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Interaction between two large particles in a dry granular shear flow
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The interaction between two large spherical particles, called intruders, in a dry granular flow down an incline
is brought to light and studied experimentally and numerically. Several parameters are varied, namely, the size
ratio between the intruders and the small flowing particles, the thickness of the granular flow, the incline slope
and roughness, and the densities of the intruders with respect to the small-particle density. In all cases, intruders
get aligned with the flow. A thorough parametric study shows that a transition occurs between attractive and
repulsive regimes of interaction: at steady state, intruders either flow at a defined longitudinal distance, which
may be zero with intruders in contact, or stand as far apart as possible. The mean longitudinal and vertical
distances between the intruders are found to be tightly linked, with all points plotting the pairs on a single,
master curve. The wake and shear effects are shown to control the relative position of the intruders. They may be
modulated due to the weight and buoyancy of the intruders, and to local modifications of the collisions between
intruders and small flowing particles because of the proximity of the incline bottom or the flow surface.
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I. INTRODUCTION

The numerous occurrences in natural and industrial en-
vironments of flows of polydisperse dry granular materials
have attracted much attention and driven many experimental,
numerical, and theoretical studies for a long time [1–3]. Most
of these studies deal with mixtures of two sizes of particles
of the same density, small size ratios between the large and
small particles (smaller than 4, typically), and more or less
the same fractions of both species. These conditions lead to
the usual granular size segregation pattern, with large particles
moving toward the free surface of the flow [4–6] according
to the so-called Brazil nut effect. Notwithstanding, it was
shown that the opposite takes place for high size ratios and
low fractions of large particles, still of the same density as the
small particles. The large and, consequently, heavy particles
can then push away the small ones and make their way down
the flowing granular layer. For instance, a few large particles
in a shear flow down a rough incline migrate downward and
stabilize near the bottom of the flow for size ratios larger than
about 4.5. This phenomenon was called reverse segregation
[7–9]. It can be thought of in terms of buoyancy: as the flowing
small particles have a volume fraction around 0.6, the density
ratio between a large particle and the equivalent volume of the
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surrounding small particles having the same density tends to
1.7 for very large particles.

Many investigations of the forces acting on objects im-
mersed in dense granular flows have been performed. These
objects are usually static in studies of the drag forces that exert
on such obstacles to the flow [10,11], whereas the dynamics
of a single intruder free to move has often been addressed in
an approach to model granular size or density segregation, in
granular flows either driven by gravity [7–9,12–17], or by an
externally imposed shear [14,18–21]. The size ratios between
the intruder and the small flowing particles are lower than 5
[7–9,13–21] or 6 at the most [17,19] in all these studies, ex-
cept in [7–9] where size ratios as high as 30 were considered.
A few investigations, which focus on the interaction between
intruders, consider more than one large particles, either static
[10,11] or moving in static granular beds [22,23], in 2D or
quasi-2D systems only, apart from a short qualitative insight
into 3D systems in [22]. To our knowledge, the interaction
between large particles free to move in a 3D dense granular
flow at size ratios larger than 6 has never been addressed, even
though it is likely to be of great relevance in debris flows and
industrial processes.

This situation strongly contrasts with that of particles
suspended in fluids. Among other issues, the interaction
between sedimenting particles has been studied for long
[24–37]. The dynamics of solid spheres settling in a
Newtonian fluid has proved to exhibit a rich phenomenology
including the drafting-kissing-tumbling behavior [38–40] and
may result in peculiar patterns [41–43] in the arrangement
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FIG. 1. Sketch of the experimental setup.

of the particles. In sheared suspensions, different migration
behaviors are observed depending on the flow conditions and
the properties of the particles and of the fluid. Particles may
attract or repel each others, which leads to microstructures
like trains of particles in channel flows [44–47]. In the case of
non-Newtonian fluids, even more complex phenomena may
arise, like repulsion between particles for a shear-thickening
fluid, or alignment in viscoelastic fluids [48].

In a somewhat similar approach, this work focuses on the
dynamics of two large particles (intruders) in a dry granular
shear flow made of small particles flowing down a rough
incline. Intruders are large and most often in a situation of
reverse segregation. Except in a few cases, large and small
particles have the same density. Two investigation methods,
experimental and numerical, have been implemented. Regard-
ing simulations, the distinct element method (DEM) [49] was
used. Its performance makes possible a thorough study of
various parameters and gives access to quantities that would
be difficult, if not impossible, to measure experimentally.
Conversely, experiments provide the necessary validation of
the simulation results.

The article is organized as follows. The experimental pro-
tocol and the numerical scheme are described in Section II.
Section III introduces the physical phenomenon, from both
experiments and simulations. Section IV reports a parametric
numerical study of the influence of the intruder size, the thick-
ness of the granular flow, the incline slope and roughness, and
the intruder densities. A mechanism for the interaction process
is proposed and discussed in part V. Section VI ends the article
with conclusions.

II. METHODS

A. Experimental protocol

Experiments have been conducted on an 80 cm long and
10 cm wide incline (Fig. 1). The incline is made rough by cov-
ering the board with a grade P120 sandpaper. Its slope is set to
23◦. Flowing particles are glass beads (density ρ = 2500 kg
m−3) that have been sieved between 300 µm and 400 µm, with
a size distribution centered close to d = 350 µm. Intruders
are colored glass beads (density ρ = 2580 kg m−3) of same
diameter di, equal to either 2.0 mm or 3.5 mm, which leads
to two size ratios di/d of about 6 and 10. A feeding con-
tainer of an approximate volume of 2 L is placed at the top
of the incline. The flow rate from the hopper and thus the

thickness of the granular flow are controlled by the height
of the container gate. Its width is kept constant, equal to the
channel width. Ambient humidity is kept around 50% relative
humidity. After the opening of the container gate, a steady,
uniform flow of small glass beads establishes over the entire
channel. Soon after, two intruders are gently dropped on the
flow, about 10 cm below the gate as the flow thickness might
not be constant close to the exit. A homemade injector is
used to approximately set the initial relative location of the
intruders. The intruders are driven downwards; they rapidly
reach their stationary height inside the granular flow, after
a few centimeters of travel. A high-resolution video camera
with a wide-angle lens, placed above the channel, images its
entire length while a digital still camera zooms in on its lower
part. The positions of the intruders are obtained from videos
recorded at 25 fps typically as well as from photos captured
in burst mode. The thickness of the granular flow is measured
from the shift of the shadow of a thin tense string or from the
deflection of a laser sheet. Flow thicknesses from 2.2 mm to
3.0 mm have been studied experimentally.

B. Numerical model

The numerical method used is the distinct element method
(DEM). A linear-spring and viscous damper force model
[49,50] is implemented to calculate the normal force be-
tween contacting particles. The details on the numerical model
and its parameters (normal stiffness, normal damping, col-
lision time, and restitution coefficient) have been published
previously and can be found in [9,50,51]. The gravitational
acceleration is g = 9.81 m s−2. The particle properties corre-
spond to those of cellulose acetate: density ρ = 1308 kg m−3,
restitution coefficient e = 0.87, and friction coefficient μ =
0.7 [50,52]. In two series of simulations (Sec. IV F), the
densities of the intruders are (i) both equally increased or
decreased compared to that of the small particles, ρi = αρ

with α in the range [0.35; 2], or (ii) modified symmetrically so
that the front intruder density is ρ + �ρ and the back intruder
density ρ − �ρ, with �ρ in the range [−0.005ρ; 0.15ρ]. The
front intruder is denser, except in a few cases where �ρ < 0.
Introducing a difference in density between the intruders aims
at modifying their relative vertical position in the flow.

To prevent the formation of a close-packed structure, the
small particles have a uniform size distribution ranging from
0.95d to 1.05d , with d hereafter referred to as the small-
particle diameter. d is equal to 6 mm in the simulations. The
large particle diameter is di. The collision time is �t = 10−4 s,
consistent with previous simulations [52–54] and sufficient
for modeling hard spheres [55–57]. These parameters corre-
spond to a stiffness coefficient kn = 7.32 × 104 N m−1 [50]
and a damping coefficient γn = 0.206 kg s−1. The integration
time step is �t/50 = 2 × 10−6 s to meet the requirement of
numerical stability [55].

