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Discovering dynamic laws from observations: The case of self-propelled, interacting colloids
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Active matter spans a wide range of time and length scales, from groups of cells and synthetic self-propelled
colloids to schools of fish and flocks of birds. The theoretical framework describing these systems has shown
tremendous success in finding universal phenomenology. However, further progress is often burdened by the
difficulty of determining forces controlling the dynamics of individual elements within each system. Accessing
this local information is pivotal for the understanding of the physics governing an ensemble of active particles and
for the creation of numerical models capable of explaining the observed collective phenomena. In this work, we
present ActiveNet, a machine-learning tool consisting of a graph neural network that uses the collective motion
of particles to learn active and two-body forces controlling their individual dynamics. We verify our approach
using numerical simulations of active Brownian particles, active particles undergoing underdamped Langevin
dynamics, and chiral active Brownian particles considering different interaction potentials and values of activity.
Interestingly, ActiveNet can equally learn conservative or nonconservative forces as well as torques. Moreover,
ActiveNet has proven to be a useful tool to learn the stochastic contribution to the forces, enabling the estimation
of the diffusion coefficients. Therefore, all coefficients of the equation of motion of Active Brownian Particles are
captured. Finally, we apply ActiveNet to experiments of electrophoretic Janus particles, extracting the active and
two-body forces controlling colloids’ dynamics. On the one side, we have learned that the active force depends
on the electric field and area fraction. On the other side, we have also discovered a dependence of the two-body
interaction with the electric field that leads us to propose that the dominant force between active colloids is a
screened electrostatic interaction with a constant length scale. We believe that the proposed methodological tool,
ActiveNet, might open a new avenue for the study and modeling of experimental suspensions of active particles.

DOI: 10.1103/PhysRevE.109.064611

I. INTRODUCTION

Many living systems are composed of self-propelling (ac-
tive) elements which interact and generate complex collective
phenomena [1–3]. Mathematical models of active particles are
used to predict the behavior of a plethora of different systems,
such as synthetic self-propelled particles [4–8], groups of
living cells [9–15], flocks of birds [16], schools of fish [17],
or even the collective behavior of human crowds [18]. These
inherently out-of-equilibrium systems are characterized by the
activity of their individual elements and their interparticle
interactions. Depending on the level of activity and the nature
of such interactions, these models are capable of describ-
ing phases resembling those in equilibrium—solid or crystal,
fluid, and gas—or genuinely out-of-equilibrium phases such
as living crystalline clusters [19,20], active turbulence [21],
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motility-induced phase separation (MIPS) [22], self-assembly
[23,24], and various types of flocking phases [25–27].

Modeling systems of active particles has been successful in
many cases [1–3,28–30]. Several numerical models of active
particles have led to the discovery of novel out-of-equilibrium
physical behaviours, such as the appearance of a motility-
induced phase separated (MIPS) phase in a dense suspension
of active Brownian repulsive particles (characterized by a
large activity) [22]; the appearance of a cluster phase in a
dilute suspension of active Brownian attractive particles (char-
acterized by an intermediate activity) [20]; or a transition from
a disordered to a flocking phase in a suspension of active
aligning particles [2]. However, one of the main burdens to
the advancement of the field of active matter has been the
difficulty to uncover, in experiments, the correct expressions
for the forces controlling the dynamics at the individual parti-
cle level. Considering the limitations in comparing numerical
results obtained for a suspension of active particles to exper-
imental results obtained for a suspension of active colloids,
it might be useful to develop new tools capable of extracting
active and interparticle forces directly from the experimental
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data. Once these forces are learned, they will enable us to
unravel the physics governing the system’s dynamics.

We are probably living in the golden age of machine learn-
ing. As expected, in the past few years machine learning has
also had a big impact in active matter, where not only has
drastically improved particles’ tracking [31–34] but also led
to a growing interest in coupling machine-learning models
to active particles, in a quest to mimic the complex behavior
of natural systems [35–37]. The reverse path has so far been
more elusive. Ideally, one would like to use machine learning
to extract and learn forces controlling particles’ dynamics,
giving rise to complex phenomena. Some works, inspired by
the success in passive thermal systems [37–39], have started
to explore this latter direction. On the one hand, a machine-
learning model has recently been applied to active systems to
learn the probability of rearrangements depending on the local
structure [40], which provides valuable information on the
relationship between structure and dynamics, but does not aim
to recover the forces governing the microscopic dynamics.
On the other hand, a recent approach estimates the effective
two-body potential from the pair correlation function [41].
Moreover, very recent works have used machine-learning
tools to recover models of pairwise particle-cell interactions
in mixtures of synthetic particles and biological cancer cells
[42], to identify the phase transitions of the Vicsek model
[43], to characterize MIPS [44] and to sort microswimmers
[45]. Further works have tried to recover the differential equa-
tions describing different physical phenomena [46–48], which
could be used to build coarse-grained models for active matter.
Without resorting to machine learning, other authors have
tackled problems related to ours. Previous works performed
averages on stochastic trajectories to estimate the drift and
diffusion coefficients of the Fokker-Planck equation [49,50]
or used inverse statistical-mechanical methods to optimize
pair potentials reproducing equilibrium many-particle config-
urations [51–53]. Other approaches used a basis of a priori
chosen functions to project the dynamics of long stochastic
trajectories, extracting force fields and evaluating out-of-
equilibrium currents and entropy production in overdamped
[54] and underdamped [55] systems.

In our work, we propose a machine-learning approach,
ActiveNet, that can be trained to learn the dynamics of a
suspension of active particles. The active and interparticle
forces, together with an estimate of the stochastic forces,
are directly extracted from our machine-learning tool, once
trained using the system’s trajectories. Our method exploits
graph neural networks (GNN) [56–59], which have already
been used to study many physical domains [60–68], includ-
ing physical problems in condensed matter [69,70], material
science [71,72], chemistry [73–75], soft matter [37,76,77],
or very recently, even active matter [34]. In all applications,
the network architecture and the input descriptor have been
adapted to the problem under consideration. Our approach
builds on the concepts and formalism introduced by Cranmer
et al. [78,79], who presented the possibility to use GNNs
to extract the conservative two-body forces in systems of (a
few) passive particles. With the a priori assumption that, to a
first approximation, most systems of active colloids obey an
overdamped dynamics, we extend the proof-of-concept work
of Refs. [78,79] to deal with active forces. Differently from

Refs. [78,79], ActiveNet is capable to tackle systems of thou-
sands of colloids, by means of clustering and sparse graphs.
In ActiveNet we adopt the ensemble approach [80] to estimate
the error bars of the predicted observables. In practice, a set
of GNNs are trained on the same data, each GNN differing
due to the initial, random guess of its training coefficients.
This yields an ensemble of networks that give a distribution
of predictions for a given input. The overall prediction of the
ensemble is taken as the average of the distribution and the
error bar is its standard deviation.

