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Rotational inertia-induced glassy transition in chiral particle systems
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The dense active matter exhibits characteristics reminiscent of traditional glassy phenomena, yet the role
of rotational inertia in glass dynamics remains elusive. In this study, we investigate the glass dynamics of
chiral active particles influenced by rotational inertia. Rotational inertia endows exponential memory to particle
orientation, restricting its alteration and amplifying the effective persistence time. At lower spinning frequencies,
the diffusion coefficient exhibits a peak function relative to rotational inertia for shorter persistence times, while
it steadily increases with rotational inertia for longer persistence times. In the realm of high-frequency spinning,
the impact of rotational inertia on diffusion behavior becomes more pronounced, resulting in a nonmonotonic
and intricate relationship between the diffusion coefficient and rotational inertia. Consequently, the introduction
of rotational inertia significantly alters the glassy dynamics of chiral active particles, allowing for the control over
transitions between fluid and glassy states by modulating rotational inertia. Moreover, our findings indicate that
at a specific spinning temperature, there exists an optimal spinning frequency at which the diffusion coefficient
attains its maximum value.
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I. INTRODUCTION

Glasses, recognized as disordered solids with slow re-
laxation dynamics [1,2], have been extensively studied for
decades. In the past decade, it has become increasingly ap-
parent that phenomena associated with glassy dynamics are
also observable in dense active matter systems. Active forces
driving particle systems out of equilibrium have recently
been identified as key contributors to nonequilibrium glass
transitions, representing a novel form of dynamic arrest [1].
The manifestations of this slow dynamics, resembling su-
percooled fluids approaching an equilibrium glass transition,
include phenomena such as caging, dynamical slowing down,
nonexponential time correlation functions, and dynamic het-
erogeneity [2]. Remarkably, by increasing the density to large
values, self-propelled systems can reach a dynamically ar-
rested or glassy state, known as active glassy states, which
exhibit remarkable similarities to conventional passive ones
[3]. Observations of this phenomenon have been notably re-
ported in living cells and cell layers [4–6], synthetic colloidal
assemblies [7], granular matter [8], and various simulations
and theoretical studies [9–28]. The research efforts in compre-
hensively understanding active glassy states and their relation
to conventional passive counterparts have rapidly gained
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momentum, situated at the intersection of the broader fields
of active matter and glassy physics.

The existence of chirality in chiral active systems can
yield intriguing dynamic behaviors [29–33]. Examples of
these fascinating phenomena include active microrheology,
the Hall effect, and jamming within chiral fluids [29], as
well as odd diffusivity observed in chiral random motion
[30], and the nonreciprocal response of a two-dimensional
fluid exhibiting odd viscosity [31]. Debets and colleagues
[33] recently mapped out glassy dynamics in chiral fluids,
unveiling a complex dynamic behavior when the chiral fluid
meets glassy conditions, compared to a standard linear active
fluid like ordinary active Brownian particles. These dynamics
were found to be overdamped, however, for macroscopic or
microparticles moving in a gas, inertial effects come into
play, rendering the dynamics underdamped. Rotational inertia,
specifically, has been discerned in recent studies to signifi-
cantly steer the system’s dynamics, for instance, boosting the
correlation length of the spatial velocity correlations within
the dense cluster [34–38]. The appearance of collective phe-
nomena like motility-induced phase separation and spatial
velocity correlations are strong indications of an increase in
rotational persistence which is enhanced by rotational inertia
[38]. The influence of rotational inertia on nonequilibrium
glass dynamics of chiral active matter is an unsolved mystery
that begs exploration, thereby making our research on chiral
active matter’s glass dynamics influenced by rotational inertia.

In this study, we aim to address this pivotal question related
to a chiral active system with rotational inertia. Rotational
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inertia provides an exponential memory to the particle ori-
entation, hindering its change and prolonging the effective
persistence time. The interplay between rotational inertia and
the particle persistence enriches the dynamics of the sys-
tem. When rotational inertia governs the dynamics during
high-frequency spinning, a continuous increase in rotational
inertia causes the diffusion coefficient to initially rise from
an extremely small value to a peak, then to plummet to a
trough, ascend to another peak, and ultimately tend towards
zero. In contrast, for lower-frequency spinning scenarios, the
diffusion coefficient is peaked function of rotational inertia
for small persistence time and increases with rotational inertia
for large persistence time. Hence, by manipulating rotational
inertia, one can facilitate transitions, even multiple transitions-
between the fluid and glassy states in the system. Given a
constant spinning temperature, there is an appropriate spin-
ning frequency at which the diffusion coefficient reaches its
maximum. Our findings are essential for understanding the
glassy dynamics of chiral active matter with rotational inertia
and can be applied to future experiments aiming to observe
this nontrivial dynamics.

