
the increase of shear viscosity with increasing density and the
cleanest behavior is for a system of hard disks. For hard disks
the viscosity only depends on the density, ¢, and the exponent
B describes the divergence of the shear viscosity at ¢,

Mha(p) ~ (5 — ) ". (1)

A method for simulating with hard particles has been de-
vised and was used in Ref. [6]. That method is however in
practice limited to rather small systems and densities at some
distance below jamming. This is so since the method relies on
the diagonalization of a matrix, which has to be done each
time the contact network changes. Another approach is to
simulate soft particles at different shear rates y—where the
limit y — O corresponds to the hard disk limit—and to try
to determine the behavior in that limit by scaling analyses
[4,7]. Yet another method to approach the hard disk limit—a
method of relevance for the present paper—is to start from
configurations produced in the shearing simulations, stop the
shearing and let the energy relax down towards zero energy.
(Similar relaxations were first done in Ref. [8].) The final
part of this relaxation turns out to be exponential to an ex-
cellent approximation and each relaxation gives a relaxation
time ;. We here use a notation where 7y, z;, and p; denote
quantities from single configurations or relaxations, whereas
7, z, and p denote averages over many configurations. From
the configurations we also determine z; which is the average
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number of contacts per particle in the final configuration, after
the rattlers have been removed. (The rattlers are the particles
with < D contacts which do not contribute to the stability of
the network.) It is then found that 7; is directly related to
the distance to isostaticity, given by §z; = z. — z; [9], with
zc = 2d [10]. (See Ref. [11] for the generalization of this
expression to finite N.) The relaxation time is algebraically
related to the distance to isostaticity, t; ~ 8zfﬂ 1t [9]. Here
ze —z ~ (¢ — ¢)* and it is commonly believed that u, = 1
[12].

We also remark that it has been claimed [13] that the
determinations of 7; suffer from a problematic finite-size de-
pendence which in effect invalidates the method. As discussed
in the Appendix, other studies confirm this finite-size effect
but show that it is a serious problem only for certain cases
and that it does not pose a problem for the simulations as in
Ref. [9].

The determination of the relaxation time by starting from
configurations obtained through steady shearing [9] is there-
fore a method that gives results relevant for the hard disk limit,
that may be used for simple and clean determinations of the
critical behavior. The question however remains on how to
perform such analyses efficiently and the original motivation
behind the present work was to find guidelines for such more
efficient simulations. These investigations did however lead
to a number of interesting findings both on the workings of
the relaxation simulations and for the shear-driven simulations
which means that these findings are the central results whereas
the quest for an optimal approach in the simulations becomes
secondary.

When approaching close to ¢; one would better make use
of big system sizes both to avoid the spurious jamming that
can happen in smaller systems and to get a smaller spread in
the obtained t; [9]. It is also desirable to perform the initial
shearing simulations with small shear strain rates, since that
somewhat speeds up the ensuing relaxations. The question
is then how to chose the distance in terms of shear strain,
y, between successive starting configurations. The desire is
to avoid getting relaxations that are strongly correlated to
each other and at the same time avoid wasting simulation
time on unnecessarily long shearing simulations between the
successive relaxations.

Besides the practical questions there are also questions on
the workings of the relaxations and one such question is the
connection between the properties of the starting configura-
tion and the relaxed configuration. Specifically, we ask to what
extent it is possible to predict t; from the pressure p; of the
starting configuration. The answer to this question is impor-
tant both for the above stated question on the efficient use of
simulations and for a better understanding of the dynamics at
densities below jamming.

The organization of the manuscript is as follows: In Sec. 11
we describe the model and the simulations and also the scal-
ing assumptions and the analyses employed in this work.
In Sec. III we start by first examining the correlations of
relaxation times 7| generated from configurations a distance
y apart. Because of the difficulty in getting good statistics
for that quantity we examine to what extent it is possible to
predict 7; from the pressure of the starting configuration, p;,
and find that 7; is governed both by p; and by a random

term which is related to the real-space distance between the
relaxed configuration and its starting configuration. We then
also examine the pressure correlations and find a rich be-
havior, but also show that the behavior may be understood
in terms of the scaling approach. In Sec. IV we discuss the
implications of the findings for efficient simulations with the
aim of high-precision determinations of a critical exponent. In
Sec. V we give a short summary of the findings.