The goal of ActiveNet is extracting the one-body active
force and the two-body interacting forces between pairs of
colloids from particles’ trajectories. Given that ActiveNet al-
lows one to learn forces (not potentials), these forces can
be conservative or nonconservative. Our approach is not
restricted to particles undergoing Brownian dynamics. Ac-
tiveNet can be applied to particles undergoing underdamped
Langevin dynamics [81,82], where forces depend on parti-
cles’ velocities. We also show how ActiveNet correctly learns
torques, characteristic of chiral active particles [83,84], and it
is also useful to estimate stochastic forces.

All this paves the way for learning more complex dynamics
present in experiments of colloidal systems where temperature
and hydrodynamic interactions might be relevant—the latter
usually displaying velocity dependent forces.

After validating our approach with computer simulations,
we use ActiveNet to extract both active and two-body forces
from experiments of electrophoretic Janus colloidal particles
[85,86]. Electrophoretic Janus colloids are spherical silica
particles half-coated with titanium, whose self-propulsion is
induced by an external electric field creating an asymmetrical
dipole on the particles. This couples to the electrolite where
they are submerged, generating an asymmetric ion distribution
in the vicinity of each colloid’s surface, leading to self-
propulsion and complex interactions [85]. With our approach,
we are able to independently extract the active and two-body
forces, unravelling the physics dominating their movement.

II. THE GRAPH NEURAL NETWORK

We start focusing on systems in the overdamped regime
(Brownian dynamics), where inertia is neglected and viscous
forces dominate the dynamics. For this reason, in the follow-
ing, we will alternatively refer to forces or velocities, since
they are related by the Stoke’s law (see Appendix 2 for more
details). In this limit, the deterministic equation of motion
for particle i simplifies to �̇xi ∝ �Fi, where �Fi represents the
combination of all forces acting on particle i, which can be
of different nature, such as interparticle interactions, external
conservative fields or active forces. Active forces model dif-
ferent mechanisms of self-propulsion, where particles (such
as bacteria or Janus particles) extract energy from the en-
vironment and use it for self-propelling. Although in few
simple cases some of the forces could be estimated with other
methods—in diluted cases, the active force can be inferred
directly from the average velocity—the goal of ActiveNet is
to disentangle each of the forces directly from the particles’
trajectories in situations where several forces are acting
together. Once they are learned, these forces can be later on
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used to predict the dynamics of a new set of particles or to
understand the physics governing the dynamics of the system.

Learning to predict the dynamics of active particles can be
achieved using a broad range of machine-learning models. For
example, one could use a deep neural network (DNN) that
takes the positions and internal orientations of all particles as
inputs (3N degrees of freedom for a 2D system) and predicts
velocities (2N degrees of freedom for the same 2D system).
Training this model would be very challenging, and even if
successful, would lead to a high-dimensional nonlinear func-
tion �f (�c1, . . . , �cN ) : R3N → R2N , where �ci is the coordinate
vector of particle i (position and orientation). Even though this
network could predict the system’s dynamics, it presents two
main drawbacks: (i) it cannot be easily applied to a system
with a different (varying) number of particles, (ii) there is no
guarantee (probably not possible in most cases) that we can
use this method to disentangle and extract all forces control-
ling the dynamics of individual particles, e.g., the active and
interparticle forces.

Graph neural networks, however, are combinations of
DNNs applied sequentially on a graph. In our case, the nodes
of the graph are the particles in our experiment or simulation
and the edges are the interactions that we want to study
(learn). In particular, two-body interactions will be repre-
sented as edges between two nodes in the graph. The DNN
that acts on the nodes is referred as node function, whereas the
DNN that acts on the edges is called edge function. The edge
function uses the information of pairs of particles (e.g., their
mutual distance), and leads to the estimate of the two-body
force. Whereas the node function takes as input the coordi-
nates of a particle and the output of the edge function (see
Appendix 2 for more details) and will lead to the estimate of
the one-body forces, such as the active force, and if it is the
case, the drag force or the torque. In practice, for each time
frame, a new graph is created (if it is the case, with a different
number of nodes), and the GNN (defined by the functions
applied to the nodes and edges) is applied. The modularity
of the GNN and the possibility of adding inductive biases—a
priori assumptions simplifying the model—make them easier
to train. Even more, by design the same GNN can be applied
to systems of different number of particles, and after training
one can easily extract all forces acting on each particle.

Compared to the naive approach of adopting a single, huge
neural network, trained over all data, the GNN approach is
less complex. The lower complexity is made possible by some
crucial, physically justified assumptions: (a) the same forces
control the dynamics of all particles (particles are identical)—
only one node and one edge function are applied to the graph,
(b) the total force acting on a particle is the sum of the individ-
ual forces acting on it, and (c) different modules in the GNN
learn different forces, in our case we use the node function
for the one-body forces (active forces, drag forces or torques)
and the edge function for the two-body forces; three-body,
..., N-body interactions can be introduced naturally using new
modules in the GNN.

The training of the GNN goes as follows. First we apply the
edge function �ξ (�ci, �c j ) to a node i and each of its j neighbors
(each pair of particles constitutes an edge, i j). Then, we sum
up these outputs and feed the result to the node function, �ψ ,

FIG. 1. Predicting the dynamics of active particles with a Graph
Neural Network (ActiveNet) while learning the functional form of
the active and interparticle forces. (a) ActiveNet is formed by a node
function �ψ (in pink) and an edge function �ξ (in orange). Function �ξ
takes the coordinates �c of two particles and, after training, it outputs
a linear transformation of the two-body force acting between them.
Function �ψ takes the coordinates of particle i and the sum of the
outputs of �ξ for all the edges i j such that |�ri − �r j | < �. After training,
the output of �ψ (�vp

i ) is the predicted velocity of particle i (acceler-
ation in the case of underdamped dynamics). Applying ActiveNet
to all particles in the system (the graph) provides all the predicted
velocities. During the learning process the internal parameters of �ξ
and �ψ are optimized so that all the �vp

i approach the ground-truth ve-
locities. Both the node (b) and edge (c) functions are neural networks
with two hidden layers of 300 neurons and the appropriate input and
output dimensions.

along with the coordinates of the ith node, �ci. The output of
the node function is the predicted velocity for the ith particle
�vp

i . Mathematically,

�v p
i ≡ �ψ

⎛
⎝�ci,

∑
di j<�

�ξ (�ci, �c j )

⎞
⎠, (1)

where di j is the Euclidean distance between particles i and
j. Since we tackle systems of thousands of particles and
the number of edges in a fully connected graph scales as
∼N2, we introduce edges in our graph only between pairs
of particles such that di j < �: the number of edges scales
now as ∼N . This process is repeated for each particle in the
system, using the same node and edge functions. The training
is performed by minimizing the difference between the pre-
dicted and ground-truth velocities using an L1 norm as loss
function:

L =
∑

i

∣∣ �vi − �vi
p
∣∣. (2)

In Fig. 1, we show a diagram of the basic idea behind the
GNN workflow, that we will name “ActiveNet.”