II. MODEL AND METHODS

We consider a two-dimensional Kob-Andersen mixture,
which comprises self-propelled particles A, B in the ratio
65 : 35. These particles are accommodated within a two-
dimensional box of size L × L, operating under periodic
boundary conditions. Each particle’s dynamics are defined by
the position of its center ri ≡ (xi, yi ) and the orientation of
its polar axis ni ≡ (cos θi(t ), sin θi(t )), denoted as θi(t ). The
dynamics of particle i comply with the overdamped Langevin
equation,

dri

dt
= v0ni + μFi +

√
2D0ζi(t ), (1)

where v0 represents the self-propulsion speed and μ denotes
the mobility,

J
d2θi

dt2
= −γr

dθi

dt
+ ω + γr

√
2Drξi(t ), (2)

where J is rotational inertia and γr is the rotational friction co-
efficient. The constants D0 and Dr represent the translational
and rotational diffusion coefficients, respectively. ζi(t ) and
ξi(t ) are unit-variance Gaussian white-noise random numbers
with zero average. In most cases, we disregard translational
inertia primarily because our main focus is on studying the
impact of rotational inertia on the dynamics of spinning par-
ticle systems. Additionally, in certain scenarios, such as when
the particle is characterized by a small mass and large volume,
translational inertia becomes insignificant. ω is the spinning
frequency. We can define a spinning temperature [33] Tω =
v2

0/2ω, which represents a measure for the amount of energy
that is dissipated by a single particle during on circle motion.
We define the persistent time of a single-trajectory τp = 1/Dr ,
the typical rotational inertial time τr = J/γr , and the spinning
period τω = 2π/ω.

The term Fi represents the force contribution due to steric
interactions between particles. This interaction force is given
by Fi = −∑

j �=i ∇iVαβ (ri j ), derived from a quasihard sphere

power law potential [33,39] Vαβ (r) = 4εαβ ( σαβ

r )36. The inter-
action parameters are as follows: εAA = 1, εAB = 1.5, εBB =
0.5, σAA = 1, σAB = 0.8, and σBB = 0.88. Here we select pa-
rameters typical of the standard Kob-Andersen mixture, which
facilitates the simulation of glassy states and glass transitions.
The inclusion of particles with different sizes aims to prevent
crystallization of the system at low temperatures and high
densities. We utilize reduced units, where σAA, εAA, εAA/kB,
σ 2

AA/μεAA denote the units of length, energy, temperature, and
time, respectively.

To investigate the dynamic behavior of the system, we
define the time-dependent mean-square displacement (MSD)
as follows:

〈�r2(t )〉 = 〈|ri(t ) − ri(0)|2〉, (3)

where the brackets indicate an ensemble average performed
under steady-state conditions. We obtain the longtime dif-
fusion coefficient DL by assuming the longtime behavior as
DL = limt→∞ 〈�r2(t )〉

4t .
To better understand the glassy dynamics of our model,

we also calculate the self-intermediate scattering function
Fs(km, t ) = 〈e−ik·r j (0)eik·r j (t )〉, where the wave number km

corresponds to the main peak of the structure factor. The
self-intermediate scattering function represents the probabil-
ity distribution of finding a particle at a certain position after a
time delay t , given its initial position. By analyzing the decay
of Fs(km, t ) over time, we can extract valuable information
about the structural relaxation, diffusion processes, and col-
lective motion of particles in various materials.

Dynamical heterogeneity is a notable characteristic of glass
systems. We typically utilize non-Gaussian parameter analysis
to examine the heterogeneity of supercooled liquid dynamics.
In two dimensions, it is defined as [40,41]

α2(t ) = 〈�r4(t )〉
2〈�r2(t )〉2

− 1. (4)

If the particles undergo normal homogeneous diffusion, then
the displacement distributions are Gaussian such that α2(t ) =
0. If the distributions reveal tails and are much wider than
expected for a Gaussian distribution, then α2(t ) > 0, indicat-
ing that the system is dynamically heterogeneous. Conversely,
α2(t ) < 0 generally indicates that a population of particles
performs cooperative directional motion.