II. MODEL, SIMULATIONS, AND ANALYSES

A. Simulation model

For the simulations we follow O’Hern et al. [14] and use
a simple model of bi-disperse frictionless disks in two dimen-
sions with equal numbers of particles with two different radii
in the ratio 1.4. We use Lees-Edwards boundary conditions [5]
to introduce a time-dependent shear strain y = ty. We take r;;
for the distance between the centers of two particles and d;;
for the sum of their radii. The relative overlap then becomes
8;j =1 —r;;/d;;. The interaction between two overlapping
particles is V,(7;;) = 631-21»/2; we take € = 1. The force on
particle i from particle j is ff]l = —V,V,(r;;), which means
that the magnitude becomes fljl = €4;;/d;;. The simulations
are performed at zero temperature. Length is measured in
units of the diameter of the small particles, d.

The total interaction force on particle i is £ =) f ff;,
where the sum extends over all particles j in contact with i.
The simulations have been done with the RDy (reservoir dis-
sipation) model [15] with the dissipating force £% = —k,v;
where v; = dr;/dt — y;yx is the nonaffine velocity, i.e., the
velocity with respect to a uniformly shearing velocity field,
yiyX. In the overdamped limit the equation of motion is
£l + £35 = 0 which becomes v; = ff!/k,. We take k; = 1 and
the time unit 7y = dszkd /€ = 1. The equations of motion were
integrated with the Heuns method with time step At /7o = 0.2.

Many quantities were measured during the shearing simu-
lations. Two examples of relevance for the present work are
pressure p, and the average magnitude of the nonaffine parti-
cle velocity v = (|v;|). We will below refer to earlier analyses
of p in Ref. [7]. The properties of v have been discussed in
Ref. [16]; we here just note that different powers of v scale
differently as criticality is approached, such that (Viz) and
(Jvi])? diverge differently.

B. Scaling relations

Shear-driven jamming has been found to be a critical phe-
nomenon with shear strain rate one of the relevant parameters,
which means that jamming transition takes place at (¢, y) =
(¢s,0) and that many properties are expected to scale with
the distance to jamming. A general review of scaling may be
found in Ref. [17]. With §¢p = ¢ — ¢, the pressure is expected
to scale as

P, y) =b"""gdp b, ybo), 2)

where v is the correlation length exponent, z is the dynamical
critical exponent, and y is the scaling dimension of p. It should
be noted that this expression neglects the correction to scaling
term [7] which is important for precise analyses close to
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jamming and has gotten a new interpretation in recent works
[18,19].
With b = y~!/% and the notation g = y/zv this becomes [4]

p(g.y) = )'/"g<¢).;/fj>. 3)

To describe the deviations from the hard disk limit we note
that the pressure is one of many quantities which is & y in the
y — 0 limit. For n, = p/y Eq. (2) translates to

Ny, 7) = B> hy (8¢ bV, ybo), )

and (¢; — P)b'/" =1 gives b = (¢; — ¢)™" which in turn
leads to

V) = — o) Ph L) 5
(P, ) = (b — ) ”((¢,—¢)zv o)

where 8 = zv — y.
The present work focuses on the relaxation time 7 which,
in the hard disk limit, behaves the same as n,, [6,9],

(9, 7) = Ac(ps — ¢) P,

Another quantity of interest is the velocity per unit of shear
strain which diverges as [16]

;I_I)I}) v@. V)Y =A@y =), ¥y =0, )

y — 0. (6)

with u, ~ 1.1. For finite y these expressions may be general-
ized through the same kind of relations,
. - 14
T(@.7)~ (¢ — ¢) ﬂh(—) ®)
’ (s — ¢

. - 14
: ~ (¢ — ) “hy : 9
v(@, Y)Y ~ (b1 = ¢) ((dn _¢)ZV> ©)

Note however the different nature of these quantities. The
determination of the relaxation time is from two-step simula-
tions that are done by first shearing at a certain shear strain
rate and then stop the shearing and let the system relax to
zero energy. The nonaffine velocity per shear rate, v(¢, y)/y,
characterizes the flowing sheared steady state, whereas the
relaxation time, 7, is from the final stage of this relaxation.