Note that this scheme can be also applied to the case of un-
derdamped dynamics, where ActiveNet outputs the predicted
acceleration instead of the predicted velocity of the particle. In
this case, velocities can be used as inputs to �ξ and �ψ , making
it possible to learn forces that depend on velocities. Once Ac-
tiveNet is trained, we use �ξ and �ψ to extract the interparticle
and active forces that it has learned (see Appendix 2 for more
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FIG. 2. Two-body potentials used in the numerical simulations.
The Lennard-Jones potential describes short range attraction between
particles. WCA and shoulder potentials lead to purely repulsive
forces between particles. ActiveNet can learn the interparticle pas-
sive force derived from all three potentials.

details). Note that the two-body force learned for distances
larger than � will be meaningless due to the absence of data.
In practice, we choose a small � value for a first training, and
train again the model with larger values of � until we see that
the interparticle force term goes to zero. Thus, we gain no
information by increasing � even further.

In the following sections, we test ActiveNet against nu-
merical simulations where we can compare forces that the
model learns with the ground truth used in simulations. Once
we validate our approach, we use ActiveNet to study forces
present in an experimental system of active particles.

III. NUMERICAL SIMULATIONS DETAILS

Throughout our study, we consider three interaction po-
tentials between particles [V (ri j ), see Fig. 2]: the truncated
and shifted Lennard-Jones potential (LJ) and two repulsive
potentials, WCA [87] and a shoulder potential [88]. The short-
range attractive Lennard-Jones potential obeys the following
equation:

VLJ(r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6]
, (3)

where r is the center-to-center distance, σ is the particle
diameter, and ε is the depth of the minimum, that quantifies
the attraction strength. The truncated and shifted LJ potential
is accomplished by truncating VLJ to zero after a given cut-
off (rcut = 2.5σ ), and shifting it up to recover continuity at
r = rcut:

VTSLJ(r) =
{

VLJ(r) − VLJ(2.5σ ), r < 2.5σ,

0, r � 2.5σ.
(4)

The repulsive WCA potential can be written as a truncated
LJ potential setting rcut = rmin = 21/6σ (the distance to the
potential minimum), and shifting it up to recover continuity
at r = rcut:

VWCA(r) =
{

VLJ(r) + ε, r < 21/6σ,

0, r � 21/6σ,
(5)

where VLJ(rmin) = −ε. Finally, the repulsive shoulder poten-
tial is characterized by two different length scales: a repulsive

hard core and a soft repulsive shell around each particle
(see Fig. 2). According to Ref. [88],

V (r) = ε

(
σ

r

)n

+ 1

2
εs {1 − tanh [k0 (r − σs)]}, (6)

where σ is the hard core diameter, εs and σs are the height
and width of the repulsive shoulder, respectively, n affects the
stiffness of the repulsive core and k0 describes the steepness
of the shoulder decay (Fig. 2). Following Ref. [88], we use the
following parameters: n = 14, k0 = 10/σ , and σs = 2.5.

In all simulations we set ε = σ = m = 1 and the quan-
tities are expressed in reduced LJ units, r∗ = r/σ , τ ∗ =
τ
√

ε/mσ 2, F ∗ = σF/ε, and U ∗ = U/ε and kB = 1. Through-
out the manuscript, we drop the asterisks to avoid cluttering all
equations.

To test ActiveNet in a wide range of case studies we
simulated a two-dimensional suspension of active particles
undergoing three different dynamics: (i) active Brownian dy-
namics, (ii) active underdamped Langevin dynamics, and (iii)
chiral active Brownian dynamics.

(i) We perform Brownian dynamics simulations, with an
in house modified version of the LAMMPS [89] open-source
package. We simulate N = 2500 circular particles with di-
ameter σ for Tsim = 107 timesteps with 	t = 10−5 (reduced
units) [90], in a two-dimensional box of size L×L (with peri-
odic boundary conditions) such that the desired total number
density ρ = N

L ∈ {0.1, 0.3, 0.6} [91]. The equations of motion
for the position �ri and orientation θi of the ith active particle
can be written as

�̇ri = Dt

kBT

⎛
⎝−

∑
j 	=i

∇V (ri j ) + Fp �ni

⎞
⎠ +

√
2Dt �ξi, (7)

θ̇i =
√

2Dr ξi,θ , (8)

where V (ri j ) is the interparticle pair potential, kB the Boltz-
mann constant, T the absolute temperature, Fp a constant
self-propulsion force acting along the orientation vector �ni,
which forms an angle θi with the positive x axis, and Dt

and Dr are the translational and rotational diffusion coeffi-
cients, respectively. The components of the thermal forces
�ξi and ξi,θ are white noise with zero mean and corre-
lations 〈ξα

i (t )ξβ
j (t ′)〉 = δi jδαβδ(t − t ′), where α, β are the

x, y components, and 〈ξi,θ (t )ξ j,θ (t ′)〉 = δi jδ(t − t ′). We set
Dt = kBT/γ = 0.01, with γ = 1, Dr ∈ {0.25, 1.0} and Fp ∈
{3, 15, 30, 60, 120} for three different V (ri j ) (WCA, Lennard-
Jones and shoulderlike potential shown in Fig. 2) to achieve a
wide range of phases, although we only included three cases
in the main text.

(ii) Next, we simulate active particles undergoing under-
damped Langevin dynamics with the LAMMPS [89] open
source package, for Tsim = 107 timesteps with dt = 10−3 (re-
duced units). The equations of motion for the position �ri and
orientation θi of the ith active particle can be written as

m�̇vi = −
∑
j 	=i

∇V (ri j ) + Fp �ni − γt �vi +
√

2γt kBT �ξi, (9)

θ̇i =
√

2Dr ξi,θ , (10)
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where V (ri j ) is the interparticle pair potential, Fp a constant
self-propulsion force acting along the orientation vector �ni

which forms an angle θi with the positive x axis, γt the trans-
lational friction coefficient, and Dr = kBT/γr the rotational
diffusion coefficient. Furthermore, the components of the ther-
mal forces �ξi and ξi,θ are white noise with zero mean and
correlations 〈ξα

i (t )ξβ
j (t ′)〉 = δi jδαβδ(t − t ′), where α, β are

the x, y components, and 〈ξi,θ (t )ξ j,θ (t ′)〉 = δi jδ(t − t ′). We
simulated this underdamped system with 3600 active particles
with a repulsive WCA potential [Eq. (5)] and Fp = 5 in a
rectangular box with an edge of L = 600 corresponding to a
density of ρ = 0.01. The temperature was set to kBT = 1 with
a translational and rotational friction coefficients of γt = 1
and γr = 10/3, respectively, consistent with the rotational
diffusivity of spherical particles [82].