It should be noted that in the case of dynamically arrested
states, diffusion coefficients cannot be well computed as the
particle motion in the system is not purely diffusive. However,
the effective diffusion behavior of particles in these states can
still be depicted using the long-time diffusion constant. The
long-time diffusion constant DL, combined with MSD, the
self-intermediate scattering function, and the non-Gaussian
parameter, is a common rule-of-thumb in the field for de-
termining whether the system is in a glassy or dynamically
arrested state [16,33]. In our study, we observed that if DL falls
below 10−4, it serves as an indicator that the system operates
in a glassy or dynamically arrested state. To describe the den-
sity of particles in the box, we use the particle number density
ρ = N/L2. Here we fixed ρ = 1.2, which is in the regime
where the system shows dynamical arrest at low temperatures.
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FIG. 1. The longtime diffusion coefficient DL (a) as a function of ωτp for different τr and (b, c) as a function of τr for different ωτp.

Equations (1) and (2) are integrated utilizing the stochastic
Euler algorithm. The integration time step is chosen to be 10−4

and the total integration time is 105. The system is operated
for a substantial duration, typically between 500 and 104, to
prevent any aging effects, after which the tracking of the par-
ticles is carried out over time. We considered 50 realizations
to improve the accuracy and minimize statistical errors. For
every simulation run, particle positions are initialized using a
uniform random distribution within the box, and orientations
are randomly chosen over the interval [0, 2π ]. Unless other-
wise specified, our simulations utilize the following parameter
sets: μ = 1, γr = 1.0, and N = 1000. We set Tω = 4, ensuring
that the system exhibits moderately supercooled behavior. The
presented results have shown robustness when these parame-
ters are reasonably altered.

III. RESULTS AND DISCUSSION

Initially, we evaluate the situation in which self-propulsion
overwhelmingly surpasses thermal fluctuations, thus permit-
ting us to disregard translational diffusion (D0 = 0). In this
case, we discuss the influence of the moment of inertia on
the diffusion behavior of particles in the absence of interac-
tion between them. For small rotational inertia, the longtime
diffusion coefficient of chiral active particles asymptotically
approaches [34,36,37]

DL = v2
0Dr

2
(
D2

r + ω2
)(

1 + Dr

γr
J

)
+ O(J2), (5)

which predominantly grows in proportion to J . The asymp-
totic behavior of the longtime diffusion coefficient for large
rotational inertia is [34,36,37]

DL ∼
{

v2
0

√
π

8Drγr

√
J ω = 0,

0 ω �= 0.
(6)

When ω �= 0, DL asymptotically approaches zero due to the
impediment of diffusion by systematic circular motion. This
occurrence is due to the substantial moment of inertia that
confines the particle to a circular path. In contrast, when ω =
0, the diffusion coefficient exhibits a monotonic increase with
the growth of the moment of inertia. Therefore, for ω �= 0,
the diffusion behavior displays nonmonotonic alterations as J
increases.

Rotational inertia provides an exponential memory to the
particle orientation, hindering its change and, in first approx-
imation, increasing the effective persistence time, τp → τ ∗

p ,
from the overdamped value τp to a larger value depending on
J/γr . Following Ref. [36], the analytical expression for τ ∗

p can
be calculated as

τ ∗
p ∼

{
τp + τr τr � τp,

τp
√

τr τr � τp.
(7)

Rotational inertia plays a crucial role in the complex dy-
namics of chiral particles. Therefore, it is of considerable
interest to investigate its impact on the glass dynamics of inter-
acting chiral Brownian particles. According to Ref. [33], the
dynamics can be divided into three regimes in terms of the ef-
fective persistence time τ ∗

p . (I) In the small persistence regime,
where the local environment of particles primarily acts as an
effective confining potential. (II) In the intermediate persis-
tence regime where the hammering mechanism plays a crucial
role. The hammering mechanism refers to the expectation
that, for a sufficiently long duration and spinning frequency,
particles will undergo prolonged periods of uninterrupted
back-and-forth motion inside their cage, systematically col-
liding with the same particle. Following repeated collisions,
the cage of a particle is sufficiently remodeled, allowing the
particle to break out and migrate through the system. (III)
In the large persistence regime, in which collective motion
dominates the dynamics.