The initial configuration is obtained as follows. Small
beads are placed randomly in the simulation domain, along
with two large particles that are placed at 0.75di above the
bottom, aligned at 45◦ of the flow direction and spaced at
twice their diameter from center to center, as illustrated in the
left column of Fig. 2. During 0.3 s, gravity is set perpendicular
to the bottom plane and particles fall. All beads touching the
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FIG. 2. From the numerical simulations, three successive posi-
tions of two intruders (in red) in dry granular flows of small particles
(in gray). Particles of the rough incline are green. The size ratio
between the large and small particles is di/d = 10. Three thicknesses
of the flow are displayed: H = 7d , 15d , and 18d . The simulation
domain is 80d × 40d , and the slope of the incline is 24◦. Also see
videos 1 to 3 in the Supplemental Material [58].

bottom of the domain stop moving and form a monolayer of
bonded particles which generates the roughness of the incline.
The other beads will constitute the flowing granular material.
The particles of the rough bottom have the same size as the
small flowing particles, except for one particular study on the
effect of the roughness of the incline, where various diameters
of particles, from dr = 0.9d to 1.6d , were used to generate the
glued monolayer (see Sec. IV E). After 0.3 s, gravity is tilted
to the chosen slope (24◦, except in Sec. IV D), and the flow
starts (t = 0 s). Rough-bottom particles are assumed to have
an infinite mass for calculation of the collision force between
flowing and fixed particles. The velocity-Verlet algorithm is
used to update the position, orientation, and linear and angular
momenta of each particle. Periodic boundary conditions are
applied in the flow direction x and in the transverse direction y
of the simulation domain. The size of the domain is Lx = 80d
and Ly = 40d in the x and y directions, except in some cases
for which the size is increased up to 160d × 80d . The posi-
tions and velocities of all particles, including the intruders, are
stored every 0.1 s for postprocessing purpose. The thickness
of the moving granular layer is computed from the surface
(z = 0) of the roughness of the incline, one small-particle
diameter higher than the domain bottom. In Sec. V virtual
springs are added between intruders in order to maintain them
at defined distances in the x and y directions and facilitate the
measurement of the velocity field.

III. RESULTS: EVIDENCE OF AN INTERACTION
BETWEEN INTRUDERS

A. First observations

In the first part of the numerical study, all particles have
the same density, and the size ratio of the intruder diameter
to the small-particle diameter is set to di/d = 10. This size
ratio ensures reverse segregation [7,9]. Three flow thicknesses
were implemented (H = 7d , 15d , and 18d). The equilibrium
position of the intruders in the z direction, near the bottom of
the granular flow, results from the reverse segregation mech-
anism and the difficulty to penetrate the lowest small-particle
layers where chain forces are efficient enough to support a

FIG. 3. Pictures from an experiment performed with a granu-
lar flow made of small particles of diameter d � 350 µm and two
large intruders of diameter di = 2.0 mm, for a size ratio di/d � 6.
The slope of the incline is 23◦. The flow thickness is H = 2.2 mm
� 6.5d . The lower picture shows the whole plane, with one location
of the intruders highlighted by a green dashed circle as an example.
The five upper subimages illustrate the time evolution of the relative
position of intruders; the arrows indicate their corresponding loca-
tions on the plane. The thick green arrows indicate the direction of
the flow. Also see video 4 in the Supplemental Material [58].

large particle. For the thinnest flow, intruders are large enough
to emerge from the flow and are visible at its surface. For
the two thick flows, intruders are completely embedded in the
granular flow, and small particles are drawn partly transparent
in Fig. 2 to make the intruders visible. Note that the vertical
velocity profile of the flow of small particles down the incline
makes the flow very nonuniform over the intruder diameter
(shear flow).

The simulations bring to light a striking behavior of the
intruders in the granular flow. For the thin flow case (H = 7d),
they are observed to align in the flowing direction, moving in
the wake of the other intruder, and eventually get in contact.
Intruders attract each other. For the two thick flow cases, the
intruders, initially close, also align but move away from each
other, to a distance depending on the flow thickness. For H =
15d , intruders locate at a distance (measured from center to
center) �x � 20d . For H = 18d , this distance is �x � 37d ,
which is close to the maximal distance (�x = 40d) that can
be obtained for periodic boundary conditions and a simulation
domain length of L = 80d . An increase in the simulation
domain length shows that intruders actually repel each other
for the thickest flow (see Fig. 8).

A similar qualitative behavior is observed experimentally.
Figures 3 and 4 show two experiments performed for the same
size ratio (di/d � 6) and two flow thicknesses. The small
beads have a diameter d � 350 µm, and the intruder diameter

FIG. 4. Same as Fig. 3 for a larger granular flow thickness H =
2.9 mm � 8.5d . The four lower subimages show the time evolution
of the relative position of the intruders. Also see video 5 in the
Supplemental Material [58].
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is 2.0 mm. The flow thicknesses are H = 2.2 mm � 6.5d and
H = 2.9 mm � 8.5d for Figs. 3 and 4, respectively. Note
that the particles flow toward the right in these figures. The
subimages display the time evolution of the intruder positions.
To facilitate the visualization, their locations are highlighted
by two red and blue circles, which have the same diameter
as the intruders and stand for the front and back intruders,
respectively.

Like in simulations, for both flow thicknesses, the two
intruders get aligned with the flowing direction. Intruders,
which are initially in contact, move away while flowing. For
the thinnest flow (Fig. 3), the intruders eventually locate at
a distance �x � 2.5di � 15d from center to center. For the
thickest flow (Fig. 4), the distance between the intruder cen-
ters continuously increases until intruders reach the end of the
incline, where the distance comes to �x � 30d .

Experiments performed with intruders 3.5 mm in diam-
eter, i.e., a size ratio di/d � 10, and two flow thicknesses
H � 2.6 mm � 7.5d and H � 3.0 mm � 9d , all else being
equal, show that intruders also align, but they stay or rapidly
come in contact.

Thus, numerical simulations and experiments demonstrate
that two large particles in a dry granular flow down an incline
do interact. Both approaches suggest that two regimes exist,
attractive or repulsive, depending on the thickness of the flow.

B. Time evolution of the relative position of the intruders

The time evolution of the relative position of the two in-
truders give further details on the process. Figures 5–7 report
the longitudinal (�x, upper curves) and transverse (�y, lower
curves) distances between the intruder centers as a function
of time, for the numerical and experimental studies reported
above.

As exemplified in Fig. 5, the numerical simulations per-
formed for a size ratio di/d = 10 show that a stationary
regime is reached after a transition period whose duration
increases with the flow thickness. The transverse distance
(�y) converges toward zero for all values of the flow
thickness, rapidly for a thin flow and more slowly for a
thicker flow. Intruders are drawn more or less efficiently
into each other’s wake (see Sec. V for discussion). Whereas
the longitudinal distance (�x) also converges to a steady
state, it exhibits various behaviors of which Fig. 5 gives a
representative example. For the thinner flow (H = 7d), the
longitudinal distance tends to di, showing that intruders are al-
most in contact. For H = 15d , the longitudinal distance fluc-
tuates around �x = 20d . For the thickest flow (H = 18d), the
longitudinal distance almost reaches �x = 40d , which corre-
sponds to half of the simulation domain length. Due to the pe-
riodic boundary conditions used in the simulations, this is the
maximum distance that can be reached between two repelling
intruders since they interact by both sides of the simulation
domain.

Figures 6 and 7 show the time evolution of the longitu-
dinal (�x, upper curves) and transverse (�y, lower curves)
distances between the two intruder centers in the experiments
performed for two size ratios. In Fig. 6, for the size ratio
di/d � 10 and the two small flow thicknesses investigated,
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FIG. 5. Longitudinal (�x, upper curves) and transverse (�y,
lower curves) distances between the two intruder centers (di/d = 10)
measured in small bead diameter (d), as a function of time, for the
three flow thicknesses (H = 7d , 15d , and 18d) of the numerical
study corresponding to Fig. 2. The transverse distances �y converge
to zero. The longitudinal distances tend to different values increas-
ing with the flow thickness. The dotted line indicates one intruder
diameter di = 10d , i.e., the minimal longitudinal distance between
two intruder centers perfectly aligned with the flow direction. The
dashed line (y = 40d) corresponds to half of the longitudinal size of
the simulation domain, i.e., the maximum distance that two aligned
repelling intruders can reach.

the behaviors observed are the same as in the simulations for
the thinnest flow. Intruders align and come in contact.