(iii) Finally, we perform chiral active Brownian cABP
simulations, similarly to (i) with an in house modified ver-
sion of the LAMMPS [89] open-source package. In this
case the equations governing this system are the same as (i)
Eqs. (7) and (8) but we add a constant torque, which in the
overdamped regime leads to a constant term in Eq. (8), a
constant angular velocity ω0 for the orientation of the particle:
θ̇i = ω0 + √

2Drξi,θ . Using the angular version of Stokes’
law, T = 8πηR3ω and the rotational Stokes-Einstein relation
Dr = kBT/8πηR3, we can write T = (kBT/Dr )ω. So Eq. (8)
is rewritten as

θ̇i = Dr

kBT
T0 +

√
2Drξi,θ , (11)

now showing the constant torque T0. In the case of no
interaction and null noise, the orientation of these parti-
cles rotates with a constant ω0 and the particles perform
circular motions with radius Rg = v0/ω0 and period Tg =
2π/ω0. We perform simulations of 2500 cABPs described
by Eqs. (7) and (11) for Tsim = 107 timesteps with dt =
10−5, in a square simulation box of side L ≈ 91.29 set-
ting the numerical density at ρ = 0.3. For the interparticle
interactions we use a WCA potential (5). We set kBT =
Dt = 10−4, Dr = 6.28×10−5, and Fp = 3.14×102 to per-
form five simulations for T0 = {10−1, 100, 101, 102, 103}
leading to Rg = 5σ×{10−1, 100, 101, 102, 103} and Tg ≈
{10−2, 10−1, 100, 101, 102}/dt steps.

In the case of Brownian dynamics, to train our neural
network, we use the position and orientation of all particles at
different times as input data and the velocities as the variables
that the GNN should reproduce at its output. At time t we cal-
culate the ground-truth velocities as [�x(t + 	t ) − �x(t )]/	t ,
setting 	t = 10 simulation steps. We have checked that the
GNN obtains equivalent results choosing 	t = 10, 50, 100.
In general, using a smaller 	t will lead to a better correlation
with the instantaneous forces present at t but noisier data
(more data may be necessary to train). However, a larger 	t
will lead to a larger signal-to-noise ratio (less data will be
necessary), but a degraded correlation with the force we want
to learn. In the case of underdamped Langevin dynamics,
to train our neural network, we use position, velocity and
orientation of all particles at different times as input data and
the accelerations as the variables that the GNN should repro-
duce at its output. At a time t we calculate the accelerations
as [�v(t + 	t ) − �v(t )]/	t , setting 	t = 10 simulation steps.

Finally, in the case of chiral active particles, we calculate the
angular velocity as [θs(t + 	t ) − θs(t )]/	t , where θs is the
total swept angle by the orientation of the particle with respect
to the positive x axis at t = 0 and 	t = 100 simulation steps.

IV. EXPERIMENTAL DETAILS

We have performed experiments in a quasi-2D system of
induced-charge electrophoretic self-propelled Janus colloids
[4–6]. Due to the AC field, colloids self-propel and exhibit
interparticle interactions also, as a result of their electric po-
larization.

We used silica particles with a diameter of 4.28 µm to
create Janus particles. We first deposited the silica particles
onto cleaned glass slides with a resulting area fraction of 0.1,
after which we left the solvent evaporate. The particles were
then coated with 50 nm of titanium by vapour deposition,
and subsequently coated with 15 nm of silica. These particles
were removed from the cover slip by gentle sonication into a
NaCl 0.1 mmol dm−3 solution.

The sample cell was built with the following specifications:
top electrode 15–30 �c−1m ITO cover slips from Diamond
Coatings Ltd., coated with 25 nm silica by vapour deposi-
tion; bottom electrode: 80 nm gold electrode with 5 nm of
chromium and 25 nm of silica. The bottom part is in contact
with particles. Specac Omni Cell spacers from Merck of width
60 µm were used with Norland optical UV glue to separate the
electrodes. This left a gap of 110(010) µm between the elec-
trodes. An alternating square potential at 8 kHz and varying
amplitude was passed through a signal generator creating a
field perpendicular to the observation plane. A sketch of the
experimental setup is shown in Fig. 3.

Recordings were made with a 4.2 MPix XIMEA camera
at a constant framerate (<10.3 fps) in a reflection microscopy
setup. To this end, a BS013 50:50 beam splitter from Thorlabs
was used with an Olympus UPLXAPO 20X oil immersion
Objective. Particles were detected with a custom algorithm
and tracked with software by Crocker and Grier [92].

The behavior of electrophoretic Janus particles is tunable.
Nishiguchi et al. [93] showed that the direction and speed of
the particles could be changed by increasing the frequency
of the AC electric field. Zhang et al. and Yan et al. also
demonstrated that the electrostatic interactions between the
induced charges in the particles change and invert through a
similar change in electric field frequency [5,6]. In our work,
we selected the electric field and particle properties such that
we avoided the regime where forces between the metal and di-
electric cap were attractive, aiming for purely repulsive forces
through which we could form MIPS. Note that the conduc-
tivity of ions in solution will typically be lower than that of
electrons in the metallic cap, since the ions will interact with
the solvent molecules and other ions. As a result, the velocities
of our particles became quenched when the frequency of the
electric field entered the MHz region, and visible reduction
already occurred in the kHz range. The screening effects of
the ions and double layers, which respond to the induced
polarization of the particle, may thus be more isotropic than if
the ions would move in sync with the AC field.

Regarding the inertial behavior of the particles it should
be noted that most experiments with passive colloids have
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FIG. 3. Experimental setup. (a) Scheme of an observation cell:
(a.a) Cover slip, (a.b) ITO electrode, (a.c) 25 nm silica surface,
(a.d) spacer with UV glue, (a.e) 25 nm silica surface, (a.f) 5 nm
chromium surface, (a.g) 80 nm gold surface, (a.h) cover slip, and
(a.i) glass slide. (b)–(e) Snapshots of the experimental system. (b)
Zoom on five electrophoretic Janus particles where the two hemi-
spherical caps are clearly seen. When an electric field, E , is applied
perpendicular to the substrate, particles orient themselves in such a
way to maximize the magnitude of their induced dipoles. The equator
that separates the caps is perpendicular to the substrate, confining the
movement to 2D. Depending on the intensity of the electric field,
E , and the area fraction, φ, different phases can be observed: (c)
a gas phase (dilute, φ = 0.10, E = 727 Vcm−1); (d) a liquidlike
phase (φ = 0.29, E = 181 Vcm−1, where activity is too low for
phase separation to take place); (e) an interrupted phase separation
(φ = 0.29, E = 363 Vcm−1).

