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Rheology of granular particles immersed in a molecular gas under uniform shear flow
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Non-Newtonian transport properties of a dilute gas of inelastic hard spheres immersed in a molecular gas are
determined. We assume that the granular gas is sufficiently rarefied, and hence the state of the molecular gas is
not disturbed by the presence of the solid particles. In this situation, one can treat the molecular gas as a bath
(or thermostat) of elastic hard spheres at a given temperature. Moreover, in spite of the fact that the number
density of grains is quite small, we take into account their inelastic collisions among themselves in its kinetic
equation. The system (granular gas plus a bath of elastic hard spheres) is subjected to a simple (or uniform)
shear flow. In the low-density regime, the rheological properties of the granular gas are determined by solving the
Boltzmann kinetic equation by means of Grad’s moment method. These properties turn out to be highly nonlinear
functions of the shear rate and the remaining parameters of the system. Our results show that the kinetic granular
temperature and the non-Newtonian viscosity present a discontinuous shear thickening effect for sufficiently high
values of the mass ratio m/mg (m and mg being the mass of grains and gas particles, respectively). This effect
becomes more pronounced as the mass ratio m/mg increases. In particular, in the Brownian limit (m/mg → ∞)
the expressions of the non-Newtonian transport properties derived here are consistent with those previously
obtained by considering a coarse-grained approach where the effect of gas phase on grains is through an effective
force. Theoretical results are compared against computer simulations, showing an excellent agreement.
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I. INTRODUCTION

Understanding the flow of solid particles immersed in an
interstitial fluid is likely one of the most challenging open
problems in granular flows. Among the different types of
multiphase flows, the so-called particle-laden suspensions [1]
(where dilute particles flow in a carrier fluid) constitute one
of the most studied problems in the granular literature. When
collisions (which are generally assumed to be nearly instan-
taneous) play a relevant role in such suspensions, the kinetic
theory conveniently adapted to account for the dissipative dy-
namics of grains can be considered as a useful tool to analyze
the behavior of these sorts of granular suspensions.

However, due to the technical difficulties embodied in the
description of two or more phases, a coarse-grained approach
is usually adopted [2–5]. In this approach, the effect of the sur-
rounding gas on solid particles is taken into account through
an effective fluid-solid force. While in some works [3,6,7]
the gas-solid force is simply proportional to the relative mean
flow velocity between the solid and gas phases, in other works
the force also incorporates a term proportional to the velocity
particle (Stokes linear drag law) [8–15] plus a Langevin-like
stochastic term [16]. While the Stokes drag force term ac-
counts for the energy dissipated by grains due to their friction
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on the viscous gas, the stochastic term takes into account the
energy transferred to grains due to their interactions with the
background particles. When both terms (viscous drag force
plus Langevin-like term) are considered, a Fokker-Planck
term is incorporated in the corresponding kinetic equation.

For small spatial gradients, the above suspension model
[16] has been solved by means of the Chapman-Enskog
method [17] to determine the Navier-Stokes transport co-
efficients in terms of the coefficient of restitution and the
parameters of the system [16,18–20]. The knowledge of the
transport coefficients has allowed us to assess the impact
of the surrounding gas on the dynamic properties of grains.
Beyond the Navier-Stokes regime, these sorts of effective
models have also been employed to obtain the non-Newtonian
transport properties in (uniform) sheared granular suspensions
[8,9,11–13,15,21–27]. Theoretical and computational results
have clearly shown the existence in sheared gas-solid flows of
the so-called discontinuous shear thickening (DST), namely,
the non-Newtonian shear viscosity of the suspension drasti-
cally increases with increasing the shear rate.

Although the above suspension models (which are based
on a Markovian form of the Langevin equation) yield good
agreement with computer simulations [28–31], a recent work
[32] has questioned the use of the standard Langevin equa-
tion in sheared suspensions. In fact, the main conclusion
of this paper [32] is that the usual Markovian Langevin
equation widely employed in the granular literature is valid
only in the limit of extremely weak shear rates compared to
the effective vibrational temperature of the bath. For high-
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shear rates (where the DST effect appears), the starting point
should be a (generalized) non-Markovian Langevin equa-
tion related with a nontrivial fluctuation-dissipation theorem
[32]. It is important to remark that this assessment has been
achieved from first principles, and hence there is no doubt as
to the robustness of this conclusion. Thus, to shed light on
this controversy and justify the conditions under which the
conventional Langevin equation in the theory of Brownian
motion of sheared granular suspensions can be used, it would
be convenient to propose a suspension model in which the real
collisions between grains and particles of the molecular gas
were considered. A possibility would be to start from a set
of two coupled kinetic equations for the one-particle velocity
distribution functions of the solid and gas phases. However,
the determination of transport properties of the solid particles
from this suspension model would be in general a quite intri-
cate task since in particular the different phases evolve over
quite different spatial and temporal scales.

To overcome the above technical difficulties, a suspension
model inspired by a paper by Biben et al. [33] has been
recently proposed [34]. In this model, one assumes first that
the concentration of the granular particles (or “granular gas”)
is much smaller than that of the molecular gas, and so one
can assume that the state of the latter is not perturbed by the
presence of grains. This assumption can be justified in the
case of particle-laden suspensions where dilute particles are
immersed in a carried fluid (for instance, fine aerosol particles
in air). Under these conditions, the background (molecular)
gas can be treated as a bath or thermostat at a certain tem-
perature Tg. Needless to say, this suspension model (granular
particles immersed in a molecular gas) can be considered as
the tracer limit of a binary mixture; the grains of course are
the defect species of the mixture. In addition, although the
number density of grains is very small, one has to take into
account not only the elastic collisions between solid and gas
particles in the kinetic equation of grains, but also the inelastic
collisions among the grains themselves. Thus, in contrast to
the coarse-grained approaches [2–4,16,35], two new input pa-
rameters are introduced in this suspension model: the diameter
σ/σg and mass m/mg ratios. Here, σg and mg are the diameter
and mass of the particles of the molecular gas, respectively,
while σ and m are the diameter and mass of the solid particles,
respectively. In fact, as shown in Ref. [34], the expressions
of the Navier-Stokes transport coefficients derived from this
collisional model reduce to those previously obtained from
the coarse-grained approach [36] when the grains are much
heavier than the particles of the molecular gas (Brownian limit
m/mg → ∞).

The goal of this paper is to determine the non-Newtonian
transport properties of a granular suspension under uniform
shear flow (USF). Here, in contrast to previous attempts
[8,9,11–13,15,21–23,25–27] carried out by starting from the
Stokes and/or Langevin suspension models, we will start from
the collisional model proposed in Ref. [34] where the colli-
sions between the solid and molecular gas particles are taken
into account. In the case of a binary mixture constituted by a
granular gas thermostated by a molecular gas of elastic hard
spheres, the USF state is characterized by constant number
densities for solid and gas particles, a uniform temperature,
and a (common) linear velocity profile Ug,x = Ux = ay, where

a is the constant shear rate. Here, Ug and U are the mean flow
velocities of the molecular and granular gases, respectively.

In the low-density regime, the distribution function
fg(r, v; t ) of the molecular gas verifies the nonlinear Boltz-
mann equation for hard spheres. Since we are interested in a
steady state, an external thermostat force must be introduced
to compensate for the viscous heating effect produced by the
shear field in the molecular gas. Here, as usual in nonequi-
librium molecular-dynamics simulations [37], we introduce
a “drag” force of the form Fg = −mgξV, where mg is the
mass of a particle of the molecular gas, and V = v − U is the
peculiar velocity. This sort of thermostat is usually referred
to as the Gaussian thermostat. The quantity ξ is a function
of the shear rate adjusted so as to keep the temperature Tg

constant. It is important to remark that only in the special
case of Maxwell molecules [38] is there an exact equivalence
between the results derived with and without the Gaussian
thermostat [39]. Regarding the distribution function f (r, v; t )
of the granular gas, its time evolution involves the Boltzmann
J[ f , f ] and Boltzmann-Lorentz JBL[ f , fg] collision operators.
While the first nonlinear operator J[ f , f ] takes into account
the rate of change of f due to the inelastic collisions between
grains themselves, the linear operator JBL[ f , fg] accounts for
the rate of change of f due to the elastic collisions between
particles of the molecular gas and grains.