In Fig. 7, for the size ratio di/d � 6 and a thin flow
(H � 6.5d , blue curves), the transverse distance �y also de-
creases and tends to zero, i.e., intruders get aligned, whereas
the longitudinal distance �x rapidly grows to 10d , and then
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FIG. 6. Longitudinal (�x, upper curves) and transverse (�y,
lower curves) distances between the two intruder centers measured
in small bead diameter (d) for four experiments performed for a size
ratio di/d � 10 and two flow thicknesses H = 2.6 mm � 7.5d and
H = 3.0 mm � 9d . The dotted line indicates one intruder diame-
ter di = 10d , i.e., the minimal longitudinal distance between two
intruder centers perfectly aligned with the flow direction.
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dotted line indicates one intruder diameter di = 6d , i.e., the minimal
longitudinal distance between two intruder centers perfectly aligned
with the flow direction.

reaches some kind of plateau around 15d , followed by a
slight increase which could be due to a nonconstant flow
thickness. For the same size ratio di/d � 6 and a thick flow
(H � 8.5d , red curves in Fig. 7), the transverse distance �y
also decreases, more slowly than for the thin flow, and does
not reach zero before the end of the incline. The longitudinal
distance �x rapidly reaches a value around �x � 30d and
fluctuates around it. Note that the curves for the thick case end
more rapidly than for the thin case since the flowing velocity
increases with the flow thickness. Repeated measurements at
a given size ratio and flow thickness (see Fig. 6) show that
intruders eventually locate at similar relative positions.

Fluctuations in Fig. 5 draw attention. Regarding the longi-
tudinal distance �x between intruders, fluctuations grow at
increasing flow thickness, from almost null when intruders
have come in contact at small flow thickness, to large when
intruders are far from one another at large flow thickness.
Likewise, in the experiments reported in Figs. 6 and 7, fluc-
tuations on �x are larger when intruders are far apart than
for intruders in contact. Logically, the further the intruders,
the weaker the interaction between them and the less their
relative position is constrained. Regarding the transverse dis-
tance �y, the amplitude of its fluctuations is rather small in the
steady state. Fluctuations on �y do not show a clear correla-
tion with the thickness of the flow nor with the longitudinal
distance.

Finally, it is interesting to note that when intruders are
close and not perfectly aligned, they migrate in the transverse
direction and towards the front intruder. This is not visible
in Fig. 2 due to the periodic boundary conditions but visible
in video 1 [58], corresponding to H = 7d . When the flow is
thick, and intruders are far away, no migration is visible (see
videos 2 and 3 [58]). Such a behavior is also observed for
particles sedimenting in a fluid: at low Reynolds number, a
force which results from hydrodynamic interactions acts along
the direction joining the centers of two sedimenting particles,
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FIG. 8. Mean longitudinal 〈�x〉 and transverse 〈�y〉 distances
(measured from center to center and stated in small-particle diameter
d) between two intruders of size ratio di/d = 10 at increasing flow
thicknesses H . In simulations (filled symbols), the domain size is
Lx × Ly = 80d × 40d (red squares and green circles) or 160d × 40d
(blue triangles and magenta reversed triangles). The empty sym-
bols (cyan circles and black triangles) stand for the experiments
performed at a size ratio di/d � 10. The dotted line indicates one
intruder diameter di = 10d , i.e., the minimal longitudinal distance
between two aligned intruders.

whose horizontal component induces a lateral drift of the
pair of particles [28,35–37]. The study of this phenomenon
is ongoing and will be presented in a future work.

C. Numerical study of the steady state

Figures 5–7 confirm the existence of a transition between
two regimes of interaction between the intruders, attractive
at small flow thickness and repulsive at large flow thickness.
This transition can be highlighted by considering the average
values computed on the steady state in the numerical
simulations.

Figure 8 plots the mean longitudinal 〈�x〉 and transverse
distances 〈�y〉 obtained numerically between the intruder
centers, as a function of the flow thickness in the range H =
6d to 25d , for the size ratio di/d = 10. The error bars indicate
the standard deviation of the distances. To compute the mean,
the first 50 s of each simulation are discarded to ensure that the
stationary regime has been reached. In a few cases, intruders
were not aligned after 50 s and the averaging was started only
when intruders got aligned. Averaging is typically performed
for a period of 200 s. To probe the effect of periodic boundary
conditions, two domain sizes were considered: the size pre-
viously used, 80d × 40d , was increased to 160d × 40d , for a
few cases only since simulations become numerically costly
for such a large domain.

For all flow thicknesses and both domain sizes, the mean
transverse distance 〈�y〉 is close to zero, which confirms that
intruders initially close (�x(t = 0) = �y(t = 0) = √

2di) al-
ways tend to align with the flow direction by wake effects,
as detailed in Sec. V. The mean longitudinal distance 〈�x〉
shows a transition around H = 17d . Below this thickness,
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for both domain sizes, intruders locate at a defined distance
that decreases at decreasing flow thickness. This decrease
is limited by the size of the intruders since, once aligned,
the longitudinal distance between intruders cannot be smaller
than one intruder diameter, which corresponds to intruders
in contact. In this range of flow thickness smaller than 17d ,
the standard deviations are very small, indicating that the
attraction between intruders is strong enough not to be sen-
sitive to the fluctuations inherent to a granular flow. Note that
the experimental behavior reported in Fig. 6 for a size ratio
di/d � 10 and small flow thickness (empty symbols in Fig. 8)
is consistent with the numerical results. In contrast, for large
flow thicknesses, the mean longitudinal distance reaches the
maximum possible distance considering periodic boundary
conditions, i.e., 〈�x〉 � 40d or 80d according to the domain
size. Standard deviations are large since longitudinal distances
strongly fluctuate in this repulsive regime, as emphasized
above.

The almost zero value of the transverse distance at large
flow thickness calls for some comments since, in the steady
state, intruders are far apart and unlikely to feel each other’s
wake. Actually, in the simulations, they start to align because
they are initially close together, and continue to do so as the
longitudinal distance increases, eventually remaining aligned
when far apart even though they no longer interact. However,
the limited domain size in simulations may also promote the
alignment of the intruders. As shown in Fig. 8, two intruders
in the repelling regime are better aligned (small error bars
for green circles) when artificially held close due to a smaller
domain size, while a larger domain leads to larger fluctuations
of the transverse distance 〈�y〉 and mean values as large as
7d . This may be related to the size of the intruder wakes but
also results from the periodic boundary conditions that cause
the intruders to meet, and thus realign, from time to time, and
more frequently in a smaller domain, which would not happen
in an infinite domain.

Figure 8 makes the transition between an attractive and a
repulsive regime clear for the size ratio di/d = 10. To gain a
better knowledge on this transition, the size ratio between the
intruders and the small particles, the slope of the incline and
its roughness, and the densities of the intruders were varied
in the numerical simulations. As before, the mean longitu-
dinal and transverse distances are measured for various flow
thicknesses. In addition, the vertical locations of the intruders
within the granular flow, i.e., their heights above the rough
incline, are investigated.

IV. PARAMETRIC STUDY

A. Shift of the transition toward increasing
flow thicknesses at increasing size ratio

Three additional size ratios are studied numerically,
namely, di/d = 6, 8, and 12. Below a size ratio of 6, intruders
undergo a classical surface segregation and are no longer
near the bottom of the flow. For size ratios larger than 12,
the transition occurs for very large flow thicknesses, and the
computational cost strongly increases.