been modeled in the overdamped (Brownian) regime [94,95].
For active colloids, hydrodynamics is often considered to
be relevant for unraveling particles’ motion. Photocatalytic
TiO2-functionalized Janus microswimmers, self-propelling
when exposed to ultraviolet light [96], have shown com-
plex two- and three-dimensional motion, controlled by the
hydrodynamic interactions of the colloids with the glass
substrate [97]. In Ref. [98], the authors studied half-gold-
coated TiO2 particles, whose direction of motion could be
reversed by exploiting the different photocatalytic activities

on both sides. The reversal in propulsion direction changed the
hydrodynamic interaction from attractive to repulsive, qualita-
tively described by a minimal hydrodynamic model. However
it is also often common to map experiments of active colloids
onto simulation results of active Brownian particles (neglect-
ing, to a first approximation, hydrodynamics). Just to give
a few examples, experimental results of active colloids have
been compared to numerical results of active overdamped
Brownian particles in Ref. [99] (Janus Platinum-Polysterene
catalytic microswimmers with tunable buoyant weight), in
Ref. [100] (light-activated microswimmers, with an inserted
hematite), in Ref. [101] (silica spheres half-coated with a
carbon layer in a critical fluid), and in Refs. [102] and [6]
(induced-charge electrophoretic colloids in an ac field). In the
latest work [6], the authors employed the same experimental
setup as the one used in our work. Thus, to a first approxima-
tion, in the dilute regime and for low electric field amplitudes
under study, we assume that the dynamics of the Janus col-
loids used in our experiments can be considered overdamped.

V. RESULTS

In this section, we start by showing that ActiveNet can
learn forces used in simulations of active Brownian parti-
cles. Interestingly, we demonstrate that ActiveNet can also
learn the stochastic forces present in the dynamics. Next, we
show that ActiveNet is able to learn torques (for a system of
chiral active Brownian particles) and nonconservative forces
(in underdamped dynamics). Finally, we demonstrate how
ActiveNet learns the forces present in an experimental sys-
tem and discuss the physical implication of their functional
dependence on external parameters such as the electric field.

A. ActiveNet correctly learns forces in simulations
of active particles

The results presented in this section can be split into three
groups: (i) the application of ActiveNet to simulations of
ABPs with different interaction potentials [Figs. 4(a)–4(d)];
(ii) the validation of ActiveNet with systems in the under-
damped regime or presenting torques [Figs. 4(e) and 4(f)]; and
(iii) testing the sensibility of the method against thermal noise
and data scarcity (Fig. 5).

(i) In the overdamped cases, for each simulation ActiveNet
is trained using 380 snapshots of 2500 particles. ActiveNet
adopts as input the positions and orientations of all particles
in each frame, and learns to predict the correct velocities. In
this process, the edge function learns the two-body force be-
tween any pair of particles (up to a linear transformation, see
Appendix 2), while the node function learns the active force
acting on each particle. Figures 4(a)–4(c) present the two-
body forces learned by ActiveNet, compared with the force
used in the simulation (dashed lines). Figure 4(a) presents a
dilute suspension (gas phase) of particles interacting via a re-
pulsive force characterized by two length scales derived from
a shoulder potential. Figure 4(b) shows a dense suspension
of particles that interact via a purely repulsive WCA inter-
action with high activity. Particles undergo motility-induced
phase separation (MIPS), and ActiveNet learns a repulsive
force even though the system phase separates due to particles’
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FIG. 4. ActiveNet can learn the forces and torques present in simulations of active particles from their trajectories. To test ActiveNet,
we perform computer simulations on two-dimensional suspensions of different systems. Panels (a)–(c) illustrate the two-body force versus
the distance between two particles in several cases: panel (a) shows the case of a shoulderlike potential for active particles in a gas phase
(Fp = 15); panel (b) corresponds to active repulsive (WCA-like) Brownian particles in a MIPS phase (Fp = 30); and panel (c) displays the
case of attractive (Lennard-Jones) active Brownian particles in a dynamic cluster phase (Fp = 3). Panel (d) depicts the magnitude of the
active force acting on each particle versus the angle θ for the three previous cases, either enforced in the simulations (dashed line) or learned
from ActiveNet as in (A1) (continuous line). The lowest lines correspond to Fp = 3 (LJ), the middle lines to Fp = 15 (shoulder) and the top
lines to Fp = 30 (WCA). Panel (e) shows the drag force versus the particle’s velocity for active repulsive (WCA-like) particles undergoing
underdamped Langevin dynamics in a gas phase. Panel (f) shows the learned torque in the case of chiral ABPs subjected to a constant torque
(T0 = 1 in this case) with a WCA potential, see Sec. III and Appendix 2 and Fig. 8 for more details. In all panels the ground-truth force (the
one inputted in the simulations) is plotted with dashed lines, whereas the predictions of ActiveNet are plotted with continous lines. In panels
(a)–(c) repulsive interactions are plotted in red and attractive in black. The insets show snapshots of the corresponding simulations.

activity. Figure 4(c) presents a dilute suspension of particles
interacting via an attractive Lennard-Jones interaction with
low activity. Particles form “dynamic” clusters that jiggle
and drift, where very few particles explore different local
structures, making it harder for ActiveNet to learn the two-
body forces. In this case, ActiveNet slightly underestimates
the two-body force; this is likely due to the fact that, at
low activities, the two-body forces change within a shorter
timescale than in the rest of the cases, leading to a reduction in
the correlation between the numerical (average) velocity and
the instantaneous force we aim to learn. It should be noted
that the two-body forces learned by ActiveNet dramatically
deviate from the true forces present in the simulations for
distances smaller than the ones shown in Figs. 4(a)–4(c). This

FIG. 5. Mean Absolute Error for the predicted active and two-
body forces as a function of the temperature of the simulation and
the amount of data used for training the network (measured as the
number of frames, each containing 2500 particles). The red dot
shows the values of these parameters used for Fig. 4.

occurs because at very short distances the repulsion between
particles is larger than the active forces acting on them, lead-
ing to a lack of data at those distances—in the simulations
there are no pairs of particles closer than a certain threshold,
controlled by the short range repulsion and the intensity of the
active force. Due to the lack of data, ActiveNet cannot learn
the two-body force at distances shorter than the threshold.
In these three systems, where particles interacted through
these two-body forces while being self-propelled by active
forces, ActiveNet was also able to correctly learn the active
forces, which are presented in Fig. 4(d) for the three systems
together.

(ii) In the case of underdamped Langevin dynamics, Ac-
tiveNet is trained using 94 snapshots of 3600 particles each
and adopts as input the positions, orientations and velocities
of all particles in each frame, and learns to predict the correct
accelerations. In this process, the edge function learns the
two-body force between any pair of particles (up to a linear
transformation), as in the Brownian case. However, the node
function not only learns the active force acting on each particle
but also the drag force, Appendix 2 explains how to separate
both contributions. Figure 4(e) studies a dilute suspension of
active particles in the underdamped regime (Langevin dynam-
ics) interacting via a purely repulsive WCA potential with low
activity, as shown in the panel, ActiveNet can learn the drag
force showing how this method could be used to learn forces
that depend on velocities.