As in previous works [23–26] on sheared granular sus-
pensions, the rheological properties of both the granular and
molecular gases are approximately obtained by means of
Grad’s moment method [40]. In spite of the simplicity of
Grad’s method, it is important to remark that the rheological
properties obtained from this method agree in general quite
well with computer simulations [23,25–27] in the Brownian
limit (m/mg → ∞), even for high values of the shear rate.
Therefore, the conventional Grad’s moment method can still
be considered as a powerful method to describe the rheology
of gas-solid suspensions. In particular, theory and simulations
have clearly shown the discontinuous transition of the kinetic
temperature and nonlinear shear viscosity for dilute suspen-
sions [25,41]. Moreover, as the density increases, there is a
transition from the DST (observed in dilute gases) to the con-
tinuous shear thickening (CST) for denser systems [23,26].

The real contribution of the present paper to the under-
standing of the rheology of granular suspensions may be
considered twofold. First, as mentioned before, our results
provide the explicit dependence of the rheological properties
on the mass and diameter ratios, apart from their dependence
on the remaining parameters of the system (shear rate, coef-
ficient of restitution for inelastic grain-grain collisions, and
background temperature). These results clearly show how the
DST effect increases with increasing the mass ratio m/mg

(or, analogously, the diameter ratio σ/σg). As a second and
relevant contribution, we show how the shear-rate dependence
of the rheological properties tend to those obtained by using
a coarse-grained approach [25,41] as the mass ratio m/mg

becomes increasingly larger. Thus, our results (which apply
for arbitrary values of the mass ratio) justify the use of the
white assumption in the coarse-grained approach (Markovian
Langevin equation) when the mass of the granular particles
is much heavier than that of the particles of the molecular
gas (bath). This achievement can also be understood from the
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first-principles results derived in Ref. [32]. Thus, if you look
at Eq. (11) of this paper [32], the shear term (γ̇ qiy pixx̂ŷ) in the
bath Hamiltonian HB is proportional to the mass of the bath
particles. When this term becomes negligible in the coupled
particle-bath dynamics, the fluctuation-dissipation theorem
remains unaltered by shear flow, as the bath’s response to
the shear rate becomes insignificant compared to that of the
grains. This result justifies the use of the white noise assump-
tion, even for large values of the shear rate. It is quite apparent
that our results can be considered as a quantitative way to
justify a posteriori the use of the conventional Langevin
equation when m/mg → ∞ as the starting point for studying
the rheology of the granular suspension. This conclusion (not
considered in previous works on gas-solid flows) represents
one of the most significant added values of the paper and can
likely justify by itself the need for the present work.

The plan of the paper is as follows. In Sec. II, we present
the Boltzmann kinetic equation for a granular gas in contact
with a bath of elastic hard spheres. The balance equations for
the densities of mass, momentum, and energy of the granular
and molecular gases are also displayed. Section III deals with
the rheological properties of the molecular gas. As expected,
a shear thinning effect for the nonlinear shear viscosity is
observed from both Grad’s solution and direct simulation
Monte Carlo (DSMC) results. The rheological properties of
the granular gas are determined in Sec. IV. In dimensionless
form, they are given in terms of the mass ratio m/mg, the diam-
eter ratio σ/σg, the coefficient of restitution α, the (reduced)
bath temperature T ∗

g , and the (reduced) shear rate a∗ = a/γ .
Here, γ is the drift coefficient characterizing the friction of
solid particles on the viscous gas. The Brownian limiting case
(m/mg → ∞) is considered in Sec. V, where we show the
consistency of the present results with those derived before
[23,25,26,41] by employing a coarse-grained approach. The
shear-rate dependence of the rheological properties of the
granular gas is illustrated in Sec. VI. Here, we relate the
diameter and mass ratios, fix the background temperature, and
consider different values of both the coefficient of restitution
and the mass ratio. Our results highlight the existence of a
DST effect as the mass ratio m/mg increases; the temperature
ratio θ = T/Tg and the non-Newtonian shear viscosity η∗
discontinuously increases/decreases (at a certain value of a∗)
as the (reduced) shear rate a∗ gradually increases/decreases.
This effect is more pronounced as m/mg becomes larger. The-
oretical results obtained from Grad’s method are compared
with computer simulations in the Brownian limit (m/mg →
∞) and for small mass ratios, showing excellent agreement
between both approaches. We close the paper in Sec. VII with
a brief summary and some concluding remarks on the results
reported here.

II. GRANULAR GAS THERMOSTATED BY A BATH
OF ELASTIC HARD SPHERES:

BOLTZMANN KINETIC THEORY

Let us consider a gas of inelastic hard disks (d = 2) or
spheres (d = 3) of mass m and diameter σ . Inelasticity of
collisions is characterized through a constant (positive) coeffi-
cient of normal restitution α � 1. We assume that the granular
gas is immersed in a gas of elastic hard disks or spheres

(molecular gas) of mass mg and diameter σg. Collisions be-
tween granular particles and particles of the molecular gas
are elastic. As mentioned in Sec. I, we want to consider a
situation in which the number density of the granular gas n
is much smaller than that of the molecular gas ng. In this case,
the granular gas is sufficiently rarefied so that the state of
the molecular gas is not affected by the presence of the solid
(grains) particles. This means that the molecular gas may be
considered as a thermostat at the temperature Tg. In addition,
although the concentration of granular particles is small, the
collisions among grains themselves are also accounted for in
the corresponding kinetic equation for the one-particle veloc-
ity distribution function f (r, v; t ) of solid particles.

A. Molecular gas

Under the above conditions, in the low-density regime, the
kinetic equation of the one-particle velocity distribution func-
tion fg(r, v; t ) of the molecular gas is the Boltzmann kinetic
equation [38,42]:

∂ fg

∂t
+ v · ∇ fg + ∂

∂v
·
(

Fg

mg
fg

)
= Jg[ fg, fg], (1)

where the Boltzmann collision operator Jg[ fg, fg] is

Jg[v1| fg, fg] = σ d−1
g

∫
dv2

∫
d σ̂	(̂σg · g12)(̂σ · g12)

× [ fg(v′′
1 ) fg(v′′

2 ) − fg(v1) fg(v2)]. (2)

In Eq. (2), g12 = v1 − v2 is the relative velocity, σ̂ is a unit
vector along the line of centers of the two spheres at contact,
	 is the Heaviside step function, and the double primes denote
precollisional velocities. The relationship between precolli-
sional (v′′

1, v′′
2 ) and postcollisional (v1, v2) velocities is

v′′
1,2 = v1,2 ∓ (̂σ · g12 )̂σ. (3)

Moreover, we have assumed in Eq. (1) that the particles of the
molecular gas can be subjected to the action of the (noncon-
servative) external force Fg.

The relevant hydrodynamic fields of the molecular gas are
the number density ng(r; t ), the mean flow velocity Ug(r; t ),
and the temperature Tg(r; t ). These fields are defined in terms
of the velocity distribution function fg as

{ng, ngUg, dngTg} =
∫

dv
{
1, v, mgV

2
g

}
fg(v), (4)

where Vg = v − Ug is the peculiar velocity of the molecular
gas. Note that in Eq. (4) the Boltzmann constant kB = 1.
We will take this value throughout the paper for the sake of
simplicity. The balance equations for the hydrodynamic fields
ng, Ug, and Tg are [38]

Dg
t ng + ng∇ · Ug = 0, (5)

ρgDg
t Ug + ∇ · Pg = FU

g , (6)

d

2
ngDg

t Tg + ∇ · qg + Pg : ∇Ug = FT
g , (7)

where Dg
t ≡ ∂t + Ug · ∇ is the material time derivative for the

molecular gas, ρg = mgng is the mass density of molecular
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gas,

Pg = mg

∫
dv VgVg fg(v) (8)

is the pressure tensor,

qg = mg

2

∫
dv V 2

g Vg fg(v) (9)

is the heat flux, and

FU
g =

∫
dv Fg fg(v), FT

g =
∫

dv Vg · Fg fg(v) (10)

are the production terms of momentum and energy, respec-
tively, due to the external force Fg.