Figure 9 reports the mean transverse and longitudinal dis-
tances as a function of the flow thickness. All intruder sizes
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FIG. 9. Mean longitudinal 〈�x〉 and transverse 〈�y〉 distances
between two intruders at increasing flow thicknesses. The size ratios
between intruders and small particles are (a) di/d = 6, (b) di/d = 8,
and (c) di/d = 12. The range in flow thickness, starting at H = 6d ,
is adjusted to reach the repulsive regime. The axis scales are kept
identical for all graphs to facilitate comparison. All lengths are given
in units of small-particle diameter. The dotted lines indicate the in-
truder diameters. In (a) the empty symbols stand for the experiments
performed at di/d � 6.

lead to the same overall shapes for these curves; however,
the repulsive regime is reached at larger flow thickness for
larger intruders, around 11d , 13d , 18d , and 22d for intruders
of diameters di = 6d , 8d , 10d , and 12d , respectively. The
transition between the attractive and repulsive regimes proves
to depend on the intruder size.

Some less important differences between the three graphs
in Fig. 9 can be noted. In particular, for the lower size ratio
di/d = 6 [Fig. 9(a)], the mean longitudinal distance always
presents a large standard deviation, even for the lowest flow
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FIG. 10. Mean longitudinal distance 〈�x〉 vs flow thickness for
intruder sizes ranging from di = 6d to 13d . All lengths are given in
units of small-particle diameter d .

thicknesses, and the mean transverse distance more or less
deviates from zero. The smaller the size difference between
the intruders and the small particles, the more the fluctuations
inherent to a granular flow outweigh the dynamics of the
intruders. In addition, the lower limit of the attractive regime,
where intruders are in contact, is not reached at the smallest
flow thickness H = 6d reported. This would require to lower
the thickness even further. However, this is not possible in the
simulations with the chosen parameters since a granular layer
thinner than 6d does not flow.

The mean longitudinal and transverse distances obtained
experimentally for the size ratio di/d � 6 and for H � 6.5d
and H � 8.5d (see Fig. 7) are reported in Fig. 9(a). The
agreement with the mean longitudinal distances obtained in
simulations, �x � 16d for H = 6d and �x � 30d for H =
9d , is noticeable.

Intruders with size ratios di/d = 8 and 12 [Figs. 9(b) and
9(c)] present similar behavior compared to the case di/d = 10
(Fig. 8). For thin flows, the intruders attract each other and
locate at a defined distance that depends on the flow thick-
ness. For the lower flow thicknesses, the mean longitudinal
distance 〈�x〉 is close to one intruder diameter and intruders
are in contact. Standard deviations are small in the attractive
regime. For thick flows, intruders repel each other, the mean
longitudinal distance 〈�x〉 is close to 〈�x〉 � 40d = Lx/2 and
fluctuations are large.

Similar attractive and repulsive regimes are found for all
the size ratios that were explored numerically. Figure 10,
where intermediate size ratios di/d = 7, 9, 11, and 13 are
also reported, depicts the attractive-repulsive transition for
all the size ratios investigated. Note that the points above the
transition have been omitted since the longitudinal distance
in the repulsive regime is set by the numerical domain size,
around �x = 40, and has no physical meaning. The curves of
the mean longitudinal distance vs flow thickness all present
a similar shape; however, the transition is seen to shift toward
higher values of flow thickness and become smoother and
smoother as the intruder size increases. For example, for the

16
fre

e su
rfa

ce

H (d)

4

0

8

12

20
10 15 20 25

top

bottom

6.6

6.8

7

7.2

7.4

7.6

7.8

8

8.2

10 15 20 25
H (d)

z
(d

)

z
(d

)

front intruder

mean height
back intruder

single intruder

FIG. 11. Mean vertical positions of the front (green circles) and
back (red squares) intruders (di = 10d) vs flow thickness H . The
center of mass of the two intruders (blue triangle) as well as the
vertical position of one single intruder in a similar flow (magenta
reversed triangle) are also plotted for comparison. All lengths are
given in units of small-particle diameter. z = 0 corresponds to the
surface of the rough incline, defined by the summit of the small
glued particles (see Sec. II B)). The insert zooms out to visualize the
vertical positions of the front-intruder top and bottom (dotted lines)
compared to the free surface (solid line) of the granular flow.

size ratio di/d = 8, an increase in flow thickness from H =
9d to H = 13d is enough to switch from intruders in contact
to the repulsive regime, while for the size ratio di/d = 12,
an increase in flow thickness from H = 15d to H = 23d
is necessary. A practical consequence is that using large
intruders makes it easier to differentiate the various regimes.
However, this requires thick granular flows that are numeri-
cally expensive and complex to generate experimentally.

B. Vertical locations of the intruders

Numerical simulations also give access to the vertical loca-
tion of the intruders within the granular flow, hereafter called
height of the intruders for simplicity. Figure 11 plots the mean
heigths of the two intruders above the rough incline (z = 0),
for the size ratio di/d = 10 and various flow thicknesses. Note
that compared to previous graphs, the vertical axis is strongly
stretched.

The main feature of Fig. 11 is that, whereas both intruders
adopt an identical vertical position in the flow at flow thick-
ness larger than 18d , the front intruder stabilizes higher than
the back intruder when the flow thickness becomes smaller
than 18d . Figure 8 shows that the value H = 18d corresponds
to the transition between the two regimes of interaction for
the size ratio di/d = 10. More specifically, the interaction be-
tween the intruders becomes purely repulsive above this value.
Since intruders are far from each other, they no longer alter the
flow in the vicinity of the other intruder and their heights are
identical. Below the value H = 18d , Fig. 11 shows that the
mean height difference between the intruders 〈�z〉 increases
when the flow thickness decreases to H = 13d , then decreases
again as the thickness further decreases from H = 13d to
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FIG. 12. Same as Fig. 11 for an intruder size di = 12d .

H = 6d (also see Fig. 13). Figure 12 shows that the same
phenomena occur for intruders of size di/d = 12 but for larger
flow thicknesses. The intruders flow at the same height at large
flow thickness, down to H � 23d , which corresponds to the
attractive-repulsive transition for this size ratio [Fig. 9(c); also
see Fig. 13]. The mean height difference between intruders
increases for flow thicknesses decreasing further, to H = 16d ,
then starts to decrease.

The insets of Figs. 11 and 12 present the positions of the
summit, center, and bottom of the front intruder, as well as
the location of the free surface of the flow. The mean vertical
position of the back intruder is also reported to highlight
that the height difference between the two intruders 〈�z〉 is
extremely small, less than half of a small particle diameter.
The top dotted line intersects the free surface line for a flow
thickness H � 13d for the intruder size di/d = 10 and H �
14.5d for di/d = 12. These values are close to those for which
the height difference between the intruders starts to decrease.
This shows that the decrease in the height difference occurs
when the intruders get close to the free surface and eventually
start to emerge from the granular flow, with a larger and
larger emerged part when the flow thickness decreases further.
Conversely, intruders are fully immersed for flows with larger
thickness.

Since the intruders are closer and closer as the flow thick-
ness decreases (see Figs. 8 and 9), their interaction strengthens
and a larger effect on their height difference 〈�z〉 is expected.
For flow thicknesses smaller than 13d (di/d = 10) or 14.5d
(di/d = 12), an extra buoyancy due to the emerging part of the
intruders counterbalances the interaction between intruders
and reduces the resulting height difference between them,
more and more as the emerged part grows. This can explain
the decrease in height difference observed at decreasing thick-
ness from about H = 13d in Fig. 11 and H = 16d in Fig. 12.

Figures 11 and 12 call for two more comments. The center
of mass of the two intruders as well as the vertical position
of one single intruder in a similar flow are also plotted. This
shows that, for all flow thicknesses, the center of mass of
the two intruders approximately coincides with the vertical
location of one single intruder in simulations performed at the
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FIG. 13. Mean intruder height difference 〈�z〉 vs flow thickness
H for intruder size ranging from di = 6d to 13d . For the size ratio
di/d = 11, a second-order polynomial fitted on the descending part
of the graph is shown. The intersection of this fit with the horizontal
axis is used to define the transition thickness H∗. All lengths are
given in units of small-particle diameter.

same flow thickness. This is expected at large flow thickness
when intruders are far apart and flow at the same height, but
this remains valid at small flow thickness when a height dif-
ference between the intruders is observed. Thus, the attractive
interaction between the intruders causes a lift of the front
intruder and a sink of the back intruder while their center of
mass settles at a vertical position very close to that of a single
intruder.