In the case of chiral ABPs, ActiveNet is trained using 400
snapshots of 3600 particles each, it takes as input the positions
and orientations of the particles and is trained to predict the
linear and angular velocities. In this process, the node function
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correctly encodes the active force and torque acting on the
particles, and the edge function again correctly captures the
pairwise repulsive interaction (WCA). The predicted torque is
shown in Fig. 4(f), while the predicted active and two-body
forces can be seen in Fig. 8 of Appendix 2.

In view of the results for these two last cases, we conclude
that the applicability of ActiveNet is thus not restricted to the
ABP model and can be applied satisfactorily to underdamped
systems in which inertia cannot be disregarded and systems in
which there exist additional orientational dynamics.

(iii) Finally, we study the sensibility of ActiveNet against
noisy and scarce data (by increasing the temperature of the
simulation and by feeding ActiveNet with subsets of data of
decreasing size, respectively). We quantify the error in the
forces learned by ActiveNet through the computation of the
Mean Absolute Error between the predicted and the ground-
truth active and two-body forces (Fig. 5). Additional details
can be found in Sec. III and Appendix 3 (Fig. 9). In summary,
as one could have expected, higher temperatures and smaller
amounts of training data lead to less accurate predictions
by ActiveNet. In the cases studied in this work, 10 frames
(containing 2500 particles each) are enough to learn the forces
in a broad range of temperatures.

B. ActiveNet facilitates the estimation of one-body
stochastic forces

We have shown how ActiveNet can learn the determin-
isic forces acting on active brownian particles. However, we
may also be interested in discovering the stochastic forces
that, together with the deterministic forces, control the dy-
namics of the system. If there were no deterministic forces,
then one could always extract the amount of translational or
rotational noise in the dynamics of the particles calculating
the mean squared displacement of such quantities. However,
in real cases where activity and interactions are present, the
stochastic forces are masked by the interactions and active
forces.

Fortunately, we can use the deterministic forces learned
by ActiveNet to subtract the deterministic contribution to the
particles’ trajectory. In this way, we obtain virtual trajectories
whose dynamics is solely controlled by the stochastic terms.
Calculating the mean squared displacement on these virtual
trajectories we can estimate the stochastic forces present in
the dynamics of the particles.

Since these virtual particles diffuse in x, y, θ , subtracting
the deterministic contribution learned by ActiveNet from the
velocities (directly extracted from the trajectories) we have
access to the stochastic terms:

1

Np

Np∑
i

∣∣vx,i − v
p
x,i

∣∣ ∼
√

〈x2〉/	t2 ∼
√

2Dt/	t, (12)

1

Np

Np∑
i

∣∣vy,i − v
p
y,i

∣∣ ∼
√

〈y2〉/	t2 ∼
√

2Dt/	t, (13)

1

Np

Np∑
i

∣∣vθ,i − v
p
θ,i

∣∣ ∼
√

〈θ2〉/	t2 ∼
√

2Dr/	t, (14)

FIG. 6. Relation between the value taken by the normalized loss
function L̄ and the diffusion constant for the simulations of repulsive
ABPs interacting via a repulsive WCA potential. The dashed line
shows the theoretical prediction of this relation [see Eq. (15)]. The
data markers show the values of the loss function after 200 epochs
of training for two different cases. The empty squares correspond to
the loss function of the network trained only with Nf r = 2 frames
of a simulation in which Fp = 30 and Dr = 0.25. The empty circles
correspond to the loss function of the network trained on the same
simulation but with Nf r = 1800 frames. The inset shows the same
plot with linear scale in both axes.

where Np is the number of particles, and we have used the
MSD of a random walk in one dimension for each of the
components. To showcase this approach, we will study the
case of ABPs interacting with a repulsive WCA potential and
no torques. In this case, Dr can be directly inferred from
1

Np

∑Np

i |vθ,i|. However, we cannot extract Dt directly from the
trajectories, since the diffusivity would be largely impacted
by activity and interactions. We need to use Eqs. (12) and
(13) for this purpose, but note that this information is already
contained in the loss function that we use to train the model,
in this case:

L̄ = 1

Np

Np∑
i

(∣∣vx,i − v
p
x,i

∣∣ + ∣∣vy,i − v
p
y,i

∣∣)

≈
√

8Dt/	t . (15)

L̄ is the per particle loss function. We now compare the
final value of the loss function computed by ActiveNet during
training on the simulations of ABPs for different temperatures
(the same ones used in Fig. 5). Figure 6 shows how the loss
computed by ActiveNet is remarkably close to

√
8Dt/	t ,

allowing us to estimate Dt directly from the value of the loss.
At low temperatures the value of the loss deviates from the

theoretical line, although this is only noticeable in log scale
(see inset of Fig. 6). At these temperatures, the noise from the
dynamics is comparable to the uncertainty in the deterministic
forces that ActiveNet has learned. When the network is trained
with more data (circular markers in Fig. 6), this deviation de-
creases. At higher temperatures the loss function follows rea-
sonably well Eq. (15), although the inset in Fig. 6 displays a
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small deviation where the loss is slightly below Eq. (15). This
could be due to modest overfitting. For systems where torques
are present a similar approach can be followed, one should
subtract the torques learned by ActiveNet from the angular
velocities before computing the MSD and estimating Dθ .

C. ActiveNet learns active and two-body forces in experiments
of electrophoretic Janus particles

Without ActiveNet, extracting the expressions for the ac-
tive and two-body forces from the collective dynamics of the
particles would be extremely hard. ActiveNet allows us to
tackle this problem from a completely different point of view:
from particles’ positions and orientations, ActiveNet learns
the active and two-body forces that best predict particles’
velocities. For simplicity, we build ActiveNet assuming that
the active force depends on the orientation of the particle and
the two-body force depends on the distance between pairs
of particles (see Appendix 1 for more details). Note that to
use ActiveNet we do not need to assume if the forces are
conservative or not. We train ActiveNet with the data ex-
tracted from ten different experiments, performed at different
values of both electric field and area fraction, as reported in
Fig. 7 (the values are explicitly indicated in the legend). Each
time, ActiveNet is randomly initialized before the training
procedure. Depending on the amount of data gathered in each
experiment, we use 50–100 snapshots containing approxi-
mately 1000–6000 particles each.

Figure 7(a) presents the modulus of the active force as a
function of particles’ orientation (θ ). Approximately horizon-
tal lines indicate that ActiveNet is learning an active force with
a constant modulus and no preferred direction. In this panel,
(as well as in Fig. 7(b)), we indicate by means of shadows
around the lines the estimated uncertainties (error bars) for
the predictions. Each data point corresponds to the average
of an ensemble of ten ActiveNet models, trained with the
same data and, as mentioned in the introduction, with different
initial seeds, the error bar is the standard deviation of the
predictions. We notice that the error bars are small compared
to the absolute values of the predicted values and support
our observation of no preferred direction. We calculate the
average value of each line and plot it in Fig. 7(c) as a function
of the square of the electric field amplitude. Points are scat-
tered along a straight line, leading to the expected [6] relation
�F p ∼ CE2, see Appendix 2. Moreover, points seem to follow
different straight lines depending on their area fraction, which
leads to a relation �F p ∼ C(φ)E2. The different straight lines
may be due to the different sample cells used for each area
fraction. Although these cells are very similar, small differ-
ences in the spacing between the confining walls could lead
to systematic errors in the observed prefactor [C(φ)]. Further
work is needed to resolve this. It is, however, remarkable that
ActiveNet seems sensitive enough to detect this effect.