B. Granular gas

Since the particles of the granular gas collide among them-
selves and with particles of the molecular gas, its distribution
function f (r, v; t ) in the low-density regime verifies the ki-
netic equation

∂ f

∂t
+ v · ∇ f + ∂

∂v
·
(

F
m

f

)
= J[ f , f ] + JBL[ f , fg], (11)

where F is the external force acting on solid particles. As
mentioned in Sec. I, the Boltzmann collision operator J[ f , f ]
gives the rate of change of the distribution f due to bi-
nary inelastic collisions between granular particles, while the
Boltzmann-Lorentz collision operator JBL[ f , fg] accounts for
the rate of change of the distribution f due to elastic collisions
between granular and molecular gas particles. The explicit
form of the nonlinear Boltzmann collision operator J[ f , f ]
is [43]

J[v1| f , f ] = σ d−1
∫

dv2

∫
d σ̂	(̂σ · g12)(̂σ · g12)

× [α−2 f (v′′
1 ) f (v′′

2 ) − f (v1) f (v2)], (12)

where in Eq. (12) the relationship between precollisional
(v′′

1, v′′
2 ) and postcollisional (v1, v2) velocities is

v′′
1,2 = v1,2 ∓ 1 + α

2α
(̂σ · g12 )̂σ. (13)

The form of the linear Boltzmann-Lorentz collision operator
JBL[ f , fg] is [43,44]

JBL[v1| f , fg] = σ d−1
∫

dv2

∫
d σ̂	(̂σ · g12)(̂σ · g12)

× [ f (v′′
1 ) fg(v′′

2 ) − f (v1) fg(v2)
]
, (14)

where σ = (σ + σg)/2 and in Eq. (14) the relationship be-
tween (v′′

1, v′′
2 ) and (v1, v2) is

v′′
1 = v1 − 2μg(̂σ · g12 )̂σ, v′′

2 = v2 + 2μ(̂σ · g12 )̂σ. (15)

Here,

μg = mg

m + mg
, μ = m

m + mg
. (16)

As in the case of the molecular gas, the relevant hydrody-
namic fields of the granular gas are the number density

n(r; t ) =
∫

dv f (v), (17)

the mean flow velocity

U(r; t ) = 1

n(r; t )

∫
dv v f (v), (18)

and the granular temperature

T (r; t ) = m

dn(r; t )

∫
dv V 2 f (v), (19)

where V = v − U is the peculiar velocity of the granular gas.
Note that in general the mean flow velocity U of solid particles
can be different from the mean flow velocity Ug of particles of
the molecular gas. In fact, the difference U − Ug may induce
a nonvanishing contribution to the heat flux [34].

The macroscopic balance equations for the granular gas are
obtained by multiplying Eq. (11) by {1, v, mV 2} and integrat-
ing over velocity. After some algebra, one gets the result

Dt n + n∇ · U = 0, (20)

ρDt U + ∇ · P = FU + F [ f ], (21)

d

2
nDt T + ∇ · q + P : ∇U = FT − d

2
nT (ζ + ζg). (22)

Here, Dt = ∂t + U · ∇ is the material derivative of solid par-
ticles, ρ = mn is the mass density of solid particles, and
the pressure tensor P and the heat flux vector q are given,
respectively, as

P =
∫

dv mVV f (v), (23)

q =
∫

dv
m

2
V 2V f (v). (24)

The production terms of momentum and energy due to the
external force F are

FU =
∫

dv F f (v), FT =
∫

dv V · F f (v). (25)

Since the Boltzmann-Lorentz collision term JBL[ f , fg] does
not conserve momentum, the production of momentum term
F [ f ] due to collisions between the granular and molecular
particles is in general different from zero. It is defined as

F [ f ] =
∫

dv mVJBL[ f , fg]. (26)

For small spatial gradients, the production term F [ f ] vanishes
when U = Ug [34]. In addition, the partial production rates ζ

and ζg are given, respectively, as

ζ = − m

dnT

∫
dv V 2 J[v| f , f ], (27)

ζg = − m

dnT

∫
dv V 2 JBL[v| f , fg]. (28)

The cooling rate ζ gives the rate of kinetic energy loss due
to inelastic collisions between particles of the granular gas. It
vanishes for elastic collisions. On the other hand, the term ζg

gives the transfer of kinetic energy between the particles of
the granular and molecular gases and it cancels out in the ho-
mogeneous state when both gases are at the same temperature
(Tg = T ) [34].

It is quite apparent that the balance equations (5)–(7) and
(20)–(22) for the molecular and granular gases, respectively,
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do not constitute a closed set of equations for the hydrody-
namic fields unless one expresses the fluxes, the production
momentum term, and the cooling rates in terms of those fields.
Here, we will consider a specific nonequilibrium state: the
USF state.

III. GRANULAR PARTICLES IMMERSED
IN A MOLECULAR GAS UNDER USF

We assume that the system (granular particles plus molec-
ular gas) are subjected to USF. At a macroscopic level, this
state is characterized by a linear profile of the x component of
the flow velocities along the y axis, constant densities ng and
n, and uniform temperatures Tg and T :

ng ≡ const, n ≡ const, (29)

∇Tg = ∇T = 0, (30)

Ug,i = Ui = ai jr j, ai j = aδixδ jy, (31)

a being the constant shear rate. Since the only spatial gra-
dient present in the system is the shear rate, the heat fluxes
qg and q vanish and the pressure tensors Pg and P are the
relevant fluxes in the problem. They measure the transport
of momentum across the system. In addition, the production
of momentum term F [ f ] vanishes in the USF problem since
U = Ug.

On the other hand, according to Eq. (7), it is quite apparent
that in the absence of an external force, the USF for the
molecular gas is not a stationary state since the temperature
increases with time due to viscous heating. Here, as mentioned
in Sec. I, a nonconservative external force of the form [37]

Fg = −mgξV (32)

is introduced to achieve a steady state. The quantity ξ is
chosen to be a function of the shear rate by the condition that
the temperature Tg reaches a constant value in the long-time
limit. Analogously, the granular gas is also subjected to this
sort of Gaussian thermostat so that F = −mξV. Note that the
parameter ξ is common for both species. The use of this kind
of thermostat is quite usual in sheared molecular mixtures
[38]. Since Fg and F are both proportional to the peculiar
velocity V, then FU

g = FU = 0, and

FT
g

ngTg
= FT

nT
= −dξ . (33)

A. Rheology of the molecular gas

As the state of the molecular gas is not disturbed by the
presence of granular particles, it is more convenient to de-
termine its rheological properties before considering the USF
state for the solid particles. At a microscopic level, the USF
state becomes spatially homogeneous when the velocities of
the particles are referred to the Lagrangian frame moving with
the flow velocity U. In this new frame, the distribution func-
tion of the molecular gas adopts the form fg(r, v) = fg(V),
and the Boltzmann equation (1) in the presence of the external

force (32) reads

− ∂

∂Vi
(ai jVj + ξVi) fg(V) = Jg[ fg, fg]. (34)

The relevant transport coefficients of the USF problem
are obtained from the knowledge of the nonzero elements of
the pressure tensor Pg. These elements can be determined
by multiplying the Boltzmann equation (34) by mgVV and
integrating over V. The result is

aikPg,k j + a jkPg,ki + 2ξPg,i j = Ag,i j, (35)

where we have introduced the collisional moment Ag as

Ag,i j = mg

∫
dV ViVjJg[V| fg, fg]. (36)

From Eq. (35), in particular, one gets the balance equation for
the temperature Tg:

aPg,xy + dξ pg = 0, (37)

where pg = ngTg is the hydrostatic pressure of the molecular
gas.