The second remark relates to the intruder height above the
rough bottom. The bottom dotted line in the inset of Fig. 11
gives the position of the front-intruder bottom and shows that,
even though intruders are in a reversed-segregated location,
they do not touch the rough incline (z = 0). A layer of small
particles, two to three small-particle diameters thick, flows
under the intruder bottom. Its thickness slightly increases with
the flow thickness. The same phenomenon is observed for the
intruder size di/d = 12 (Fig. 12).

C. A criterion to define the transition thickness

Figure 13 reports the mean height difference 〈�z〉 between
the front and back intruders as a function of the flow thickness,
for intruder sizes ranging from di = 6d to 13d . At decreasing
flow thickness, all curves display an increase of 〈�z〉 followed
by a decrease when intruders are emerging. Accordingly, the
maximum of the curve shifts towards low flow thicknesses for
decreasing intruder sizes. For the case di = 6d , this decrease
does not appear in Fig. 13 as it would start at a flow thickness
that is too small for the flow to occur in the simulation.

The intruder height difference conveniently provides an un-
ambiguous mean to define the transition between the attractive
and the repulsive regimes. As illustrated in Fig. 13 for the
size ratio di/d = 11, the intersection with the horizontal axis
(〈�z〉 = 0) of a second-order polynomial fit of the decreasing
part of the curve gives a value of the flow thickness beyond
which the interaction between intruders is purely repulsive
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(blue triangles), and bottom (magenta reversed triangle) for a flow
of thickness H∗ are also displayed.

and both intruders have the same height. This value is called
the transition thickness, noted H∗. For di/d = 11, the tran-
sition thickness is H∗ = 21.3d . The change in regime, i.e.,
the transition between attraction and repulsion, is assigned to
the flow thickness H∗. Figure 14 summarizes the results for
all size ratios. In addition to the transition flow thickness H∗,
the mean vertical locations of the intruder summit, center, and
bottom for a flow of thickness H∗ are also reported. These ver-
tical locations have been obtained by interpolation of previous
results since flows with the exact flow thickness H∗ have not
been simulated. As the intruder vertical location varies very
weakly with the flow thickness (see inset of Fig. 11), the in-
terpolation gives accurate results. Figure 14 reports the center
of mass of both intruders, but the intruder height difference is
so small that using the front or the back intruder gives nearly
the same graph.

The comparison of the transition thickness H∗ with
the position of the intruder summit proves that the
attractive/repulsive transition is not concomitant with the
emergence of the intruders from the flow. Both intruders are
fully embedded for a flow thickness H∗. Furthermore, Fig. 14
shows that the transition thickness increases faster than the
height of the intruders. The number of small flowing parti-
cles above the intruders at the transition is not constant with
the size ratio di/d , nor proportional to di/d , but strongly
increases, while the layer thickness of small particles between
the intruder bottom and the rough incline slightly decreases.

Other criteria to define the transition thickness have been
tested, for example, the intersection with the horizontal line
�z = 0.05d , in Fig. 13. Figure 14 remains almost identical
for all criteria, and the conclusions are unchanged.

The mechanisms involved in the alignment and the defined
longitudinal distance between intruders could be discussed at
that point. We choose to postpone them and first explore the
influence of other parameters (Secs. IV D to IV F), but the
reader may skip these parts and proceed directly to Sec. IV G.

10

15

20

25

30

35

40

45

21.5 22 22.5 23 23.5 24 24.5 25 25.5 26
θ (deg)

Δ
x

(d
)

di/d = 8, H = 11d
di/d = 8, H = 15d

di/d = 10, H = 15d
di/d = 10, H = 11d
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ers vs slope: (red squares) di/d = 8 and H = 11d , (green circles)
di/d = 8 and H = 15d , (blue triangles) di/d = 10 and H = 11d ,
and (magenta reversed triangles) di/d = 10 and H = 15d .

D. Slope of the incline

The influence of the slope of the incline is now stud-
ied. Whereas previous results were all obtained for an angle
of 24◦, the incline angle θ is varied from 22◦ to 25.5◦
for four typical cases: an attractive case (di/d = 10, H =
11d) where intruders are almost in contact 〈�x〉 � di, a
repulsive case (di/d = 8, H = 15d) where intruders locate
at their maximal distance 〈�x〉 � 40d , and two intermedi-
ate situations (di/d = 10, H = 15d and di/d = 8, H = 11d)
where intruders are in an attractive regime, not far from the
attractive-repulsive transition, and locate at an intermediate
distance.

Figure 15 reports the mean longitudinal distance between
intruders, 〈�x〉, vs slope angle for the four cases. For the two
utmost cases, either attractive or repulsive, the variation in
slope does not alter significantly the distance between intrud-
ers. For the two intermediate cases, increasing the slope angle
favors the attractive regime and, conversely, decreasing the
slope angle favors the repulsive regime. For the intruder diam-
eter di = 8d , the transition is sharp and occurs between 23.5◦
and 24.5◦ while for the larger intruder diameter di = 10d , the
transition is more progressive and occurs between 22◦ and
24◦. This is reminiscent of the smoothing that is observed at
increasing size ratio di/d for the transition in 〈�x〉 with the
flow thickness (see Fig. 10).

Figure 16 reports the mean height difference between in-
truders, 〈�z〉, vs slope angle, for the same four cases. Apart
from the difference in vertical scale, Fig. 16 is close to what
one would obtain by mirroring Fig. 15 in the horizontal
axis. When the system evolves toward the attractive regime
at increasing slope angle, the longitudinal distance between
intruders decreases, and, simultaneously, the difference in
height of the intruders increases.

On the whole, a variation in the angle of the incline
has a rather weak impact on the attractive-repulsive tran-
sition and causes the intruders to switch from one regime
to the other only when the system is already close to the
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transition. Nevertheless, increasing the slope favors the at-
tracting regime and, as a consequence, increases the transition
thickness H∗.

E. Incline roughness

The roughness of the incline is now varied, for an incline
angle of 24◦, a size ratio di/d = 10, and a flow thickness
H = 15d , one of the two previous intermediate case where
intruders locate at a defined distance, in an attractive regime
not far from the attractive-repulsive transition. Up to now,
the incline was made rough with glued particles of the same
size as the small flowing particles d . Here inclines whose
roughness is created with glued particles of size ranging from
dr = 0.9 d to 1.6 d are investigated. An incline made rough
with smaller particles, namely, dr = 0.8 d , leads to a mean
velocity of the flow, which is extremely high, indicating that
a slip occurs at the base of the flowing material. On the other
hand, the roughness obtained with particles of size dr = 1.5 d
is known to generate the highest friction for a granular flow
made of particle of size d [59], and the actual roughness of
the incline is expected to decrease when larger particles are
used because flowing particles fill the voids between them.

Figure 17 reports the mean longitudinal distance, 〈�x〉 (red
squares, left axis), and the mean height difference, 〈�z〉 (blue
triangles, right axis), between the intruders with respect to the
incline roughness, expressed by means of the size of the glued
particles. A decrease in the size of the glued particles, i.e., a
decrease in roughness, causes the system to evolve toward the
attractive regime: the distance between intruders decreases,
and, simultaneously, the difference in height of the intruders
increases. The variations in longitudinal distance 〈�x〉 and
height difference 〈�z〉 between intruders with incline rough-
ness being moderate, averaging over 500 s was necessary to
obtain statistically significant mean values.