Figure 7(b) shows the two-body force, with error bar
marked by a shadow, that ActiveNet learns as a function of
the distance between two particles. The straight lines in the
semilog plot indicate an exponential decay. Low area fraction
experiments (φ ∼ 0.1) lead to very clear and almost parallel
straight lines, whereas experiments at higher area fractions
present more variability. The experiments that combine high

electric field and high area fraction present an interrupted
MIPS phase (see Fig. 3). Thus, it is reasonable to assume that
it will be harder for ActiveNet to learn the two-body inter-
actions in those cases: here, particles are closer together and
many-body interactions might play a more pronounced role.
We fit each line between d = 1 and d = 3 to an expression of
the form βeκd (fits not shown in the plot). Figures 7(d) and
7(e) show the best fit for β and κ , for each experiment. The
prefactor of the exponential decay (β) scales also as E2, con-
sistent with the a screened electrostatic interaction [103,104],
since the polarization in each colloid is proportional to E .
However, κ does not seem to depend on E or on area fraction
and has an approximate value of −1.2 diameter−1, corre-
sponding to a characteristic length scale for this interaction
of approximately one particle diameter.

VI. DISCUSSION AND FUTURE WORK

Our work demonstrates the potential that applying deep
learning methods with inductive biases (a priori assumptions)
has when studying collective dynamics of suspensions
of active colloidal particles. The most important a priori
assumptions we considered were that (1) all particles
followed the same local rules (edge and node functions)
and (2) many-body interactions could be neglected. With
these assumptions, ActiveNet was not only able to predict
the system’s dynamics, but could be directly used to uncover
forces and torques acting on active particles. We validated
our approach by means of numerical simulations in the under
and overdamped regime, where we had complete control
over the active and conservative forces. We were able to
extract the correct expressions for the forces in cases with
different levels of activity and different two-body interactions,
including forces that depend on velocities—such as the drag
force—which opens up the possibility of using ActiveNet
to learn more complex hydrodynamic forces in the future.
For the case of chiral ABPs, we are also able to extract the
active force, torque and two-body interactions. We presented
a simple example where the active torque was just a constant
term as a proof of concept, i.e., it does not depend on
the position or orientation of other particles. In other cases,
ActiveNet could be also used to extract the torque experienced
by the particles, which could depend on the particles’
position and orientation or the coordinates of nearby particles
[105–107]. Moreover, we also demonstrate a procedure
by which using ActiveNet’s predictions we can estimate
stochastic forces present in ABP suspensions. Thus obtaining
a good estimation of the full equation of motion of this system.

Hydrodynamic forces are typically many-body, long-
ranged, and they may depend on the position, orientation
and velocity of several particles. Generalizing ActiveNet
for such situations will be an interesting challenge for the
future. Although ActiveNet is currently restricted to two-
body interactions, it can in principle learn effective two-body
hydrodynamic interactions between particles, possibly de-
pending also on the velocities of the particles. For dilute
systems, these two-body interactions may give a reasonable
good approximation to the actual hydrodynamic interactions
[108]. When many-body hydrodynamics needs to be taken
into account, a tentative approach would be to include a
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FIG. 7. ActiveNet can learn the active and interparticle forces in an experiment of electrophoretic Janus particles where activity is
controlled by the magnitude of the electric field (E ). In panels (a) and (b), the ten different series of data (lines with different styles) represent
ten different systems, each characterized by a pair of values of the electric field (E) and the area fraction (φ), as reported in the legend, below
the four panels. Note that three values of (E , φ) correspond to the snapshots shown in Fig. 3, we have marked them with black asterisks in
panels (a) and (b) and black circumferences in panels (c)–(e). In panels (a) and (b) we train ten instances of ActiveNet for each dataset with
different initial seeds, lines correspond to the average result and the shadows around the lines mark the estimated uncertainty (error bar) by
means of the standard deviation. Panel (a) displays the magnitude of the active force versus the particle’s orientation. All lines show horizontal
behavior indicating the absence of a preferred direction in the system. Panel (b) displays the modulus of the interparticle force versus the
distance between two particles. All forces are repulsive (red lines) and they approximately follow exponential decays, βeκd . The black dashed
line does not correspond to any particular fit and is included for visualization. Panel (c) reports the average value of the active force in panel
(a) versus E 2. The dashed line is a linear fit to the points and indicates that the active force is proportional to E 2. Panels (d) and (e) show β

and κ (βeκd , d ∈ [1, 3]) for all the lines in panel (b) versus E 2 [individual fits are not plotted in panel (b)]. From panel (d), β scales as E 2, the
dashed blue line represents a fit to the data. Panel (e) shows that κ does not depend on E or φ. Its value fluctuates between −1 and −2 leading
to a length scale of the order of one particle diameter. The color of the points in panels (b)–(e) correspond to the area fraction (φ, see colorbar).

M×M hyperedge function [109] that takes as input the par-
ticles’ velocities and outputs (upon learning) the M-body
forces. This hyperedge function could be the analog to the
resistance matrix [108] of Stokesian dynamics [110]. In this
case, we believe that symbolic regression will be necessary
to understand the analytic expression for the interparticle
interactions [111,112].

In the case of experiments with electrophoretic Janus par-
ticles, ActiveNet found an active force proportional to E2, in
agreement with previous studies [93]. Furthermore, ActiveNet
was sensitive enough to detect subtle differences showing a

dependency on area fraction. Finally, ActiveNet revealed that
particles in these experiments were interacting via a pure re-
pulsion, decaying as an exponential with a length scale (κ−1)
that did not depend neither on area fraction nor electric field,
and a prefactor that scaled as E2. This force is consistent with
a screened electrostatic interaction between the colloids. Con-
trary to the case of numerical simulations, the two-body force
learned from experimental data started deviating from the
described behavior when interrupted MIPS phases developed,
suggesting that many-body interactions might start playing an
important role in such cases.
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We believe that ActiveNet can be directly applied to other
suspensions of active particles. For example, it would be in-
teresting to use this approach to distinguish between forces
present in systems of healthy or pathological living cells (sim-
ilar to Ref. [113]), which may ultimately lead to a diagnostic
tool. ActiveNet could also be applied to passive systems. In
particular, since ActiveNet uses particles’ dynamics and not
structural information, it could be especially useful when a
system of passive colloids is out-of-equilibrium (due to a par-
ticular initial condition or to external driving). Additionally,
we plan to test if the training of these GNNs can be improved
using a dynamical change of its loss function landscape [114],
considering a cutoff [�(t̃ )] that changes during training. In
cases where the dynamics of the system changes during the
observation time, it will be interesting to understand how the
architecture of ActiveNet affects the capability of forgetting or
transferring previous knowledge to new conditions [115,116].