The determination of the collisional moment Ag for arbi-
trary shear rate requires knowledge of the velocity distribution
function fg(V). This is quite a formidable task. However, one
expects to get a good estimate of this collisional moment by
using Grad’s approximation [40]

fg(V) → fg,M(V)

(
1 + mg

2Tg

g,i jViVj

)
, (38)

where

fg,M(V) = ng

(
mg

2πTg

)d/2

exp

(
−mgV 2

2Tg

)
(39)

is the Maxwellian distribution of the molecular gas, and


g,i j = Pg,i j

pg
− δi j (40)

is the traceless part of the (dimensionless) pressure tensor.
With the trial distribution (38), the collisional moment Ag can
be explicitly evaluated. When one neglects nonlinear terms in
the tensor �g, the expression of Ag can be written as [45,46]

Ag,i j = −νgpg
g,i j, (41)

where the collision frequency νg is

νg = 8π (d−1)/2

(d + 2)�(d/2)
ngσ

d−1
g

√
Tg

mg
. (42)

The nonzero elements of the pressure tensor P∗
g =

Pg/(ngTg) can be easily obtained from Eq. (35) when one takes
into account Eq. (41). They are given by

P∗
g,xx = 1

1 + 2̃ξ

[
1 + 2̃a2

(1 + 2̃ξ )2

]
, (43)

P∗
g,yy = P∗

g,zz = 1

1 + 2̃ξ
, (44)

P∗
g,xy = − ã

(1 + 2̃ξ )2
, (45)
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where we have introduced the dimensionless quantities

ã = a

νg
, ξ̃ = ξ

νg
. (46)

The constraint P∗
xx + (d − 1)P∗

yy = d leads to a cubic equa-

tion relating ξ̃ and ã:

ã2 = d ξ̃ (1 + 2ξ̃ )2. (47)

The real root of Eq. (47) gives the shear-rate dependence of
ξ̃ (̃a). It is given by

ξ̃ (ã) = 2

3
sinh2

[
1

6
cosh−1

(
1 + 27

d
ã2

)]
. (48)

For small shear rates, ξ̃ ∼ ã2, while ξ̃ ∼ ã2/3 for large shear
rates [38].

Equations (43)–(45) along with Eq. (48) provide the shear-
rate dependence of the elements of the (reduced) pressure
tensor P∗

g,i j . These expressions (obtained from Grad’s moment
method) coincide with the exact results obtained for Maxwell
molecules in the USF problem [47].

To characterize the non-Newtonian transport properties, it
is usual [48] to introduce the (dimensionless) nonlinear shear
viscosity η∗

g and the (dimensionless) first viscometric function
�∗

g defined as

η∗
g (̃a) = −P∗

g,xy

ã
, �∗

g (̃a) = P∗
g,yy − P∗

g,xx

ã2
. (49)

We recall again that the collisional moment Ag,i j has been
computed by neglecting nonlinear terms in the traceless pres-
sure tensor 
g,i j . This approximation yields P∗

g,yy = P∗
g,zz. The

evaluation of Ag,i j retaining all the quadratic terms in 
g,i j

has been reported in Refs. [8,12]. The inclusion of these
nonlinear contributions to Ag,i j allows us to obtain the normal
stress differences P∗

g,yy − P∗
g,zz in the plane orthogonal to the

shear flow. However, given that computer simulations [12]
have shown that the above difference is in general very small,
one can conclude that the expression (41) can be considered
as accurate for obtaining the nontransport properties of the
molecular gas.

Figure 1 shows the shear-rate dependence of the rheologi-
cal functions η∗

g (̃a) and �∗
g (̃a) for a three-dimensional (d = 3)

molecular gas. Theoretical results are compared against com-
puter simulation results obtained from the direct simulation
Monte Carlo method [49]. As expected [38], η∗

g and |�∗
g |

are monotonically decreasing functions of the shear rate ã.
A shear thinning effect is observed for the shear viscosity
since the shearing inhibits the momentum transport: the actual
value of |P∗

g,xy| is smaller than the one predicted by Newton’s
law. With respect to the viscometric function, we see that it
is negative, and hence P∗

g,xx > P∗
g,yy. This can be interpreted

as a breakdown of the energy equipartition. It is also quite
apparent that the (approximate) theoretical results exhibit ex-
cellent agreement with computer simulation results, even for
very large values of the shear rate.

IV. RHEOLOGY OF THE GRANULAR GAS

Once the rheological properties of the molecular gas have
been determined, the next step is to obtain the nonzero

FIG. 1. Plot of the nonlinear shear viscosity η∗
g [panel (a)] and

first viscometric function �∗
g [panel (b)] for hard spheres (d = 3) as

functions of the (reduced) shear rate ã = a/νg. Symbols refer to the
DSMC results.

elements of the pressure tensor Pi j defined by Eq. (23). In
the steady USF state, the (homogeneous) distribution function
f (V) of the granular gas obeys the kinetic equation

− ∂

∂Vi
(ai jVj + ξVi ) f (V) = J[ f , f ] + JBL[ f , fg]. (50)

Multiplying both sides of Eq. (50) by mViVj and integrating
over velocity, one achieves the equation

aikPk j + a jkPki + 2ξPi j = Bi j + Ci j, (51)

where

Bi j = m
∫

dV ViVjJ[V| f , f ], (52)

Ci j = m
∫

dV ViVjJBL[V| f , fg]. (53)

As in the case of the molecular gas, the collisional moments
B and C cannot be exactly evaluated. Therefore, we employ
the same strategy as for Ag; Grad’s moment method [40] is
considered to provide a good estimate of B and C. In this
approach, fg(V) is replaced by the distribution (38) while
the granular gas distribution f (V) is replaced by the trial
distribution

f (V) → fM(V)
(

1 + m

2T

i jViVj

)
, (54)

where


i j = Pi j

p
− δi j (55)
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is the traceless part of the (dimensionless) pressure tensor
Pi j/p, and

fM(V) = n
( m

2πT

)d/2
exp

(
−mV 2

2T

)
(56)

is the Maxwellian distribution of the granular gas (i.e., defined
at the temperature T 	= Tg).

The corresponding collision integrals defining the tensors
Bi j and Ci j can now be computed by using the trial distribu-
tions (38) for fg and (54) for f . In this case, and retaining only
linear terms in �g and �, after some algebra the collisional
moments Bi j and Ci j can be written as [45]

Bi j = −νnTg[ν∗
ηP∗

i j + χ (ζ ∗ − ν∗
η )δi j], (57)

Ci j = −2nTg
m

mg
μ

(
1 + θ

θ

)3/2

γ (Xδi j + χ−1Y P∗
i j + ZP∗

g,i j ),

(58)

where P∗
i j = Pi j/(nTg), χ = T/Tg is the temperature ratio, and

θ = mTg/(mgT ) is the ratio of the mean-square velocities of
granular and molecular gas particles. Moreover, in Eqs. (57)
and (58) we have introduced the quantities

ν = 8π (d−1)/2

(d + 2)�(d/2)
nσ d−1

√
T

m
, (59)

ν∗
η = 3

4d
(1 + α)

(
1 − α + 2

3
d

)
, (60)

ζ ∗ = ζ

ν
= d + 2

4d
(1 − α2), (61)

γ = 4π (d−1)/2

d�
(

d
2

) (mg

m

)1/2
(

2Tg

m

)1/2

ngσ
d−1, (62)

X = − μg

d + 2

(
d + χ − 1

1 + θ−1

)
, (63)

Y = 1

(d + 2)(1 + θ )

[
dμg + (d + 2) + (d + 3)(χ − 1)μg

1 + θ−1

]
,

(64)

Z = μgθ

(d + 2)(1 + θ )

[
d + (d + 3)

χ − 1

1 + θ−1

]
− θ

(1 + θ )2
.

(65)

It is quite apparent that the expression of the drift or friction
coefficient γ is the same as the one obtained in the Brownian
limit (m/mg → ∞) when the molecular gas is at equilibrium
( fg = fg,M). In these conditions, a Kramers-Moyal expansion
in the velocity jumps δv = [2/(1 + m/mg)](̂σ · g12)g12 allows
us to approximate the Boltzmann-Lorentz operator JBL[ f , fg]
by a Fokker-Planck operator [44,48,50,51]. Note that the ex-
pression (62) of γ differs from the macroscopic Stokes law
describing the Brownian motion of a massive particle in an
equilibrium host fluid [52,53].