Next, we will concentrate on two prototypical scenarios:
(1) High-frequency spinning (ω = 200) and the spinning ra-
dius (R = v0/ω = 0.2) is less than the particle radius; (2)
Low-frequency spinning (ω = 10) and the spin radius (R =
0.89) is larger than the particle radius. In the subsequent
analysis, we will concentrate on investigating the impact of
rotational inertia on the glassy dynamics, by varying rotational
inertial time (τr), the persistence time (τp), and the spinning
frequency (ω).

Initially, we will assess the scenario where ω is set to 200,
signifying a case distinguished by an especially pronounced
resonant effect. Figure 1(a) delineates the longtime diffusion
coefficient DL as a function of ωτp under varying τr parame-
ters. In scenarios where rotational inertia is absent (τr = 0),
the obtained curve exhibits two peaks along with a valley,
reminiscent of the findings of Ref. [33] and highlighting the
complex dynamics. With the introduction of rotational iner-
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FIG. 2. (a) Mean-square displacement as a function of time t for different τr . (b) The self-intermediate scattering function of the majority
A species as a function of t for different τr . (c) The non-Gaussian parameter as a function of time t for different τr . The height of the peak
in α2(t ) is an indicator for dynamical heterogeneity, while a value of zero corresponds to diffusive motion. Here, τr = 0.0001, 0.05, 1.0, 50.0
correspond to points a, b, c, d in Fig. 1(b), respectively. The other parameters are ωτp = 0.2 and ω = 200.

tia, significant changes are observed in the system dynamics.
As τr progresses from zero, the location of the first peak
shifts towards smaller ωτp values. This phenomenon can be
attributed to the fact that, in the small persistence regime,
particles localized in the vicinity can mimic a harmonic trap,
with the peak position materializing near ωτ ∗

p = 1. Note that
the position of this peak and its corresponding explanation
were provided in previous work [33] with τr = 0. For a fixed
value of τ ∗

p , it is apparent from Eq. (7) that an increase in τr

results in a decrease of τp. Consequently, the peak position
shifts towards smaller ωτp values. Analogously, the valley
position also undergoes a similar shift. In the large persis-
tence regime τp � τr (i.e., ωτp > 100), Eq. (5) infers that
the contribution of rotational inertia to diffusion is negligi-
ble, effectively rendering rotational inertia inconsequential to
particle diffusion.

The longtime diffusion coefficient DL versus τr is demon-
strated in Figs. 1(b) and 1(c) for various ωτp. First, we
examine the case of the small persistence (e.g., ωτp = 0.2),
where two peaks and a valley are noted on the curve, mirroring
the relationship between DL and ωτp at τr = 0 as shown in
Fig. 1(a). When τr increases from zero, DL initially rises to
its apex, then decreases to its nadir, before steadily climbing
again, ultimately approaching zero. This is explicated as fol-
lows. In a situation where τr is very small, with τ ∗

p < τω, the
nearest-neighbor distance appears entirely arbitrary, i.e., the
particle undergoes random collisions with all neighbors. Here,
the local environment chiefly functions as an effective con-
finement potential, leading to the generation of the first peak.
Conversely, when τ ∗

p > τω, particles are likely to undertake
full circular or elliptical motion within their cages, leading to
a decrease in DL. Importantly, DL reaches its minimal value at
approximately τ ∗

p ∼ 2τω. When τ ∗
p > 2τω, repeated collisions

sufficiently remodel the particle’s cage, enabling the particle
to break out and permeate the material, hence an increase in
DL once more, reaching its zenith. Finally, when τ ∗

p � τω, the
nearest-neighbor distance becomes very periodic, indicating
that the particle collides, moves away, then collides again and
so on. Remarkably, in the case of high spinning frequencies
(e.g., ω = 200), DL tends towards zero and displays an ab-
sorbing state [33,42].