C. Analyses

To determine the relaxation time we run simulations as
described above at zero temperature and fixed y (i.e., with
y = 0) which leads to an energy decreasing towards zero;
the simulations are aborted when the energy per particle is
E < 1072°. The relaxation time is then determined from the
exponential decay of the energy per particle by fitting E(¢) to

E@t)~e M, E(@)<107", (10)

The general look of the data is the same as p(¢) in Fig. 1
of Ref. [9]. Since that work analyzed the pressure p(t) and
E ~ p? the timescales in Ref. [9] only differ by being a factor
of two bigger. For each parameter set, N, ¢, and y, the starting
configurations are from a long shearing simulation that gives a
large number of different starting configurations with different
y. The relaxation simulations then give a set of relaxation
times, 7;(y). (The individual determinations are denoted by
71 whereas their average is denoted by 7.) On general grounds
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FIG. 1. Correlation function for from the inverse relaxation time.
Panel (a) is the correlation function p;,,(y ) obtained with N = 4096
particles, shear strain rate y = 1078, at densities ¢ = 0.830 through
0.841. The correlation shear, y;, is defined to be the value of y for
which the correlation function is p;/, = e~!. Panel (b) which is y,
vs ¢, shows that y, decreases as ¢, is approached from below in
an approximately linear way, y, ~ ¢, — ¢. Panel (c) which shows
p1/:(y) for two different system sizes, N = 4096 and N = 16384,
illustrates that the correlation function is independent of N.

one expects two starting configurations that differ only by
a small shear y to be similar and to also lead to similar
relaxation times and one of the goals of the present work is
to examine how quickly this similarity decays and thus to
determine the correlation shear—which is the analogous of
the correlation time—for t;.

The autocorrelation function of some quantity A is a mea-
sure of the correlations in the fluctuations of A, i.e., A = A —
(A). The autocorrelation function is then (SA(t")SA(t’ + 1)),
where the average is over different initial times . When com-
paring systems that are sheared at different shear strain rates
there is a trivial shear strain rate dependence and it is therefore
convenient to instead express the correlation function in terms
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of the change in the shearing variable, y,

(BA(y" + y)8A(Y")
((A)%)

We will examine this correlation function for two different

quantities, A = 1/7; and A = p and besides some results ex-

tracted from these correlation functions we will be able to

draw some conclusions about the relaxation processes.

paly) = (1)

III. RESULTS
A. Correlations of relaxation times

To analyze correlations of 7y we determine p;/;(y) from
Eq. (11) with A = 1/7; for y = 1078 and N = 4096 parti-
cles and at densities ¢ = 0.830 through 0.841, closely below
¢; ~ 0.8434. The rationale for determining the correlations
of 1/1; instead of t; is that 7| can occasionally be very big
which could mean that a few big values would dominate the
correlation function. This problem is not present when instead
determining the correlation of 1/1;.

Figure 1(a) shows pi/-(y). We find that each curve to a
decent approximation shows an exponential decay and that
the slope of the curves increase as ¢ increases towards ¢;.
To determine the correlation shear—the analogous quantity to
the correlation time—one should ideally fit the tail of p;/-(y)
to an exponential decay, but since our data are rather noisy
this isn’t feasible and we therefore instead determine the cor-
relation shear y; from the shear strain that gives py/(y;) =
e~ !, ie., from the crossings of the horizontal dashed line in
Fig. 1(a). Figure 1(b) shows y, versus ¢ and we note that the
figure can be taken to suggest a linear behavior, y; « ¢; — ¢.

The data above are determined with N = 4096 and an
interesting and nontrivial question is on the finite-size depen-
dence of y;. One possibility would be that a larger number
of particles would give more places with important changes
of the contact pattern which would lead to a bigger change
in 71 for each change in y. Our results do however suggest
that there is no real finite-size dependence for our quite big
systems. (For sufficiently small N one would however ex-
pect changes of all kinds of quantities.) This is illustrated by
Fig. 1(c) which shows p; . (y) for N = 4096, 16 384 particles,
determined with ¢ = 0.838 and yy = 1078,

Figure 1(b) is for a single shear strain rate, y = 1078, and
a further question is on the dependence of y, on the shear
strain rate. To that end we have attempted the same kind of
analyses for different shear strain rates but found the data to
be somewhat too noisy for any safe conclusions. The basic
problem is that the determinations of p/;(y) requires a large
number relaxation times, 7;, which are obtained through time
consuming relaxations of the system to (almost) vanishing
energy. With a limited number of such t; the correlation
function py/;(y) for different ¢ become quite noisy which
makes it difficult to achieve precise determinations of y;.