As is usual in the USF problem for granular suspensions
[23,25,26], we introduce the dimensionless shear rate

a∗ = a

γ
, (66)

and Eq. (51) in dimensionless form can be rewritten as

a∗
ikP∗

k j + a∗
jkP∗

ki + 2ξ ∗P∗
i j

= −ν∗[ν∗
ηP∗

i j + χ (ζ ∗ − ν∗
η )δi j]

− 2
m

mg
μ

(
1 + θ

θ

)3/2

(Xδi j + χ−1Y P∗
i j + ZP∗

g,i j ),

(67)

where ξ ∗ = ξ/γ and

ν∗ = ν

γ
= εχ1/2, ε = 2d+2d

(d + 2)
√

π
φ
√

T ∗
g . (68)

Here,

φ = πd/2

2d−1d�
(

d
2

)nσ d (69)

is the solid volume fraction, and

T ∗
g = Tg

mσ 2γ 2
(70)

is the reduced background temperature. Note that the density
dependence of ν∗ arises from the scaling of the shear rate a
with the drift coefficient γ . If we had reduced the shear rate,
for instance, with the collision frequency ν(T ), then the above
density dependence had been removed. On the other hand,
since we want to study the non-Newtonian transport properties
of the granular gas in thermal contact with a bath of elastic
particles at temperature Tg, it seems natural to scale a with
respect to

√
Tg instead of

√
T , as is usual in dry granular

gases [46]. Moreover, given that we want to make a close
comparison with computer simulations [23,25,26], the theory
must employ the same input parameters as in the simulation
results. In this context, in order to express the rheological
properties of the molecular gas in terms of the (reduced) shear
rate a∗, one has to take into account the relations

ã = γ

νg
a∗, ξ̃ = γ

νg
ξ ∗, (71)

where

γ

νg
= d + 2√

2d

(
σ

σg

)d−1 mg

m
. (72)

The equation for the temperature ratio χ can be obtained
from Eq. (67) as

2a∗P∗
xy + 2dχξ ∗ + dχ (ζ ∗ + ζ ∗

g ) = 0, (73)

where ζ ∗ is defined by Eq. (61), and ζ ∗
g = ζg/ν is given by

ζ ∗
g = 2x(1 − x2)μ1/2ε−1, (74)

with

x =
(

μg + μ
Tg

T

)1/2

. (75)

For elastic collisions (α = 1) and vanishing shear rates (a∗ =
0), ζ ∗ = ξ ∗ = 0, and Eq. (73) simply yields χ = 1 (energy
equipartition), as expected. For inelastic collisions (α < 1)
and arbitrary shear rates, Eq. (73) must be solved numerically.
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The elements P∗
xx, P∗

yy, and P∗
xy can be easily determined

from Eq. (67). In terms of the temperature ratio, they can be
written as

P∗
yy = �yy

νyy
, P∗

xy = �xy

νyy
− a∗

νyy
P∗

yy, (76)

P∗
xx = dχ − (d − 1)P∗

yy, (77)

where we have introduced the quantities

νyy = ν∗ν∗
η + 2ξ ∗ + 2μθ

(
1 + θ

θ

)3/2

Y, (78)

�yy = −ν∗χ (ζ ∗ − ν∗
η ) − 2

m

mg
μ

(
1 + θ

θ

)3/2

(X + ZP∗
g,yy),

(79)

�xy = −2
m

mg
μ

(
1 + θ

θ

)3/2

ZP∗
g,xy. (80)

The temperature ratio can be determined by substituting
Eqs. (74) and (76) into Eq. (73). This yields the equation

a∗ =
√√√√d

2

2μ2
(

1+θ
θ

)1/2
(1 − χ ) − (ν∗ζ ∗ + 2ξ ∗)χ
�xy/a∗

νyy
− �yy

ν2
yy

. (81)

As occurs in previous works on granular suspensions
[23,25,25,26], the temperature ratio χ cannot be expressed in
Eq. (81) as an explicit function of the (reduced) shear rate
a∗ and the remaining parameters of the system. However,

the dependence of χ on the latter parameters can implic-
itly be obtained from the physical solution to Eq. (81) as
a∗2(χ, α, σ/σg, m/mg, φ, T ∗

g ).
As for the molecular gas, non-Newtonian transport prop-

erties of the granular gas are characterized by the nonlinear
shear viscosity

η∗ = −P∗
xy

a∗ , (82)

and the normal stress difference

�∗ = P∗
xx − P∗

yy. (83)

As expected, both quantities are highly nonlinear functions
of the (reduced) shear rate a∗ and the parameter space of the
system.

A. Navier-Stokes shear viscosity

Before considering the shear-rate dependence of the non-
Newtonian transport properties of the granular suspension, it
is quite instructive to consider the limit of small shear rates
(Navier-Stokes regime) when the molecular gas is at equilib-
rium. This was the situation analyzed in Ref. [34].

For vanishing shear rates (a∗ = 0), ξ ∗ = 0, and Eq. (67)
becomes ζ ∗ + ζ ∗

g = 0. This yields the following cubic equa-
tion for x:

2x(x2 − 1) = ϑ, ϑ = d + 2

4d
μ−1/2ε(1 − α2). (84)

The physical root of Eq. (84) can be written as [54]

x =
{√

3
3

{√
3 cos

[
1
3 sin−1

(
3
√

3
4 ϑ

)]+ sin
[

1
3 sin−1

(
3
√

3
4 ϑ

)]}
, ϑ � 4

√
3

9 ,

2
√

3
3 cosh

[
1
3 cosh−1

(
3
√

3
4 ϑ

)]
, ϑ � 4

√
3

9 .
(85)

Thus, according to Eq. (75), the temperature ratio T/Tg is

T

Tg
= m/mg(

1 + m
mg

)
x2 − 1

. (86)

Equations (85) and (86) agree with those obtained in Ref. [34].
In the Navier-Stokes domain, P∗

g,i j = δi j , and since ξ ∗ ∝
ξ̃ ∼ a∗2 → 0 when a∗ → 0, then Eqs. (76)–(80) lead to
PNS

xx = PNS
yy = nT , as expected. In addition, the shear stress

PNS
xy = −ηNSa, (87)

where the Navier-Stokes shear viscosity ηNS can be written as

ηNS = η0

ν∗
η + ν̃η

, (88)

where

η0 = (d + 2)�(d/2)

8π (d−1)/2
σ 1−d

√
mT (89)

is the Navier-Stokes shear viscosity of an ordinary dilute gas
of hard spheres (α = 1), ν∗

η is given by Eq. (60), and

ν̃η = 2
m

mg
μ

(
1 + θ

θ

)3/2

Y ε−1χ−3/2. (90)

The expression (88) of ηNS agrees with the one derived
in Ref. [34] in the low-density regime from the Chapman-
Enskog method. This shows the consistency of the present
results with those reported in the Navier-Stokes limiting case.

V. BROWNIAN LIMITING CASE

It is quite apparent that the results obtained in Sec. IV
apply for arbitrary values of the diameter and mass ratios.
However, in the case of particle-laden suspensions [1] where
collisions play an essential role in the dynamics of grains, the
granular particles are much heavier than the particles of the
surrounding molecular gas (m/mg → ∞). This is referred to
here as the Brownian limit.

As discussed in the Introduction, given the technical dif-
ficulties in describing a system constituted by two or more
phases (gas-solid flows), a coarse-grained approach is usu-
ally adopted for analyzing gas-solid flows. In this approach,
the influence of gas-phase on grains is incorporated in the
starting kinetic equation via an effective fluid-solid interaction
force [2–4]. Based on the results obtained in direct numerical
simulations, for high-velocity (but low-Reynolds numbers)
gas-solid flows, the effective force is constituted by two terms
in the USF problem: (i) a drag force term proportional to
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FIG. 2. Thermostat parameter ξ ∗ = ξ/γ vs the (reduced) shear
rate a∗ = a/γ for hard spheres (d = 3) with σ = σg and three differ-
ent values of the mass ratio m/mg.

the particle velocity, and (ii) a stochastic Langevin-like term.
While the first term models the energy lost by grains due
to its friction on the viscous gas, the second term accounts
for the energy transferred to the solid particles due to their
collisions with the particles of the interstitial molecular gas.
Thus, in the low-density regime, the starting kinetic equa-
tion for studying the USF is the Boltzmann equation plus a
Fokker-Planck term. In fact, this latter term can be formally
obtained from the Boltzmann-Lorentz collision operator in
the limiting Brownian case when the molecular gas is at
equilibrium. However, some papers [32,55] have shown that
the conventional Langevin equation is modified by the shear
flow, so these new contributions should be incorporated in
the coarse-grained description when one analyzes the USF
problem in granular suspensions.