It can be noted that both increasing the incline angle and
decreasing the incline roughness result in a shift toward the
attractive regime while implying an increase in the mean flow
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FIG. 17. Mean longitudinal distance 〈�x〉 (red squares, scale on
left axis) and mean height difference 〈�z〉 (blue triangles, scale
on right axis) between intruders vs incline roughness expressed by
means of the size of the glued particles, from dr = 0.9d to 1.6d .
The intruder size is di/d = 10, the flow thickness H = 15d , and the
incline angle θ = 24◦. Error bars show a 95% interval of confidence
of the mean value.

velocity. This can be used to get an estimate of the relative
impact of these two parameters. The above variation in the
incline roughness yields an increase in 〈�x〉 around 4d , while
the mean flow velocity is observed to decrease by a factor 1.2.
The variation in the slope angle from 22◦ to 25.5◦ yields a
decrease in 〈�x〉 around 18d , more than 4 times larger, while
the mean flow velocity is observed to increase by a factor 4.3
only. Therefore, in terms of variations of longitudinal distance
vs flow velocity, the incline roughness has a slightly weaker
effect than the incline angle.

F. Changing intruder densities

To further explore the reciprocal link that is highlighted by
the above between the longitudinal and the vertical distances
between intruders, the densities of the intruders are modified
in two different ways. First, since a difference in density
between the intruders should alter distinctively their heights
in the flow and thus impact their relative height, the densities
are oppositely modified by �ρ such that the front and back
intruders have a density ρ ± �ρ, respectively, where ρ is
the density of the small particles. The aim is to quantify the
impact on the longitudinal distance �x. Second, the density
of both intruders is reduced or increased identically, in the
range ρi ∈ [0.4ρ; 1.8ρ]. Intruders will then locate either at the
bottom, in the bulk, or at the surface of the granular flow, and
this location should act on both �z and �x.

The configuration of two intruders with an intruder diam-
eter di = 10d , a flow thickness H = 15d , a slope of 24◦, and
a rough incline made of small particles dr = d is considered
again. Intruders are initially aligned (�y = 0) and located at
a longitudinal distance �x = 20d close to their equilibrium
distance at this flow thickness.

Figure 18 shows the time evolution of the longitudinal dis-
tance �x for the several density perturbations �ρ/ρ. Positive
values of �ρ/ρ correspond to a front intruder that is heavier
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FIG. 18. Time evolution of the longitudinal distance �x between
two intruders of slightly different densities. Only the first 100 s
are presented. The intruder size is di = 10d , the flow thickness is
H = 15d , and the slope is θ = 24◦. The density perturbation varies
from �ρ/ρ = −0.005 (front intruder lighter) to �ρ/ρ = 0.15 (front
intruder heavier). More intermediate cases have been simulated but
are not presented for clarity.

and a back intruder that is lighter. The denser the front intruder
is, compared to the back intruder, the closer are the intruders,
showing an increase of the attracting effect. For the largest
density modification �ρ/ρ = 0.15, intruders are almost in
contact with only one or two small particles in between them.
The reverse situation is also considered with negative values
of �ρ/ρ and a front intruder lighter than the back one. When
the difference in density is not too large (�ρ/ρ = −0.002,
light-green curve), intruders remain in attractive interaction;
however, the mean longitudinal length is larger (�x � 30d)
showing a reduction of the attracting effect. When the density
difference is further increased (�ρ/ρ = −0.005, red curve),
the longitudinal distance �x continuously increases with time,
and intruders escape from the mutual attraction. Figure 19
confirms the continuous decrease of the mean longitudinal
distance between intruders 〈�x〉 (red squares) when the den-
sity perturbation �ρ increases. In contrast, the associated
mean height difference 〈�z〉 (blue triangle, scale on right
axis) evolves in a nonmonotonic way. It first increases and
then decreases for �ρ/ρ � 0.06. No significant variations in
the height of the intruder center of mass (〈zCM〉, green dots)
are observed in this range of �ρ. The increase in the mean
height difference (left part of the graph) can be deduced from
the mean longitudinal distance by a horizontal mirror effect,
as previously observed when varying the incline slope and
roughness. On the other hand, the decrease in the mean height
difference for �ρ/ρ � 0.06 is reminiscent of the behavior
observed when varying the flow thickness and assigned to the
emergence of the intruders from the flow. Again, the interac-
tion between the intruders proves not to be strong enough to
maintain the vertical distance even though the intruders are
close. In the second series of these numerical experiments,
both intruders have the same density ρi = αρ with the multi-
plying factor α in the range [0.4; 1.8]. As shown in Fig. 20,
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FIG. 19. Mean longitudinal distance 〈�x〉 between intruders (red
squares), mean height of the intruder center of mass 〈zCM〉 (green
dots), and the mean height difference between intruders 〈�z〉 (blue
triangles, scale on right axis) measured in small bead diameter (d) as
a function of the density perturbation �ρ/ρ. Empty symbols indicate
values where �ρ/ρ < 0.

this change in the intruder density alters the mean vertical po-
sition of the center of mass of the intruders 〈zCM〉 (green dots),
as well as the mean longitudinal distance 〈�x〉 (red squares)
and height difference |〈�z〉| (blue triangles, right axis) be-
tween intruders. Note that only the absolute value of the height
difference is reported since negative values are encountered
when intruders are so far apart (repulsive regime) that a front
and a back intruders cannot be defined. Remarkably, changing
the intruder density with respect to the small-particle density
induces several regime transitions. Starting from the isoden-
sity case ρi/ρ = 1, which corresponds to an attractive regime
with a longitudinal distance 〈�x〉 � 20d , and increasing the
intruder density, the mean intruder height 〈zCM〉 continuously
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FIG. 20. Mean longitudinal distance 〈�x〉 between intruders (red
squares), mean height of the intruder center of mass 〈zCM〉 (green
dots), and absolute value of the height difference between intruders
|〈�z〉| (blue triangles, scale on right axis) measured in small bead
diameter (d) as a function of the density ratio ρi/ρ. The dotted line
indicates the free surface, and the dashed line indicates the height of
intruders whose summit just emerges from the granular flow.
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decreases, although more and more slowly, and saturates
around z � 6.8d: the intruders locate deeper in the flow, yet
never touch the rough incline, even for the largest density ratio
of 1.8. The longitudinal distance first reduces to 〈�x〉 � 15d
where it reaches a plateau, up to ρi/ρ = 1.4, while the height
difference increases up to around 〈�z〉 � 0.35d . When the in-
truder density is further increased, 〈�x〉 still decreases slightly
and the height difference 〈�z〉 strongly and continuously de-
creases. As in the case of a large difference in density between
the intruders or a small flow thickness, the interaction between
intruders whose density is much larger than that of the flowing
small particles is no longer strong enough compared to their
buoyancy to maintain the height difference.

Starting again at the value ρi/ρ = 1 and decreasing the in-
truder density, the mean intruder height 〈zCM〉 continuously in-
creases, i.e., the intruders locate higher and higher in the flow.
Concomitantly, the longitudinal distance increases and shortly
reaches its maximum possible value (for a numerical domain
of length Lx = 80d), while the height difference 〈�z〉 tends
to zero; this corresponds to a repulsive regime. At a density
ρi/ρ � 0.7, only slightly smaller than the density for which
the summits of the intruders emerge from the granular flow
(dashed horizontal line at z = 10d in Fig. 20), the intruders
switch again to an attractive regime. The mean intruder height
〈zCM〉 still increases, up to around z � 15.4d for the lowest
density ρi/ρ = 0.4, for which the intruder centers are slightly
above the free surface of the flow (dotted horizontal line at z =
15d). The longitudinal distance 〈�x〉 continuously decreases
until intruders are in contact. The height difference quickly
increases, then decreases again at densities for which the
intruder centers are very close to the free surface of the flow.

Two extra density ratios, ρi/ρ = 0.35 and 2, have been
tested. For both of them, the back intruder is in contact with
the front intruder and tries to overpass it. At some stage, the
intruders are side by side, move away laterally from each
other, and start flowing independently without interacting.
No relative equilibrium position is reached and mean relative
positions cannot be computed.