As an alternative route to more insight we have there-
fore turned to other analyses. The approach is based on
the expectation that the individual 7; should be strongly
influenced by properties—as, e.g., the pressure—of the
respective initial configurations, and that the correlations be-
tween such quantities should be much easier to determine
since there are considerably more available data. For such an

initial property we here make use of the pressure, and the
approach is therefore to first turn to a comparison between
relaxation time and the pressure of the corresponding ini-
tial configuration, and then, as a second step, examine these
pressure correlations. As we will see these correlations turn
out to be somewhat different and do not directly help answer
our questions. This approach does nevertheless lead to some
unexpected new insights.

B. Relaxation time and pressure

To examine the relation between t;, determined from the
last stage of the relaxation, and 1, = p;/y, from the initial
configurations (before the relaxation), Fig. 2 shows 7; and
npt for y = 108 and N = 4096, at two different densities,
¢ =0.836 and 0.841. Figure 2(a) which is 7; versus 7,
for ¢ = 0.836 shows that these data are strongly correlated,
whereas Fig. 2(b), obtained at the higher density ¢ = 0.841,
gives evidence for a weaker correlation. Figures 2(c) and 2(d)
show the same data but now plotted versus y. For the lower ¢
in Fig. 2(c) it is clear that the two quantities follow each other
closely but Fig. 2(d), which displays the same kind of data for
the higher ¢ = 0.841, shows that the minima and the maxima
of n,1 are reflected in 7y, but that there is also a big fluctuating
random component to ;.

To quantify this fluctuating factor we introduce

71
fi=ln—, (12)
Mp1
which is from the ratio of the pressure of the initial con-
figuration and the relaxation rate determine from relaxation
simulations. The rational for taking the logarithm is, as shown
in Figs. 3(a) and 3(b), that the distribution of 7 /1, is strongly
skewed whereas the distribution of the logarithm of the same
quantity is similar to a Gaussian distribution, as if f; were the
sum of a number of independent random variables.
If 71 were exactly predicted by 7,1 fi would be a constant
and to quantity the spread in fi, then we determine

sdev[fil = /(f2) — (/)%

which is then a measure of the size of the random fluctuating
factor. Figure 3(c) which is sdev[ f;] versus ¢ for two different
sizes, N = 4096, 16 384, shows that this quantity is small
at low ¢ and increases rapidly with increasing ¢. Further
analyses (see below) suggest that sdev[fi] ~ 1/+/N, just as
expected from elementary statistics of N independent values.

The reason for the strong correlation between 7, and 1
at the lower densities is that each final configuration is very
close to its corresponding initial configuration. Conversely,
the bigger fluctuations of f| at higher densities suggests that
the properties of the system often change a lot during the
relaxations. As a measure of the distance between initial and
final configurations in ordinary space, we introduce the relax-
ation path length which is the average distance moved by the
particles during the relaxation,

s,y N) = </0 IVi(t)|dt>.

The average is here over both particles and relaxation runs
performed with the same parameters, ¢, y, and N.
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FIG. 2. Plots of 7; and 1, at two different densities, ¢ = 0.836 and 0.841. Here 1, are from the starting configurations whereas 7, are
from the relaxations. The question is to what extent 7; from the relaxation may be predicted from 1, = p;/y of the starting configuration.
The data are for N = 4096 particles and shear rate y = 1078 for the shearing simulations. Panels (a) and be which show t; vs 1,1 shows that
these quantities are strongly correlated for the lower density ¢ = 0.836 and more weakly correlated at ¢ = 0.841. The lower panels are the
same data but now plotted vs y (~ simulation time). Panel (c) is for ¢ = 0.836 whereas panel (d) is for ¢ = 0.841. In both cases we find that
7; closely follows 1,;—the minima and maxima of 7,, are closely followed by similar minima and maxima in 7,—but also that the spread is

bigger in panel (d) which is for the higher ¢.