The objective of this section is to assess the consistency
between the results obtained here (which are based on a col-
lisional model) in the Brownian limit and those previously
obtained [23,25,26] by employing the Langevin equation.
An important conclusion of those papers is that the non-
Newtonian viscosity η∗ exhibits an S shape in a plane of
stress-strain rate (discontinuous shear thickening effect).

At a given finite value of the (reduced) shear rate a∗,
according to Eqs. (71) and (72), ã ∝ mg/m and ξ̃ ∝ mg/m.
This means that in the Brownian limiting case (m/mg → ∞)
the shear rate a in units of the collision frequency νg of
the molecular gas is very small. Consequently, the pressure
tensor of the granular gas behaves as P∗

g,i j = δi j , and hence
the granular gas does not perceive the presence of a strong
shear field. Although not explicitly stated, this is in fact one
of the assumptions in the suspensions models employed by
starting from the conventional Langevin equation in the USF
state [8,9,11,13,15,22,23,25,26].

In the Brownian limit, μg → 0, μ → 1, χ ≡ finite, and so
θ ∼ m/mgχ

−1, X + Z ∼ −mg/m, and Y ∼ θ−1 ∼ (mg/m)χ .
In addition, the thermostat parameter ξ ∗ = (νg/γ )̃ξ is negli-
gibly small when m � mg. This is illustrated in Fig. 2, where
ξ ∗ is plotted versus a∗ for d = 3, σ = σg, and different values
of the mass ratio. Since we see in Fig. 2 that ξ ∗ → 0 as
m/mg → ∞, we can take ξ ∗ = 0 in Eqs. (76)–(81). Thus,

after carefully taking the Brownian limit (m/mg → ∞) in the
above equations, one achieves the expressions

P∗
yy = 2 − ν∗χ (ζ ∗ − ν∗

η )

2 + ν∗ν∗
η

, (91)

P∗
xy = − a∗

2 + ν∗ν∗
η

P∗
yy, (92)

P∗
xx = 2[d (χ − 1) + 1] + ν∗χ [(d − 1)ζ ∗ + ν∗

η ]

2 + ν∗ν∗
η

, (93)

a∗ =
√

d

2

ν∗ζ ∗ + 2(1 − χ−1)

ν∗(ν∗
η − ζ ∗) + 2χ−1

(2 + ν∗ν∗
η ). (94)

Equations (91)–(94) are consistent with the results obtained in
Refs. [23,25,41] from a coarse-grain approach.

In summary, we can conclude that the expressions of
the rheological properties derived here from a suspension
model that accounts for the grain-gas collisions reduce in
the Brownian limit (m � mg) to those obtained in previous
works [23,25,41] when the influence of the interstitial gas
on grains is accounted for by means of an effective external
force. This achievement justifies the use of the conventional
Langevin-like model for determining the rheology of granular
suspensions for arbitrary shear rates.

VI. SOME ILLUSTRATIVE SYSTEMS: COMPARISON
BETWEEN THEORY AND COMPUTER SIMULATIONS

The dependence of the (reduced) temperature χ , the non-
Newtonian shear viscosity η∗, and the viscometric function
�∗ on the (reduced) shear rate a∗ is shown in Figs. 3 and
4 for inelastic (α = 0.9) and elastic (α = 1) collisions, re-
spectively. Apart from studying the shear-rate dependence of
the rheological properties, our main goal here is to assess the
impact of the mass ratio m/mg on them. Additionally, Eq. (72)
introduces the diameter ratio σ/σg as a “new” parameter for
consideration. To ensure that the effect of inelastic collisions
is on par with that of the (elastic) Boltzmann-Lorentz collision
operator, the (reduced) background temperature T ∗

g ∝ ν/γ

is chosen to be constant and approximately close to unity.
In this specific instance, T ∗

g = 1. The selection of T ∗
g as a

free parameter imposes the following constraint between the
diameter ratio (σ/σg) and the mass ratio (m/mg):

σg

σ
=
⎡⎣( √

π

4
√

2

n

ng

√
m

mg

1

φ
√

T ∗
g

)1/(d−1)

− 1

⎤⎦. (95)

As mentioned in Sec. IV, an explicit density dependence
emerges due to the scaling of the background temperature
with the known quantity γ . In this paper, we consider a very
dilute gas with φ = 0.0052. Furthermore, since the granular
gas is present in tracer concentration, the number density
of granular particles n is chosen to be an order of magni-
tude smaller than the number density of the molecular gas
ng. More specifically, we take n/ng = 10−3. It is important
to highlight that Eq. (95) ensures ξ ∗ → 0 as m/mg → ∞,
thereby maintaining the consistency of Eqs. (76)–(81) with
those expressions derived from the Fokker-Planck operator
[34] in the Brownian limit (m/mg → ∞).
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FIG. 3. Plots of the (reduced) granular temperature χ [panel (a)],
the non-Newtonian shear viscosity η∗ [panel (b)], and the viscometric
function �∗ [panel (c)] as a function of the (reduced) shear rate a∗

for α = 0.9 and different values of the mass ratio m/mg: 103 (blue
lines), 104 (green lines), 105 (red lines), and the Brownian limiting
case (dotted lines). Here, T ∗

g = 1, d = 3, and φ = 0.0052. The filled
symbols refer to DSMC simulations carried out in this paper, while
the open ones refer to event-driven Langevin simulations performed
in Ref. [23]. Both simulations have been made in the Brownian limit.

The principal conclusion drawn from Figs. 3 and 4 is
that variations in the mass ratio m/mg do not significantly
alter the observed trends in prior studies [23,41,56] within
a coarse-grained approach. Notably, there is a discontinuous
transition in all rheological properties with an increase in
shear rate. Specifically, panel (b) of Figs. 3 and 4 underscores
the presence of DST in shear viscosity η∗ under sufficiently
large mass ratios. Namely, the non-Newtonian shear viscosity
η∗ discontinuously increases/decreases (at a certain value of
a∗) as the (scaled) shear rate gradually increases/decreases.
Quantitatively, it becomes apparent that, for a constant value
of a∗, larger mass ratios marginally increase the magnitude of
the η∗ discontinuity. The application of a shear flow impels
particles to move together at the same velocity Ux. Over time,
collisions between particles in each layer of the flow induce
momentum transmission to the y axis. Heavier particles are
provided with more kinetic energy to maintain a constant

FIG. 4. Plots of the (reduced) granular temperature χ [panel (a)],
the non-Newtonian shear viscosity η∗ [panel (b)], and the viscometric
function �∗ [panel (c)] as a function of the (reduced) shear rate a∗

for α = 1 and different values of the mass ratio m/mg: 103 (blue
lines), 104 (green lines), 105 (red lines), and the Brownian limiting
case (dotted lines). Here, T ∗

g = 1, d = 3, and φ = 0.0052. The filled
symbols refer to DSMC simulations carried out in this paper, while
the open ones refer to event-driven Langevin simulations performed
in Ref. [23]. Both simulations have been made in the Brownian limit.

velocity profile, leading to increased viscosity and tempera-
ture, as is evident in panel (a) of Figs. 3 and 4.