The dynamic activities at characteristic points a, b, c, and
d on the curve are detailed in Fig. 2. We observed that at
points a and c, the relaxation time of Fs(km, t ) is long and the
MSD widens over time, resulting in a plateau. The presence
of high peaks in the non-Gaussian parameter indicates sig-
nificant heterogeneity within the system. These observations
suggests that the system behaves as a frozen system, similar to
glass. Contrastingly, at points b and d , the relaxation time of
Fs(km, t ) is short, the MSD scales linearly over time, and the
peak in α2(t ) disappears, suggesting a diffusive system similar
to fluid. Therefore, it is possible to interchange between the
fluid and glass state by adjusting rotational inertia. An observ-
able oscillation is noticeable in both the MSD and Fs(km, t ) for
the case of τr = 50. In this case, τ ∗

p > 2τω, particles progress
from ballistic motion to performing a full circular or elliptical
motion within their cages. This movement pattern triggers a
time-dependent oscillation in the MSD. Following subsequent
repeated collisions that significantly alter the structure of these
cages, the particles are able to escape, leading to a linear
increase in the MSD over time.

As ωτp progressively increases, the positions of both the
first peak and the valley shift towards smaller τr . This shift
occurs because an increase in τp, under a fixed value of
τ ∗

p , subsequently results in a decrease in τr . When ωτp is
exceptionally high (e.g., ωτp = 200) shown in Fig. 1(c), the

(a) (b)

FIG. 3. Example velocity fields of chiral active particles at ωτp =
200. (a) τr = 0.0001. (b) τr = 50. In both cases, the motion can be
observed to transition into a collective, vortexlike pattern.
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FIG. 4. The velocity autocorrelation function Cvv (t ) as a function
of time t for different τr at ωτp = 0.2 and ω = 200. Our observa-
tions reveal the emergence of oscillations, corresponding to a more
pronounced circular particle motion inside the cage. This tendency
becomes particularly evident when τr is increased.

dynamics of the system are dominated by the collective mo-
tion of particles. The velocity fields depicted in Figs. 3(a) and
3(b) demonstrate that the motion becomes collective and vor-
texlike at ωτp = 200. In particular, if τp significantly exceeds
τr , the influence of the moment of inertia on the system’s
dynamics becomes negligible, causing both the first peak and
the valley to disappear. Notably, when τr < 1, DL seems to
remain independent of τr . While it is not illustrated in the
figure, it should be specified that DL approaches 0 when τr

tends toward infinity. Within systems of nonchiral particles,
the stringlike cooperative motion can be observed at temper-
atures well above the glass transition [43,44]. In this case,
a void takes the form of a quasivoid consisting of a few
neighboring free volumes and is transported by the stringlike
motions it induces. However, in our system of chiral particles,
this stringlike cooperative motion is difficult to observe in
the glass phase due to the rapid rotation of particles. What
is discernible within our system is a collective swirlinglike
motion. In an attempt to quantify this collective swirlinglike
motion, we have examined the normalized velocity autocorre-
lation function, represented as Cvv (t ) = 〈ṙi(0)ṙi(t )〉/〈ṙ2

i 〉. The
normalized velocity autocorrelation function Cvv (t ) for char-
acteristic points a, b, c, and d in Fig. 1(b) is plotted in Fig. 4. In

(a) (b)

FIG. 6. Example velocity fields of chiral active particles at ω =
10 and τr = 0. (a) ωτp = 0.1. (b) ωτp = 100. The motion can be seen
to become more collective and vortexlike at ωτp = 100.

alignment with the increasingly circular trajectories, we notice
the emergence of oscillations. Moreover, the lifespan of these
oscillations extends as τr .

Next, we discuss the glassy dynamics under conditions of
low-frequency spinning (e.g., ω = 10). Figure 5(a) presents
DL as a function of ωτp for different τr . For τr = 0, DL

monotonically increases with ωτp, and in the intermediate
region, there is a plateau. For extremely small values of ωτp,
the particle movement is noncollective and random [shown in
Fig. 6(a)]. In the intermediate persistence regime, the valley
disappears. This is because the hammering effect is weak at
low frequency. In this case, the spin radius (R = 0.89) is larger
than the particle radius. Therefore, particles seldom periodi-
cally collide with the surrounding particles in their cage (the
hammering effect), but rather predominantly drive the sur-
rounding particles to rotate together (vortexlike motion). The
former inhibits diffusion, while the latter promotes diffusion.
These two factors compete with each other. In the interme-
diate region, they are evenly matched, leading to a plateau
appears in the curve. When ωτp > 100, vortexlike motion
completely occupies the system’s dynamics, thus the diffusiv-
ity increases significantly. Compared with an absorbing state
caused by collective motion (large ωτp) at high-frequency
spinning (e.g., ω = 200), the collective motion here leads to
an active state. The diffusivity increases significantly when
ωτp > 100, because the particle motion becomes more col-
lective and vortexlike [shown in Fig. 6(b)] when ω is small