Figure 3(d) is a parametric plot of sdev[fi(¢, y, N)] versus
s(¢, y,N) for two system sizes, N = 4096, 16384, shear
strainrate y = 10~3, and densities ¢ = 0.834 through 0.8412.
The system size dependence found in Fig. 3(c) is here taken
care of through a factor of +/N and the plotted quantity is thus
/N - sdev[f1(¢, v, N)]. The fit to an algebraic dependence on
s(¢, y, N) gives the exponent 0.49 which suggests

Vs(@, v, N)
N

We note that this is consistent with elementary statistics if one
considers f; to be the average of N different terms which
each is the sum of o s different terms. The logarithm in the
definition of f; lets us conclude that each small As contributes
a random factor to t.

To summarize this part we have found that t; is directly
controlled by 7, at low densities and that the behavior at
higher ¢ is similar but with big random fluctuations. We have
also found that the size of this random contribution to t; is
directly related to the average distance moved by the particles
during the relaxation.

sdev[fi(¢, v, N)] ~ 13)

C. Pressure correlations

We then turn to the correlations of pressure with the aim
to get an understanding of the size of the shear strain, y,, that
characterizes the decay of the pressure correlations in shear-
driven simulations.

Figure 4(a) shows the correlation function p,(y) for N =
4096 particles, shear strain rate y = 1078, and densities ¢ =
0.830 through 0.8434. We find that p,(y) decays exponen-
tially for each ¢, and determine the correlation shear y, from
the condition p,(y,) = e~!. Figure 4(b) shows ¥p versus ¢ for
different y. The solid dots are from the data in Fig. 4(a), the
other symbols are for three higher shear strain rates.

We note that the behavior of y,(¢) as y — 0 suggest that
¥p(¢) in the hard disk limit goes approximately linearly to
zero, as shown by the dashed line. This is the same kind of
behavior as shown for y; in Fig. 1(b) and it is also consistent
with the finding that a characteristic shear determined from
the velocity-velocity correlation at ¢; vanishes as y — 0 [20].
This is also directly related to the fact that v/y—the distance
traveled per unit shear— increases as jamming is approached.

Another interesting observation from Fig. 4(b) is that this
correlation shear, for each finite shear strain rate, y, depends
nonmonotonously on ¢. For each constant shear strain rate
the correlation shear, y,, first decreases towards a minimum
and then increases again when ¢ approaches ¢; from below.
We will now first relate this behavior to ideas from scaling,
then discuss the physical mechanisms behind this decrease
and finally consider the change to an increasing trend of y,
versus ¢.

From the scaling assumption in Eq. (3) follows that the
behavior should be controlled by the combination (¢ —
#;)/7"/*". To test this expectation we plot y, versus (¢ —
¢;)/y'/? in Fig. 4(c) and we then find that the upward
turns, to a decent approximation, take place at a constant
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FIG. 3. Properties of f; = In(z;/n,). All data are for y = 1078,
Panels (a) and (b) show that the distribution of 7;/7, is strongly
skewed whereas the distribution of f; = In(z/n,;) is similar to a
Gaussian distribution. This is taken to suggest that f| is a reasonable
quantity for analyses. Panel (c) shows the spread in f;—denoted by
sdev[ fi]—versus ¢ for two different sizes, N = 4096 and 16384.
The finite-size dependence is to a good approximation given by
~1 /\/ﬁ . Panel (d) shows the same data versus s, which is the
average displacement during the relaxation, now compensated for the
/N dependence. A fit gives ~/N sdev[f;] ~ s°*, which suggests a
dependence ~./s. The conclusion is that each small As from the
relaxation contributes a random constant to f; and thus a random
factor to 71/1,.

(¢; — )/y /% There is a deviation from that behavior for the
smallest shear strain rate, y = 10~8, and we attribute this to a
finite-size effect which could be visible when the correlation
length, which increases as ¢; is approached from below [21],
becomes comparable to the system size.

Turning to the physical reason for the decrease of y, with
increasing ¢, at low ¢, we believe that this is an effect of the
increasing particle velocity as ¢ — ¢y, described by Eq. (7).
The reasoning is that we expect two configurations that are
generated by the shearing dynamics should be substantially
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FIG. 4. Correlation shear, y,,, determined from p;(y) measured
in the shearing simulation. Panel (a) shows p,(y) for N = 4096 par-
ticles, shear strain rate y = 1073, and densities ¢ = 0.830 through
0.840. (Data for more densities are excluded in order not to clutter
the figure.) The correlation shear, y,, is determined as the y for
which p,(y) = e~!. Panel (b) which is the correlation shear, Vp VS
¢ for three different y, shows a clear dependence on y. For each y
there is a minimum at a certain ¢nin (¥ ). As y decreases the position
of this minimim moves towards ¢;. Panel (c) The same data but
plotted vs the scaled distance from jamming as suggested by Eq. (3),
using ¢; = 0.8434 and 1/zv = 0.26. We note that the minima of the
respective curves are on top of each other, except for the data for
the lowest y. This deviation is tentatively attributed to a finite-size
effect that appears as the system size becomes comparable to the
correlation length.