Analytically, Eq. (72) indicates that ã → 0 when m/mg →
∞ for a finite value of a∗. Thus, Fig. 1(a) asserts that the
viscosity of the molecular gas increases. Additionally, the
balance between collisional cooling due to the inelasticity of
grain collisions and bath thermalization depends solely on
temperature, as T ∗

g is held constant. However, an increase in
the mass ratio m/mg elevates temperature due to the higher
kinetic energy required to move the entire system at the
same velocity. Consequently, the collision frequency ν rises,
leading to more collisions and facilitating momentum trans-
mission. This effect combined with the increased viscosity
of the molecular gas causes the viscosity of the suspension
to increase. Although similar trends are noted for �∗, it is
noteworthy that the combined influence of m/mg and a∗ on
the viscometric function �∗ is substantial. While this quantity
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remains negligible for low shear rates, it increases abruptly for
moderately small shear rates (e.g., a∗ ≈ 0.1).

Theoretical predictions are compared against molecular-
dynamics (event-driven) simulations performed in Ref. [23]
and DSMC results carried out in this paper. Both kinds of
simulations have been restricted to the Brownian limiting
case (m/mg → ∞). Some technical details of the application
of the DSMC method to the system studied in this paper
are provided in the supplemental material of Ref. [34] (see
Ref. [57]). The absence of simulation data with finite mass
ratios arises from the condition that, despite the granular gas
being rarefied, collisions between grains are considered. Thus,
given that the molecular and granular gases evolve on sig-
nificantly different timescales, this difference becomes more
accentuated when the mass ratio is very large. This means
that it is quite difficult in the simulations to have a number
of grain-grain collisions comparable to the ones that occur be-
tween molecular and granular particles when m/mg � 1. On
the other hand, for smaller mass ratios, evolution timescales
for molecular and granular gases become comparable, en-
abling the validation of theoretical results with DSMC data
(see Fig. 8).

It is quite apparent that the agreement between theory and
computer simulations is generally favorable, with the excep-
tion of a localized region proximate to the transition point. In
this region, molecular-dynamics (MD) simulation data indi-
cate a more pronounced transition compared to the Boltzmann
results. Given that the selected reference frequency is γ , it is
conjectured that this slight disparity is primarily attributable
to the marginal density dependence of the (reduced) collision
frequency ν∗ = ν/γ . This effect is not effectively accounted
for in the Boltzmann kinetic theory.

In the absence of shear or with minimal shear, no such
amount of energy is required to move the fluid at a constant
velocity Ux. Pure collisional effects from the isolated action
of the background fluid and inelasticity emerge. As granular
particles become heavier, the inertial effect of mass causes
the grains to necessitate more collisions with the background
fluid for thermalization. This produces a decrease in granular
temperature and viscosity, as observed in Fig. 5 for small val-
ues of the (reduced) shear rate a∗. Remarkably, shear-thinning
effects are observed for sufficiently small values of both m/mg

and a∗. To complement Fig. 5, Fig. 6 illustrates the phase
diagram depicting the critical mass ratio at which the sign of
the slope ∂η∗/∂a∗ changes, indicating a transition from shear
thinning to shear thickening. It is evident from the diagram
that, at a given value of the (reduced) shear rate a∗, an increase
in the mass ratio m/mg leads to a more pronounced rise in the
non-Newtonian viscosity η∗. By examining the variation of
a∗, it becomes clear that, even for the same value of m/mg,
the suspension may exhibit either shear thinning or shear
thickening behavior depending on the specific value of a∗,
as demonstrated in Fig. 7 for m/mg = 103. A similar transi-
tion was observed in moderately dense molecular gases (see,
for instance, Fig. 1 of Ref. [58]). In this case, for moderate
densities, the collisional contribution to the nonlinear shear
viscosity is responsible for a crossover from shear thinning
to shear thickening at sufficiently large shear rates. In the
granular suspension studied here, the increase in density re-
sults in an increase in the number of collisions. Therefore,

FIG. 5. Plot of the non-Newtonian shear viscosity η∗ as a func-
tion of the (reduced) shear rate a∗ for α = 0.9 and different values of
the mass ratio m/mg: 103 (blue line), 104 (green line), 105 (red line),
and the Brownian limiting case (dotted line). Here, T ∗

g = 1, d = 3,
and φ = 0.0052.

according to Eq. (59) and for fixed values of φ and n/ng, as
the mass ratio m/mg increases, the diameter ratio σ/σg also
increases. Given that n is constant, an increase in σ resembles
an increase in density since φ ∝ nσ d , thereby increasing the
number of collisions suffered by the granular particles. This
increase (caused by both the density and the diameter of the
spheres) causes the transmission of momentum between the
different layers of the fluid to be more effective and thus
causes the viscosity to increase with increasing the mass ratio.

To assess the accuracy of Grad’s expression for the
non-Newtonian shear viscosity in the region a∗ � 1 (where
non-Newtonian effects are still important) and relatively small
mass ratios, Fig. 8 shows the shear-rate dependence of η∗
for d = 3, T ∗

g = 1, φ = 0.0052, and three different values of
m/mg. Theoretical results are compared against DSMC simu-
lations. For this purpose, and to avoid an enormous difference
between the evolution times of each phase (molecular and
granular gases), we consider n/ng = 10−2 in Eq. (95). As
expected from the phase diagram in Fig. 6, a shear thinning

FIG. 6. Phase diagram of the shear thinning to thickening tran-
sition as a function of the mass ratio m/mg and the (reduced) shear
rate a∗ for α = 0.9 (solid line) and α = 1 (dashed line). The hatched
regions correspond to the combined values of a∗ and m/mg where the
shear thinning effect occurs. Here, T ∗

g = 1, d = 3, and φ = 0.0052.
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FIG. 7. Plot of the non-Newtonian shear viscosity η∗ as a func-
tion of the (reduced) shear rate a∗ for α = 1 and m/mg = 103. Here,
T ∗

g = 1, d = 3, and φ = 0.0052.

effect is always found for all the mass ratios considered. For
not large shear rates, η∗ decreases with increasing the mass
ratio m/mg at a given value of a∗. However, this tendency
changes as the shear rate increases since there is a crossing
between the different curves for sufficiently large values of a∗.
Figure 8 highlights again the good agreement found between
theory and computer simulations.

Another important effect to consider is the impact of in-
elasticity on rheology. To explore this, our focus is on the
Brownian limit where the influence of α is isolated from
the mass ratio. Figure 9 illustrates the rheological properties
for various values of α. First, it is observed that inelas-
ticity attenuates the DST transition in the non-Newtonian
viscosity η∗. This is primarily attributed to the collisional
cooling resulting from interactions between grains, leading
to a decrease in the (reduced) temperature χ . As the most
noticeable effect, this temperature decrease reduces collision
frequency. Consequently, momentum transfer becomes more
challenging, causing a viscosity decrease for a given a∗. We
also see that the effect of α on the viscometric function
�∗ is smaller than that found for the temperature χ and
the non-Newtonian viscosity η∗. Furthermore, a satisfactory

FIG. 8. Plot of the non-Newtonian shear viscosity η∗ as a func-
tion of the (reduced) shear rate a∗ for α = 0.9 and different values of
the mass ratio m/mg: 5 (blue line and symbols), 10 (green line and
symbol), and 15 (red lines and symbols). Here, T ∗

g = 1, d = 3, and
φ = 0.0052. The symbols refer to DSMC simulations.

FIG. 9. Plots of the (reduced) granular temperature χ [panel (a)],
the non-Newtonian shear viscosity η∗ [panel (b)], and the viscometric
function �∗ [panel (c)] in the Brownian limit as a function of the
(reduced) shear rate a∗ for different values of α: 0.5 (blue lines), 0.6
(green lines), 0.7 (red lines), 0.8 (orange lines), 0.9 (purple lines), and
1 (black lines). Here, T ∗

g = 1, d = 3, and φ = 0.0052. The symbols
refer to DSMC simulations.

level of agreement between theory and DSMC simulations
is demonstrated, although some discrepancies between both
approaches are observed. These differences probably arise
from the influence of the fourth-degree velocity moments on
the distribution function of the granular gas as the shear rate
increases. Note that Grad’s solution (38) neglects the above
moments since it includes only the second-degree velocity
moment (shear stress).