FIG. 5. The longtime diffusion coefficient DL (a) as a function of ωτp for different τr and (b, c) as a function of τr for different ωτp.
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FIG. 7. (a) Mean-square displacement as a function of time t
for different τr . (b) The self-intermediate scattering function of the
majority A species as a function of t for different τr . Here, τr =
0, 0.01, 1, correspond to points a, b, c in Fig. 5(a), respectively. The
other parameters are ωτp = 0.1 and ω = 10.

enough and τp is large enough. A more detailed discussion
refers to Ref. [33].

When ωτp > 1, rotational inertia exerts minimal influence
on the diffusion behavior of particles. Conversely, when ωτp

is notably low, rotational inertia significantly impacts particle
dynamics. Curves in Fig. 7 shows this dynamics correspond-
ing to points a, b, c in Fig. 5(a). The relaxation time of
Fs(km, t ) elongates, and the MSD broadens over time, lead-
ing to the formation of the plateau at point a (τr = 0). This
suggests the resemblance to a frozen system. Contrarily, at
the point c (τr = 1.0), the relaxation time of Fs(km, t ) is short,
and the MSD exhibits a linear increase over time, implying a
diffusion system akin to a fluid.

Figures 5(b) and 5(c) illustrate DL as a function of τr

for various ωτp values, respectively. For lower ωτp, DL is a
peaked function of τr . However, as ωτp increases, the curve’s
peaks gradually disappear, resulting in DL becoming a mono-
tonically increasing function of τr . Notably, distinct from the
high-frequency scenario (ω = 200) where the diffusion co-
efficient approaches zero when τr is exceedingly large, the
diffusion coefficient notably increases under low frequencies
(ω = 10). This increase is attributed to the existence of a
transition from what is termed as an “active” to an “absorb-
ing” state when τ ∗

p → ∞ upon increasing ω, as described in
Refs. [33,42].

FIG. 8. Phase diagram of the longtime diffusion coefficient DL

in the τr − ωτp representation. (a) ω = 200. (b) ω = 10. The back-
ground represents the value of log10 DL according to the color bar on
the right.

The dynamics behavior of system can be demonstrated
clearly in a phase diagram as shown in Fig. 8. We designate
the parameter region with DL < 10−4 as the glass region,
where the dynamically arrested state is evidenced by a long
relaxation time for Fs(km, t ) and a lengthened plateau in MSD
over time. We find that the system exhibits a greater com-
plexity under high frequency conditions [Figs. 8(a)]. In the
scenario of high frequency, the system attains a glassy state
(illustrated by the blue region) when both τr and ωτp are
significantly small or moderate values. In contrast, under low-
frequency conditions, the system only transitions to a glassy
state when both τr and ωτp are notably small. Therefore,
it is compellingly evident that the transformation from fluid
to glassy states can be achieved by manipulating rotational
inertia.

Figure 9 illustrates DL as a function of ω for several
circumstances. Observations reveal an optimal ω at which
DL reaches its maximum in all instances. Here, the spinning
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FIG. 9. The longtime diffusion coefficient DL as a function of ω for different τr at (a) τp = 0.01, (b) τp = 0.1, and (c) τp = 10.

temperature Tω = v2
0/ω in our study is fixed at 4.0, meaning

the self-propulsion speed v0 correlates with ω. When ω ap-
proaches 0, v0 also tends to zero, thus the self-propulsion is
removed. In this instance, as we have neglected translational
diffusion, the longtime diffusion coefficient tends to zero. Al-
ternatively, as ω approaches infinity, the self-propulsion speed
increases significantly. However, due to the exceedingly rapid
rotations, the particles barely move, leading to an extremely
low diffusion coefficient. Therefore, DL is a peaked function
of ω. Consistent behavior is observed in other variables such
as the MSD, the self-intermediate scattering function, and the
non-Gaussian parameter, for instance, with τr = 1.0 as shown
in Fig. 9(a). Figures 10(a), 10(b), and 10(c) reveal that at
ω = 200, the relaxation time of Fs(km, t ) is prolonged, the
MSD increases over time, and a high peak appears in the
non-Gaussian parameter. These observations suggest a system
akin to a frozen state. However, at ω = 40, the relaxation time
of Fs(km, t ) becomes brief, the MSD scales linearly with time,
and the peak in α2(t ) vanishes, indicative of a system under-
going fluidlike diffusion. Therefore, by adjusting the spinning
frequency ω, we can manipulate the transition between the
fluid and glass state.