different—such that their respective p; are also different—if
the particles have on average moved a certain characteristic
distance, £. This gives the timescale t, = £/v and y, =t,y =
£y /v, which together with Eq. (7) for the divergence of v/y
becomes y, = (£/A,)(¢p; — ¢)™. The dashed line in Fig. 4(b)
is an approximate description of the behavior in the y — 0
limit, assuming u, = 1. The rectilinear behavior shown there
is in reasonable agreement with the behavior described by the
exponent u, &~ 1.1.
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We now turn to the change in trend of y,(¢) and we are
going to argue that it goes together with a change from hard
to soft particles—i.e., a change from negligible to a finite
particle overlaps. When the shearing is sufficiently slow that
the system has time to relax down to very small particle
overlaps the system is in the hard particle limit. Since the
energy relaxation is governed by the relaxation time, 7, the
system should be close to the hard disk limit as long as the
relaxation time is smaller than all other relevant timescales.
With the velocity timescale, #, = £/v, introduced above, we
get the criterion 7 < t,, and the expectation of a change of
trend when that condition is no longer fulfilled.

We now argue that the change in behavior when f, & t
is consistent with the expectation from scaling discussed
above, that the behavior should depend on the combination
(¢ — ¢7)/y /%", For this comparison we first make use of the
relation zv = B + y [7] to rewrite the scaling variable as

%. (14)
From Eq. (7) we then find
= s — ", (s)
Ayy
which together with Eq. (6) and the criterion T < ¢, gives
Ay =) < 6y~ 90", (16)
vy

which implies that the criterion for being in the hard disk limit
becomes

b — ¢

m >> const. (17)
This is similar to Eq. (14) and also leads to the suggestion
u, =y. We also note that the possibility that these two dif-
ferent exponents actually are the same is in agreement with
the numerical values in the literature, y = 1.08 &= 0.03 [7] and
u, ~ 1.10 [16].

We now also take this one step further and try to approxi-
mately express ¥, in terms of T and ¢,. Since 7 is the timescale
needed to relax energy or pressure when shearing has been
stopped, it is not unreasonable to expect 7 to affect the pres-
sure relaxations also in the presence of shearing. However,
since the conditions are so different it follows that a possible
relation between t and the pressure correlations could at most
be an approximative one, only.

In the following, we will make use of a related but different
timescale—the dissipation time, tgiss, described in Ref. [9].
This timescale is determined from the initial decay of a relax-
ation in contrast to T which is determined from the final part
of the relaxation. These two timescales—t and t4;ic—behave
the same in the y — 0 limit but have the opposite dependence
on y [9]. The decisive advantage with tg4;5s before t is however
that it may be determined directly from the properties (energy
and shear stress, o) of the shearing simulations [9],

E
Tdiss = 2_.a (18)
oy

without the need for any relaxation steps.

(tr' + Tdiss) }

0.00

I I I
0.830 0.835 0.840 0.845

FIG. 5. Attempt to predict y, from our two timescales. The
timescales are #, = £/v from the average particle velocity and the
dissipation time tg4iss, from the initial decay of energy in a relaxation,
but determined from properties measured in the shearing simulations
and given by Eq. (18). Though the agreement with y,, in Fig. 4(b) is
by no means perfect, we note that this quantity has the same general
behavior.

Figure 5 shows the simplest possible way to include the ef-
fect of these two different timescales, which is to assume that
the effective correlation time is obtained by adding together
contributions from these two timescales, such that the corre-
lation shear is given by y, = (f, + Taiss)Y = (£/V + Taiss )V -
Here v is the measured average velocity, t4;ss is from Eq. (18)
and the free parameters are £ = 0.1, and the prefactor of tgjs
which we take to be equal to unity. Though the agreement is
by no means perfect we note that the curves in Fig. 5 capture
the general behavior of the simulation data in Fig. 4(b). The
conclusion is thus that the nonmonotonic behavior of y,, is an
effect of the increase of t as ¢ approaches ¢, from below.