Apart from comparing theory with computer simulations,
it would be desirable to assess the usefulness of the theoret-
ical predictions offered by the suspension model considered
in this paper via a comparison with experimental results.
However, given that our results are restricted to very dilute
systems, it is not usual to find in the granular literature ex-
periments carried out for such a range of densities. In fact,
we are not aware of any work where the rheological prop-
erties of dilute gas-solid flows have been measured. In any
case, the question then is to what extent systems subject to
the restrictions considered here can be found in nature and
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replicated in the laboratory. In a recent paper in which two
of the authors of the present work were involved [59], a
system (a suspension of gold grains immersed in hydrogen
molecular gas at normal temperature and pressure; see Table
I of Ref. [59]) has been proposed where grain-grain collisions
can play a relevant role in the evaluation of the transport
coefficients of the suspension. We expect that the results re-
ported in this paper stimulate the performance of these sorts of
experiments.

VII. SUMMARY AND CONCLUDING REMARKS

In recent years, there has been a growing interest in em-
ploying kinetic theory tools to determine the non-Newtonian
transport properties of inertial suspensions under simple shear
flow. Numerous studies, drawing on the Boltzmann kinetic
equation (applicable to very dilute systems) and/or the En-
skog kinetic equation (suitable for moderately dense systems),
have made substantial contributions to this field. In partic-
ular, several works [8,9,12,15,16,23,25,41,56] have derived
explicit expressions for the shear-rate dependence of the ki-
netic temperature, non-Newtonian viscosity, and viscometric
functions.

Among various gas-solid flows, particle-laden suspensions
[3–5,60–63] pose an intriguing problem. In such suspensions,
dilute and immiscible particles are immersed in a denser fluid,
causing hydrodynamic interactions to become less relevant
[1,64]. Consequently, the dynamics of solid particles are influ-
enced by thermal fluctuations in the fluid, with interparticle,
external, and Brownian forces prevailing [65]. Assuming the
number density of the solid phase is significantly smaller than
that of the surrounding fluid, the latter remains practically
unaffected by the presence of the solid particles. In this sce-
nario, the external fluid may be treated as a thermostat (or
bath) at a fixed temperature Tg. Thus, gas-solid interactions
are effectively modeled via a fluid-solid force in the starting
kinetic equation [2–4].

Some models for granular suspensions [8–11,13–15,66–
68] consider only isolated body resistance through a lin-
ear drag law, while others [16,69] include an additional
Langevin-type stochastic term. Analytical results from these
models, validated against computer simulations, generally ex-
hibit good agreement under conditions of practical interest.
However, questions arise about whether these models accu-
rately reproduce real situations and if they can be recovered
using purely kinetic arguments.

In this work, we have started from a suspension model
that consider real collisions between grains and particles of
the background gas in the starting kinetic equation. The influ-
ence of the gas phase on solid particles is introduced via the
(elastic) Boltzmann-Lorentz collision operator JBL[ f , fg]. As
in previous works [23,25,26], our initial objective has been to
determine approximate expressions for the rheological prop-
erties of the molecular gas by using Grad’s moment method
[40]. Specifically, we have computed the collisional moment
Ag defined in Eq. (36) through Grad’s distribution (38). The
knowledge of this collisional moment enables the derivation
of the explicit forms for the non-Newtonian shear viscosity
ηg and the viscometric function �∗

g of the gas phase [45,46].
The anticipated shear-thinning effect in the shear viscosity is

observed [38], a phenomenon corroborated by the excellent
agreement between the results obtained from Grad’s method
and DSMC simulations.

Following the characterization of the molecular gas, we
have also computed by means of Grad’s moment method the
collisional moments B and C of the granular gas defined
in Eqs. (57) and (58), respectively. After performing alge-
braic manipulations, we have expressed the (reduced) granular
temperature χ and the (reduced) relevant components of the
pressure tensor P∗

i j in terms of the parameter space governing
the problem. This parameter space includes the coefficient
of normal restitution α, the (reduced) shear rate a∗, the (re-
duced) background temperature T ∗

g , the volume fraction φ,
and the diameter σ/σg and mass m/mg ratios. Consequently,
a noteworthy contribution of our findings lies in providing an
explicit dependence of the rheological properties on the above
ratios, especially in the case of the mass ratio m/mg.

The results derived here for arbitrary values of the mass
ratio show no new surprises relative to the earlier works for
gas-solid flows [23,41]: the flow curve for the non-Newtonian
viscosity η∗ exhibits an S-shape, and hence DST is present.
Nonetheless, from a more quantitative level, the results ob-
tained in this work illustrate the amplifying influence of the
DST effect with increasing the mass ratio m/mg. Notably,
when the ratio m/mg reaches a sufficiently large value, the
conclusions derived in this study agree with those previously
established in the context of the Brownian limit from the
Fokker-Planck operator [23,41]. This agreement serves to val-
idate the application of the conventional Langevin equation in
the analysis of non-Newtonian transport within dilute granular
suspensions, even when subjected to high shear rates [32].
Another remarkable result lies in the mass ratio values for
which agreement is reached with the coarse-grained results.
In contrast to the situation observed in the context of the
Navier-Stokes transport coefficients, where convergence to
the Brownian limit was attained for relatively small mass
ratios (m/mg ≈ 50) [34], the rheological scenario requires
mass ratios exceeding 106 to observe this collapse. This em-
phasizes the intricacy of the collisional model, not only in
its capacity to elucidate the Fokker-Planck model as a lim-
iting case derived from purely kinetic principles, but also for
its ability to represent a diverse spectrum of systems whose
rheology may not be fully captured by the existing effective
models.

Another noteworthy observation related to the variability
of the mass ratio m/mg lies in the ability to completely modify
the rheological behavior of the suspension. This is manifested
in a transition from shear thinning to thickening for a critical
mass ratio when we consider sufficiently low values of a∗ as
shown in Figs. 5–7.

Furthermore, the results depicted in Figs. 3, 4, and 8 high-
light the commendable efficacy of both Grad’s method and
DSMC simulations in capturing the shear-rate dependence of
the rheological properties. Remarkably, a perfect agreement
emerges among the results obtained from Grad’s method,
DSMC, and MD simulations in the Brownian limit. Despite
this agreement, slight disparities manifest in a limited region
near the transition point, where MD simulation data indi-
cate a more pronounced transition than the Boltzmann results
suggest. This minor disparity is attributed primarily to the
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constraints of the Boltzmann equation in incorporating small
density corrections to η∗ in the vicinity of this transition point.

Although several mechanisms have been proposed in the
literature (most of them related to to structural properties and
mutual friction between grains [70,71]), the knowledge of
the non-Newtonian transport properties in granular suspen-
sions is still a challenging open problem. What is interesting
in the present work is the existence of this shear thick-
ening in a structurally simple system (low-density granular
gas immersed in a dilute molecular gas). In this case, the
non-Newtonian properties of the granular gas are associated
with both the behavior of the granular suspension in far-
from-equilibrium situations as well as the impact of the bath
(molecular interstitial gas) on the dynamics properties of the
solid particles.

Taking advantage of the excellent agreement observed be-
tween MD and DSMC computer simulations, we can exploit
the latter to explore new situations in which to validate Grad’s
results. This is first done in Fig. 8, where small mass ratios are
considered to ensure comparable evolution times for the gran-
ular and molecular gases. We find a good agreement between
theory and DSMC data, validating Grad’s results for finite
mass ratios. In a second contribution, Fig. 9 presents the rhe-
ological properties plotted against shear rate in the Brownian

limit for various coefficients of restitution. Notably, we ob-
serve again a good agreement between theoretical predictions
and simulation data, highlighting the robustness of Grad’s
results even under conditions with moderate inelasticities.
On the other hand, as expected, the influence of inelasticity
manifests in a dampening of the DST transition. Although this
dissipative effect is evident in the viscometric function �∗ as
well, its impact is comparatively less pronounced.

As an interesting work, we plan to extend the current
findings to finite densities by considering the Enskog kinetic
equation. Within this context, an intriguing question arises:
does the variability of the mass ratio influence the transi-
tion from DST to CST as density increases, as observed in
the Fokker-Planck model? Exploration along this avenue is
planned for a future project.
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