G. Link between vertical and longitudinal distances

Figure 21 reports all the numerical results on the longi-
tudinal and vertical distances between intruders normalized
by the intruder diameter di, for the size ratios di/d = 9 to
13. The rescaling by di is used to compare the data for
different intruder sizes since the longitudinal and transverse
distances between intruders are expected to depend mainly on
the intruder diameter. Unless otherwise specified below, the
parameter values are the following: domain size Lx = 80d ,
size ratio di/d = 10, flow thickness H = 15d , slope angle
θ = 24◦, incline roughness dr = d , and isodensity for all par-
ticles ρi = ρ. For the size ratio di/d = 10d , data are reported
for various density perturbations �ρ on the intruder densi-
ties and various densities ρi of both intruders, various flow
thicknesses H for two domain sizes, and various incline slopes
and roughnesses. Each couple (〈�x〉, 〈�z〉) was obtained by
averaging over a period at least equal to 150 s, the first 50 s
of the simulation being discarded to ensure convergence. The
two black triangles in Fig. 21 stand for simulations where
two horizontal springs are used to maintain nearly fixed the
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FIG. 21. Mean height difference 〈�z〉/di vs longitudinal dis-
tance 〈�x〉/di between intruders at equilibrium, with both quantities
rescaled by the intruder diameter di. Except otherwise stated (label
“varying”), the default parameters are di/d = 10, H = 15d , slope
angle θ = 24◦, incline roughness dr = d , and isodensity ρi = ρ. For
the size ratio di/d = 10, results are obtained by varying the den-
sity perturbation �ρ (green inverted triangles), the intruder density
(ρi/ρ � 1: empty magenta diamonds, and ρi/ρ � 1: full magenta di-
amonds), the flow thickness H (blue filled squares for Lx = 80d and
blue empty squares for Lx = 160d), and the incline slope (red filled
circles) and roughness (brown filled squares); the cases of intruders
linked by two horizontal springs for H = 15 d and 9 d (black filled
triangles) are also reported. For the size ratios di/d = 9, 11, 12 and
13, the flow thickness H has been varied (colored plus symbols).

distances between the intruders and facilitate the computing
of the velocity maps of the next section (see Sec. V). The
data reported for the size ratios di/d = 9, 11, 12, and 13 have
been obtained by varying the flow thickness H . The data
for di/d = 7, 8, and 9 are not reported since they randomly
fall around the master curve, due to the large fluctuations
mentioned earlier.

The salient feature in Fig. 21 is that all of the data follow
the same overall curve, no matter how they were obtained, i.e.,
data corresponding to the density perturbation �ρ, obtained
by changing the intruder density, resulting from the variations
in H independently of the intruder diameter, and by changing
θ and the incline roughness. In particular, in the case where
both intruder densities are equal (filled and empty diamonds
in Fig. 21), the curves superimpose independently of the fact
that both intruders locate at the bottom of the flow when they
are dense or near the free surface when they are light.

The right and left parts of the master curve of Fig. 21
show distinct behaviors. The right part reports systems where
〈�z〉 decreases for increasing 〈�x〉. The greater the distance
between the intruders, the weaker their interaction, and, as
expected, the height difference tends to zero. In contrast, the
left part of the curve in Fig. 21 shows a positive correlation
between 〈�x〉 and 〈�z〉. A decrease in 〈�z〉 can result from
several causes, i.e., a thin flow from which intruders emerge, a
large intruder-density difference with a heavier front intruder,
dense intruders that have a strong interaction with the rough
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incline, or light intruders that emerge from the granular flow.
All these also cause a decrease of 〈�x〉. It is worth noting
that the emergence of intruders from the granular flow causes
their height difference �z, which was usually increasing as
intruders get closer, to decrease in a similar way whether the
intruders emerge because the flow is thin or because their
density is low.

For trial purposes, several simulations were performed on a
longer simulation domain Lx = 160d and various flow thick-
nesses (blue empty squares in Fig. 21). Although all the points
fit with the master curve, a small deviation is observed at large
values of the longitudinal distance 〈�x〉, which correspond to
the repelling regime and intruders far apart. Therefore, points
corresponding to 〈�x〉 typically larger than 30d should be
considered only qualitatively, especially when obtained for the
simulation domain of length Lx = 80d .

All the above highlights a tight link between the horizontal
and vertical positions of two large intruders interacting in a
granular flow.

V. A PROPOSED MECHANISM

When two particles are flowing in a fluid, for instance,
spheres sedimenting in a liquid or cyclists, the back particle
accelerates when in the wake of the front one. The situation is
slightly more complex for intruders in a granular flow down
an incline since they are in a shear flow. Intruders move faster
than small particles flowing below them and slower than small
particles flowing above them. To figure out the mechanisms
at play in the interaction between intruders, an additional
numerical experiment is performed, which aims at analyzing
the velocity field of the granular flow in the neighborhood of
the two intruders.

Parameters are set to their default values listed above. In-
truders have a diameter di = 10d and are fully embedded in a
granular flow of thickness H = 15d , smaller than the transi-
tion thickness H∗ but larger than the flow thickness for which
the intruders start to emerge. Because the relative intruder
positions �x and �y fluctuate with time, a specific procedure
is necessary to reduce the amplitude of these fluctuations
which would otherwise blur the measured velocity vector
field around the intruders. This was achieved by adding two
independent horizontal virtual springs between the intruders
to force them to maintain their spacing at equilibrium [18].
The fluctuations on the vertical distance being rather small, no
spring was added in the z direction. From Fig. 8, the no-load
length is �x0 = 20d for the spring aligned with the flow and
�y0 = 0 for the transverse spring. The forces exerted by the
virtual springs apply on the centers of the intruders and do
not perturb their rotation. Their magnitudes are kx(�x − �x0)
and ky(�y − �y0) in the x and y directions, respectively,
where the spring stiffnesses, kx and ky, are chosen to keep the
fluctuations around the equilibrium relative position smaller
than 0.5d . After test and trial, a value of kx = ky = kn/20 000
is retained, where kn is the stiffness of the normal repulsion
spring between any particles when in contact. Figure 22 re-
ports the velocity field in the plane (Oxz) and the intruder
positions in the reference frame of the front (right) intruder.
The velocity field corresponds to the flow around two intrud-
ers being at their equilibrium relative position and is likely to
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FIG. 22. Velocity map in the vertical plane in the reference frame
(Oxz) of the front intruder (right intruder). The intruder size is
di = 10d , the flow thickness is H = 15d , and the slope is θ = 24◦.
Intruders are at their relative equilibrium position: �x = 20d and
�y = 0. The thick green line stands for the free surface of the flow.
The thick red line passes through the summit of the glued particles
which form the rough incline. Three continuous inclined black lines
indicate the velocity profile measured in front of the intruders (right
black line), between them (middle black line), and behind them (left
black line). The two inclined dashed lines duplicate the front velocity
profile, shifted horizontally to facilitate comparison.

differ from the real velocity field around intruders that move
out of equilibrium due to fluctuations. This nevertheless helps
us to understand the involved mechanisms, as shown below.
Furthermore, it can be noted that the height difference �z
computed for the intruders joined by two horizontal springs
perfectly matches that of free intruders (see Fig. 21). This
confirms that the springs are weak enough not to perturb the
relative intruder positions when evaluating the velocity maps.

In Fig. 22 the thin black line around x = −10d delineates
the velocity profile between the two intruders while the thin
black lines around x = 10d and x = −30d delineate the ve-
locity profile ahead and behind the intruders, respectively.
To facilitate comparison, the velocity profile at x = 10d was
reported between and behind the intruders (dashed lines at
x = −10d and x = −30d). This shows that, in the vertical
direction and all over the diameter of the intruders, the ve-
locity gradient is reduced between the intruders compared to
that in front of the intruders. In the lower part of the flow
−5d � z � −d , the velocities of small particles are larger
than ahead of the front intruder; the lower half of the back
intruder is in the wake of the lower half of the front intruder.
The effect of this wake is to accelerate the back intruder until
a new equilibrium position is reached. In the upper part of the
flow d � z � 5d , the velocities of small particles between the
two intruders are smaller than ahead of the front intruder and
therefore than behind the back intruder since the two velocity
profiles (front and back) are very close in the upper part of the
flow (see Fig. 22); the upper half of the front intruder is in the
wake of the upper half of the back intruder. The effect of this
wake is to decelerate the front intruder. In brief, each intruder
is in the wake of the other (in its upper or lower half), and
both wakes push the intruders to get closer. Since the closer
the intruders are, the higher the wake effect is, the velocity
gradient in the region between them should further decrease
and intruders should end up being in contact. However, an
opposite mechanism causes the intruders to repel and derives
from the height difference between the intruders. As they
are embedded in a shear flow, the front intruder, which has
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sredurtni 2redurtni 1