We have also probed the effect of rotational inertia on
the DL − ω relationship for different τp. In certain situations
where τp is exceptionally high (e.g., τp = 10), as shown in
Fig. 9(c), the dynamics are dominated by τp, resulting in
a negligible impact from rotational inertia on the DL − ω

association, as evidenced by the overlap of all curves. This
is because when τp � τr , the dynamic contribution emanat-
ing from rotational inertia can be dismissed, according to
Eq. (7). When τp is moderate (e.g., τp = 0.1), the persistence
from self-propulsion competes with the persistence from rota-
tional inertia. Rotational inertia predominates at low and high
frequencies, whereas self-propulsion is more pronounced at
intermediate frequencies. As a result, rotational inertia does
not significantly affect diffusion at intermediate frequencies
but profoundly influences it at low and high frequencies.
Specifically, the diffusion coefficient sees an increment with
the rise in rotational inertia at both these frequencies. Con-
sequently, an increase in rotational inertia flattens the curve
and makes the peak characteristics less accentuated. However,
where τp is remarkably small (e.g., τp = 0.01), the dynamics
are heavily influenced by rotational inertia, resulting in a
significant effect on the DL − ω relationship. In such cases,
an increase in rotational inertia shifts the peak of the curve
towards the lower frequencies.

Figure 11 illustrates a comparison of the diffusion behavior
of particles with and without chirality. For nonspinning par-
ticles, the diffusion coefficient, DL, increases monotonically
with the persistence time, τp. Alternatively, spinning particles
demonstrate a nonmonotonic relationship between DL and
τp. The impact of chirality on glass dynamics can be cate-
gorized into three phases based on the competition between
the effective persistence time, τ ∗, and the spin period, τω. In

FIG. 10. (a) Mean-square displacement as a function of time t for different ω. (b) The self-intermediate scattering function of the majority
A species as a function of t for different ω. (c) The non-Gaussian parameter as a function of time t for different different ω. The height of the
peak in α2(t ) is an indicator for dynamical heterogeneity. A negative non-Gaussian parameter indicates the collective directional movement of
particles in the system. The other parameters are τp = 0.01 and τr = 0.1.
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FIG. 11. The longtime diffusion coefficient DL as a function of
τp with (ω = 200) and without (ω = 0) chiral motion at τr = 0.01.
When ω is zero, we straightforwardly set v0 = 4, without defining a
specific spinning temperature.

low persistence regimes where τ ∗ < τω, particles experience
random collisions with all neighboring particles. For interme-
diate persistence regimes defined by τω < τ ∗ < 2τω, particles
can complete a full circular or elliptical motion within their
cages. Last, in high persistence regimes where τ ∗ � τω, the
nearest-neighbor distance exhibits periodicity, suggesting that
a particle collides, then drifts away, and repeats this process.
In conclusion, the spinning period profoundly influences the
glass dynamic behavior of the system.

In the preceding section, our focus was primarily on the
two representative frequencies of ω = 10 and 200 at Tw = 4,
corresponding, respectively, to v0 = 4

√
5 and 40. In these

scenarios, self-propulsion significantly supersedes thermal
fluctuations, thus allowing us to discount translational dif-
fusion. Regardless, studying the influence of translational
diffusion on the dynamics of glass-forming systems continues
to be of great importance. Figure 12(a) presents the longtime
diffusion coefficient DL as a function of τr for varying D0 at
ω = 200 and ωτp = 0.2. An intuitive result is observed: the
longtime diffusion coefficient DL increases in line with the
growth of translational diffusion D0. However, it is important
to note that near the peak of the curves, DL undergoes minimal
changes irrespective of fluctuations in D0. It can also be in-
ferred that by modulating D0, we can effectuate the transition
from a liquid state to a glass state. For instance, when τr is kept
constant at 1, a decrease in D0 from 2.0 to 0 triggers a tran-
sition from the liquid state to the glass state. This transition
can be described by the self-intermediate scattering function
Fs(km, t ), as portrayed in Fig. 12(b). Furthermore, when the
value of D0 is adequately large, signifying the dominance of
translational diffusion dynamics, DL is almost independent
of τr .