IV. DISCUSSION

A. Comparing the different correlation functions

In the above sections we examined correlations from two
different “time” series, t;(y) and p;(y), and determined the
related y; and y,. Since the determinations of a large numbers
of 1 are quite computationally demanding the idea was to
extract the same kind of information from p; of the initial
configurations which would thus reduce the need for a large
number of relaxation runs.

Figure 1 suggests that y, from the y dependence of 7| van-
ishes approximately linearly as ¢; is approached from below,
whereas Fig. 4 shows that y,, has minima that depend on y and
move towards ¢, as y decreases. To explain the difference in
behavior we then noted that there are two contributions to t;.
The first is related to the values of p;, and thereby 7, in the
initial configuration and the second is due to the relaxation
processes. The first contribution changes slowly whereas the
second component fluctuates much more rapidly and it ap-
pears that it is this second component that is responsible for
the continued decay of the correlations in Fig. 1(b) when y,
from the pressure correlations in Fig. 4(c) turn upwards.

These conclusions appear to be true when y; and y, are
determined as the values of y that make the correlation func-
tions equal to some given constant, here taken to be e~!. The
correlations that are visible in the pressure correlations ought
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however to be present also in pj/;(y) and should be visible
if one were able to access the tail of p;/; with sufficient
precision. To see this we may consider an interval in y where
p1 is almost a constant. In this range of y t; will vary around a
certain average that depends on the average p. For a different
interval in y with another average p, t; will fluctuate around
another average value. From this consideration it appears that
correlations that are seen in p; should also be present in ;.
Since the fluctuations in p; are quite small compared to the
fluctuations in 7, it does however seem that it would be virtu-
ally impossible to verify the existence of these correlations in
T1.

The question is now what to conclude for efficient relax-
ation simulations, and what should reasonably be the distance
in terms of y between successive starting configurations. It
then appears that the answer—as is often the case—depends
on what the obtained data should be used for. If the goal
is to get statistically independent values t; for given ¢ and
y, then it is reasonable to consider the correlations of the
initial configurations and it could then be reasonable to do
the relaxation runs by starting at points with the separation
¥ > yp. If, however, the goal is to get a set of points (7, 6z)
for determining the exponent 8/u, from 7 ~ (8z;)~#/* then
a possible bias of these points towards high or small values
of 71 and éz; would not be a problem, and one could then
well make use of starting configurations that are quite close
together in y, but still with y > y, where y; is from the
apparent correlations of 1/t.

B. Implications for precise determinations of the critical
behavior from relaxation simulations

The present results together with earlier findings [9,22]
lead to some suggestions for determinations of points (ty, §z1)
close to criticality for more precise determinations of the
exponent B/u. in T ~ (8z)~#/*: (i) The determinations should
best be done with a big number of particles since the spread
in the different quantities are o< 1/ VN [9]. (ii) It is preferable
to do the simulations with small ¥ since one then has a lower
energy to start with, but there is always a tradeoff since at
large N a small y could give very long times for generating
starting configurations with sufficient big distance in y. [To
be explicit on numbers we note that the simulation of 10°
time units requires 2 h when our parallel code is run on
28 cores. Considering simulations at (¢, y) = (0.842, 107?)
where we have y;(0.842) =~ 0.0045 the simulation to advance
y by 2y,(0.842) would then require ~20 h.] (iii) It would be
possible to substantially speed up the relaxation simulations
by using the fast minimization protocol of Ref. [23] instead
of the slow simulations with steepest descent (which, e.g.,
was used in Ref. [9]). The final part of the simulation, which
is used for the actual determination of t;, needs however be
performed by steepest descent. (iv) It should be noted that
the finite precision in the double precision variables that are
typically used to store the positions may lead to artifacts for
very big systems [19]. This is due to two facts. First, that a
larger value of a coordinate means that fewer bits are available
for storing the fractional part of the position and, second, the
fact that the net force on a particle, which determines the
dynamics, is often considerably (i.e., a factor of t) smaller

than the typical contact force. This problem may be taken care
of with a code that stores the position in two variables, with
fraction part and integer part, which ensures that large values
of the position coordinates do not affect their precision.