FIG. 23. Sketch of the intruder interactions with the small par-
ticles of the granular flow. The length of the arrows is indicative
of the intensity of shocks with small particles. Red circles are re-
ported positions of one single intruder to illustrate the asymmetry
of shocks that would undergo two intruders having the same height.
This asymmetry pushes the back intruder downwards and the front
intruder upwards.

been measured higher in the flow, tends to go faster and the
back intruder, which has been measured lower, tends to go
slower. As a consequence, the intruders tend to move away
from each other, increasing 〈�x〉. These two mechanisms
counterbalance to place intruders at a defined equilibrium
distance. The origin of the height difference can be understood
from Fig. 22. As discussed above, the wake effects experi-
enced by the intruders are not symmetrical as they operate
only on its lower part for the back intruder and only on its
upper part for the front intruder. Figure 23 sketches the cases
of one intruder (left) and of a couple of intruders (right)
embedded in a granular shear flow. Intruders moving from
left to right collide with small particles that are below them
and move slower (bottom right arrows) and undergo collisions
from small particles that are above them and move faster
(top left arrow). The vertical location of an isolated intruder
results from the equilibrium between the intruder weight, the
buoyancy and the pressure induced by the collisions on the
bottom-right and upper-left parts of the intruder. For two
intruders at the same height (red dotted circles), the front
intruder shields the lower flow for the back intruder, and the
reverse happens for the upper flow on the front intruder. This
dissymmetry disrupts the mechanism of vertical positioning,
causing the front intruder to move upwards and the back
intruder to move downwards, and new equilibrium positions
are reached (black solid circles).

The emergence of the intruders above the free surface
makes the picture more complex. Figure 24 is the counterpart
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FIG. 24. Same as Fig. 22 except that the flow thickness is H =
9d . Intruders are at their relative equilibrium position: �x = 12.5d
and �y = 0. Intruders emerge from the free surface of the flow (thick
green line).

FIG. 25. Velocity map in the horizontal plane Oxy at a distance
of 2.5d above (a) and below (b) the center of the front intruder in
the reference frame of this intruder (right intruder). The intruder size
is di = 10d , the flow thickness is H = 15d and the slope is 24◦. All
vectors have the same length and the color map indicates the velocity
amplitude in m/s.

of Fig. 22 for a flow thickness H = 9d . The length of the
longitudinal spring equals the new equilibrium longitudinal
distance between the intruders and is thus reduced to �x0 =
12.5d . Other parameters are unchanged. Figure 24 shows that
the shear rate is reduced compared to the case H = 15d .
This reduction is likely to reduce all wake effects and their
attractive action. Concomitantly and as shown previously,
the thinner the flow, the more the intruders emerge and the
more the height difference between them is reduced by the
additional buoyancy term. The repulsive effect in the flow
direction due to the height difference reduces in turn. On the
other hand, because there are fewer small particles, or none
at all, flowing near the top of the intruders, the wake created
by the upper part of the back intruder on the front intruder
is reduced, as is its attractive effect. However, the absence
of small particles flowing near the top of the intruders also
means that small particles are no longer colliding with the
summit of the back intruder, allowing it to locate higher in the
flow. These two effects are opposed to each other, but as the
latter reduction in �z combines with the �z reduction due to
buoyancy, they may become dominant and counterbalance the
reduction in the upper wake, inducing a smaller value of the
longitudinal distance �x. Finally, intruders reach equilibrium
positions with a low �x.

Another question that remains to be answered is why in-
truders align with the flow. Figure 25 shows two velocity maps
in planes parallel to the incline and located half way between
the center and the top of the front intruder [Fig. 25(a)] and half
way between the center and the bottom of the front intruder
[Fig. 25(b)], which corresponds to z = 2.5 d and z = −2.5 d
in Fig. 22, respectively. The reference frame is that of the front
intruder. The darker zones between the intruders show the
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wake made by the back intruder in Fig. 25(a) and the wake
made by the front intruder in Fig. 25(b). Note that Fig. 25
remarkably illustrates the difference in the amplitude of the
wake effects felt by the intruders, likely due to the velocity
gradient that characterizes the flow and to the vicinity of the
rough incline. As soon as the front intruder is out of alignment,
it is pushed back to the in-line position by the small particles
that flow at the side of the intruders and that move faster than
the small particles in the wake region of the back intruder [see
the color code of Fig. 25(a)]. The counterpart situation is ob-
served in the lower plane z = −2.5d , where the back intruder
is in the wake of the front intruder [Fig. 25(b)]. In the at-
tracting regime, intruders are close, the wakes are strong, and
intruders perfectly align. When intruders are moving apart,
they feel each other’s wake less and less. In the steady state of
the repulsive regime, intruders are unlikely to feel any wake.
However, since they were initially close, they aligned during
their separation, and a residual streamwise alignment remains
visible. The pronounced transverse fluctuations observed may
arise from the fluctuations in individual intruder trajectories.

VI. CONCLUSION

This paper reports experiments and DEM simulations on
the interaction of two large particles in a flow of small
particles down a rough incline. In the range of parameters
explored, the two large particles, called intruders, do interact:
they systematically align in the direction of the flow, while
their longitudinal arrangement varies from intruders in contact
to intruders far from each other. A difference in height of the
intruders within the flow, with a tendency for the front intruder
to rise and for the back intruder to sink, is also observed.
The thorough parametric study performed reveals the exis-
tence of a master curve that links the equilibrium longitudinal
distance between the intruders and their height difference in
the flow. By means of simulations of the velocity field around
the intruders, we demonstrate that the positions of two large
particles in a dry granular flow on an incline result from a
wake effect of each large particle on the other, combined with
a vertical shear in the flow.

In many respects, the behaviors reported in this article
and a few others (not presented here) observed, for example,
during the transient stage are reminiscent of those exhibited
by pairs of particles settling in fluids. Fully exploring the
similarities and differences with the sedimentation of particles
in a fluid medium is beyond the scope of this paper, but a
few points are worth highlighting. The first obvious remark is

that a phenomenon analogous to the sedimentation in a fluid
cannot take place in a granular material at rest, which behaves
like a solid. The displacement of intruders requires movement
of the small particles, a granular flow, for instance. Second, for
shear flows, which are the most frequently encountered and
the easiest to produce, two contrasting scenarios take place
in connection with the speed of the intruders compared to
that of the small particles. For thin flows where the intruders
emerge, their velocity is higher than the mean flow velocity
of the small particles, which present similarities to particles
sedimenting in fluids. In contrast, when the flow is thick and
intruders are fully immersed, they move at the velocity of the
small particles flowing at the same height as they do. This
makes the system closer to neutrally buoyant particles ad-
vected by a flow. Third, although two intruders not yet aligned
with the granular flow (transient stage) have a lateral drift
like in fluids, unlike particles sedimenting at low Reynolds
number, they change their relative position by aligning with
the flow and change their relative distance to reach a defined
distance that depends on the flow thickness. Moreover, in
the attracting regime at low flow thickness, intruders that are
initially some distance apart end up in contact in a very similar
way to the drafting and kissing observed at higher Reynolds
number in the DKT phenomenon. In the case of very thin
granular flows, the rear intruder tries to overtake the front
intruder by passing it on one side, and, from time to time, the
intruders lose contact, resembling the tumbling mechanism.
Intruders end up in contact only after a more or less extended
period of time. Finally, the alignment of the intruders in a
granular flow is analogous to the one observed for particles or
cyclists when flowing at higher Reynolds number. This highly
interesting aspect of the similarities and differences in fluid
and granular media certainly deserves further investigation.

This work also suggests that the interaction and alignment
of large particles in polydisperse flows should break the ho-
mogeneity of the flow and induce the spontaneous formation
of patterns, like trains of intruders or bands of large and small
particles aligned with the flow. Such internal flow organiza-
tions can be of major interest in natural granular flows or
industrial problems.
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