Finally, we briefly discuss the special collective behav-
iors of chiral active particles related to our system. As we
know, in systems of chiral active particles, a nonequilibrium
strongly hyperuniform fluid state [42,45] emerges with large
local density fluctuations. However, in our system, even in the
absence of noise and when the system is in a glassy state, a
hyperuniform state was not observed. We propose two

FIG. 12. (a) Longtime diffusion coefficient DL as a function of
τr for various values of D0. (b) Self-intermediate scattering function
of the majority A species as a function of time t for points a, b, and
c as outlined in panel (a). The other parameters are maintained at
ω = 200 and ωτp = 0.2.

possible reasons for this: first, unlike systems in which hy-
peruniform states have previously been identified, our system
is dense (ρ = 1.2), and the circular motion of the particles
is constantly influenced by neighboring particles; second, the
particles in our system vary in size, which is detrimental
to the development of a hyperuniform state. In addition, in
systems of chiral active particles, the chirality can induce the
formation of dynamic clusters, which interrupt conventional
motility-induced phase separation [46]. For our dense system,
if the persistence time is short, chiral particles cannot form
clusters; instead, they are trapped in effective confining po-
tentials, leading the system to exhibit a glassy state. If the
persistence time is intermediate, then chiral particles form
very small clusters, and particles undergo prolonged periods
of uninterrupted back-and-forth motion inside their cages.
This can lead the system to transition from a glassy state to a
liquid state. When the persistence time is long, chiral particles
are able to form large clusters, with particle motion becoming
more collective and vortexlike, resulting in the system being
in a liquid state.

IV. CONCLUSION AND OUTLOOK

In the previous study [33], where rotational inertia was not
considered, chiral glassy fluids displayed an extraordinarily
intricate dynamical phenomenology characterized by a
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nonmonotonic, reentrant, and significantly persistent regime.
This complexity could be elucidated through the introduction
of a hammering mechanism. In our current investigation, we
delved into the dynamics of glass formation in chiral active
particles when subjected to rotational inertia. We discov-
ered that rotational inertia introduces an exponential memory
to particle orientation, exerting a significant influence on
the glassy dynamics. (1) For lower-frequency spinning (e.g.,
ω = 10), the diffusion coefficient exhibits a peak function
in relation to rotational inertia for shorter persistence times,
while it shows a monotonic increase with rotational inertia
for longer persistence times. (2) For high-frequency spinning
(e.g., ω = 200), the impact of rotational inertia on diffusion
behavior becomes more pronounced, resulting in a nonmono-
tonic complex relationship between the diffusion coefficient
and rotational inertia. In this regime, we observe phenomena
such as two peaks and a valley in the DL − τr curve for low
persistence, allowing the diffusion coefficient to be adjusted
between its apex and nadir values by altering rotational inertia.
As the persistence time τp increases, both the first peak and the
valley in the DL − τr curve shift towards lower τr . Conversely,
when the persistent time τp is substantially large, the peak and
the valley vanish, rendering the diffusion coefficient seem-
ingly indifferent to τr . Skillful adjustments to rotational inertia
thus enable precise control over transitions between fluid and
glassy states. Our research also unveiled the existence of an
optimal spinning frequency at which the diffusion coefficient
peaks. Furthermore, collective motion leads to an active state
for low-frequency spinning and an absorbing state for high-
frequency spinning.

Our findings provide substantial insights into understand-
ing the glassy dynamics of chiral active matter influenced
by rotational inertia. These insights hold promise for prac-
tical applications in future experimental designs aimed at
observing such unique dynamics. Notably, these effects can
be empirically corroborated in vibrated granular particles, as-
suming systematic alterations of mass and moment of inertia.
Moreover, our system can manifest in various experimental
frameworks, including macroscopic examinations of robotic
or biological particles, or mesoscopic observations of self-
propelled objects maneuvering in low-viscosity media like
complex plasma. Remarkably, in dusty plasmas, particles ex-
hibit inertia and engage in chiral dynamics within a magnetic
field [47]. Additionally, extending our model to include obsta-
cles may reveal how these obstacles influence the collective
behavior of chiral particles. Future studies could intriguingly
investigate the transitions of mechanisms, such as ratchets or
gears, from the fluid to the glassy state and back to liquid
within chiral fluids.
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