V. SUMMARY

To summarize we have examined the correlations of both
71 and p; as a function of y motivated both by a desire to
understand the basic physical mechanisms and to answer the
question on how to most efficiently determine statistically
independent values of the relaxation time, to be used for the
determination of a critical exponent.

From 7;(y) and p;(y) we determine the respective cor-
relation shears, y; and y, and our first conclusion is on the
behavior in the hard disk limit. For the hard disk limit we
conclude that our two different correlation shears both vanish
essentially linearly as ¢ — ¢; from below. We note that this is
in consistent with the earlier finding that the velocity-velocity
correlation at jamming vanishes as y — 0 [20].

For y, from the pressure correlations determined for
different ¢ and y we find that y,(¢) at constant y is a non-
monotonous function which first decreases with increasing ¢,
reaches a minimum and then increases again as ¢ — ¢,;. We
interpret this behavior as an effect of two different timescales
where the first is directly related to the average nonaffine
particle velocity, t, = £/v, and the second is the average relax-
ation time, t. Close to the hard disk limit—i.e., at sufficiently
low ¢—the behavior is dominated by #, but at higher ¢ the
behavior is instead dominated by t which diverges as ¢ — ¢;.

Our data for y,—the correlation shear for 7;—suggests that
this quantity decreases monotonously as ¢ — ¢, and we set
out to analyze this difference in behavior compared to y,,. For
the hard disk limit we expect 71 o« 1,1 [9], and this is also
borne out by our data a low densities where the proportionality
holds to a good precision for each individual relaxation. At
higher densities 71 and n,; do however behave very differently
which is seen through 7/, spreading considerably around
its average. To quantify this spread we determine the stan-
dard deviation in f; = In(t;/n,1) and find that sdev[f;] ~ /S,
where s is the average distance moved by a particle during
the relaxation. Due to the logarithm in the definition of f; we
conclude that that relation implies that the contribution due to
each small As is a random factor to t;. The dependence on
N is in accordance with elementary statistics of N indepen-
dent values, which means that this random contribution to T,
decreases as the system size decreases.

When it comes to efficient simulations we conclude that the
distance between successive configurations could reasonably
be taken to be y ~ 2y,(¢), with y; = 3.25(¢; — ¢), from
Fig. 1(b), which means that the necessary distance in y de-
creases as ¢ — ¢, and that there is no need for any very
extensive shearing simulations between successive starting
configurations.
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APPENDIX: POSSIBLE PROBLEMATIC FINITE-SIZE
EFFECTS

We here discuss the finite-size effect reported in Ref. [13].
In the determinations of 7| of Ref. [9] the starting configura-
tions were always from shearing simulations. It was however
later argued [24] that the relaxation dynamics is universal such
that the late stage of the relaxation has the same properties re-
gardless of starting configuration and that relaxations starting
from random configurations also behave the same. That con-
clusion was however based on systems of N = 3000 particles
only, and in later studies by the same group, it was found that
there is a strong finite-size dependence in the relaxation time
[13] such that T ~ In N. The suggested explanation was that
a sufficiently big system will split up into different islands
with different local correlation times and that it is the biggest
correlation time that will dominate the final relaxation. With
a larger number of such islands for bigger N, and a simple
assumption of the distribution of relaxation times, follows the

T ~ InN dependence. The further conclusion was that 7 is
an ill-defined quantity because of this finite-size dependence
and that it may therefore not be used to determine the critical
exponent.

A later study [22] did however modify these conclusions
in several ways. The suggested finite-size dependence was
confirmed, but it was also shown that the splitting into dif-
ferent islands with different relaxation times only sets in for
quite big N, and is not the dominant mechanism for the finite-
size dependence. The dominant mechanism is instead that big
random initial configurations have large density fluctuations
that, to some degree, survive the relaxation process and affect
the final relaxation. This effect is not present in relaxations
starting from configurations obtained at steady shearing, since
these starting configurations have a long pre-history of a slow
shearing and therefore already have an essentially uniform
density. It was also shown that it is possible to define a re-
laxation time which isn’t plagued by the In N-dependence,
and that the problematic finite-size effect is not present at
the system sizes that have been used in earlier determinations
of the critical behavior [9,25], and would not seem to be a
problem in possible future attempts to determine the critical
behavior with higher precision.
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