Finally, the choice between ActiveNet and other available
methodologies ultimately hinges on the level of detail required
for the sought model and the data accessible to the researcher.
If particle trajectories are obtainable, then our model can
offer a reliable description of the microscopic forces at play
in the particle dynamics. In contrast, if the researcher only
has access to coarse-grained fields, such as average velocities
and densities, then our method cannot be applied. In such
a case, one can consider alternative approaches that derive
appropriate partial differential equations [46–48].

To conclude, our work opens up new avenues for under-
standing systems of active particles. Our approach leads to
a ready-to-use tool for experimentalists to learn the forces
present in their systems. The extracted forces will shine a
light on the physics underlying experimental systems, which
in turn could lead to novel numerical and analytical models,
undoubtedly leading to new predictions in the field of active
matter.

Note added. Recently, the authors became aware of an
interesting work related to ours, also based on graph-networks
algorithms, to learn the pairwise interaction and model dy-
namics at particle level [117]. Differently from the cited work,
we develop a graph-network scheme for learning not only
the pairwise interactions but also one-body terms, such as
the active or drag forces of self-propelled colloids and the
stochastic force. The method here proposed is the ability to
decouple one-body and two-body (pairwise) contributions.

The codes used for this work are available in a public
repository [118].
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APPENDIX: ACTIVENET

1. Inductive biases for the edge and node functions

The main assumption when we use ActiveNet is that all
the particles follow the same local rules (the edge and node
functions) and that we neglect many-body interactions. In this
work the edge and node functions are two fully connected
deep neural networks with two hidden layers of 300 units
(as shown in the bottom panels of Fig. 2). In addition to
this, we add some extra inductive biases. In the case of ex-
periments, we know there are imperfections in the substrate
where few particles might get stuck. Thus, directly providing
particles’ positions (xi, yi ) to the edge and node functions
would lead ActiveNet to learn this spurious (although real)
information. When dealing with the edge function, we di-
rectly provide the distance between two particles, instead of
feeding ActiveNet with the coordinates and letting it learn
d =

√
(x1 − x2)2 + (y1 − y2)2. Next, we multiply by the uni-

tary vector pointing in the direction connecting the two
particles. We also tried providing the distance and the unitary
vector as input so that ActiveNet would learn the correct
direction of the force: this led to equivalent results.

For the same reason we do not give the position of the
particles to the node function, considering as the only input the
particle’s orientation (cos θ, sin θ ) and the aggregated output
of the edge function applied to the pairs ij. In the underdamped
dynamics we also input the velocity (�vi) to the node function.
Note that we could have given also the orientation of the
particles or the velocities to the edge function—which learns
the two-body interaction—this could have led to learning an
interaction depending on alignment or velocities. However,
we preferred to consider at this time only the distance between
the two particles to prioritize the simplest interpretation of the
forces learned by ActiveNet.

2. Extracting the active and two-body forces and the torques

Probably the most important feature of ActiveNet is that
it allows to learn the forces governing the dynamics of a
system of particles, together with a clear physical interpreta-
tion of the results. After training, ActiveNet is able to predict
the deterministic dynamics, extracting interparticle and active
forces directly from �ξ and �ψ . As explained in the main text,
ActiveNet disentangles the components of the velocities that
can be explained through �ξ and �ψ : to obtain the forces we then
use Stokes’ law.

For the simulations of Brownian particles the expressions
are dimensionless and forces and velocities take the same
values. We extract the learned active force from ActiveNet as

�F p
active(�c) = �ψ (�c, �0). (A1)
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However, �ξ learns the two-body interaction between particles.
A key point here is that �ψ takes as input the sum of several
outputs of �ξ . Therefore, if the training is successful and Ac-
tiveNet learns the dynamics, �ψ should only perform a linear
transformation on

∑
|di j<�| �ξ (�ci, �c j ): in other words, �ξ (�ci, �c j )

learns the force between any two particles, up to a linear trans-
formation. In particular, |�ξ ( �ci, �c j )| will be the modulus of the
interparticle force multiplied by an arbitrary constant. The fact
that the node function cannot make a nonlinear transformation
on the edge function, is the theoretical reason that allows us
to disentangle both contributions.

To recover the interparticle force learned by ActiveNet
(plotted in Figs. 4 and 7) we compute the following:

�ψ (�ci, �ξ (�ci, �c j )) − �F p
active(�ci ). (A2)

In principle, this quantity could depend on the orientation of
particle i, or on the angle that particles i and j form with the
horizontal (αi j). To extract only the dependence on the dis-
tance between the two particles we integrate out both degrees
of freedom,

Gp
i j ==

∫ 2π

0

∫ 2π

0

[ �ψ (�ci, �ξ (�ci, �c j )) − �F p
active(�ci )

] · n̂i j dθdαi j

2π2
,

(A3)

where n̂i j is the unitary vector connecting particles i and j.
In the case of experiments, assuming Brownian dynamics,
we obtain forces using Stokes’ law. We multiply the learned
velocities (which are of the order of 1 particle’s diameter
s−1) by 6πηr ∼ 1.7 10−12 N, considering the water viscosity
η ∼ 10−3 Pa s and the particle radius r ∼ 4.3 µm.

In the case of particles undergoing Langevin dynamics (the
underdamped case), we study the trajectories generated by the
dimensionless equations described in Sec. III. We consider an
edge function analogous to the overdamped case. However,
the node function takes now also the velocity of the particle as
another input and we train ActiveNet to predict the accelera-
tion of particle i:

�ap
i ≡ �ψ

⎛
⎝θi, �vi,

∑
di j<�

�ξ (�ci, �c j )

⎞
⎠, (A4)

where θi and �vi are the orientation and velocity of particle i.
Once ActiveNet has been trained, and it can correctly predict
particles’ accelerations, we take advantage of the isotropicity
of the system to compute the active, drag and two-body forces.
We integrate out the velocity of the particle to get the active
force:

�F p
active(θ ) =

∫ vmax

vmin

∫ 2π

0
�ψ (θ, v,�v, �0)vdvd�v

π (vmax − vmin)2
, (A5)

where v and �v represent the modulus and orientation of
particle i’s velocity. Similarly, we compute the drag force
integrating out the internal orientation of the particle:

�F p
drag(�v) =

∫ 2π

0
�ψ (θ, v,�v, �0)dθ

2π
. (A6)

Finally, since we are only interested on the dependence of the
two-body force on the distance between particles i and j, we
integrate out the internal orientation and velocity of particle i,
and also average over the angle between both particles:

�F p
two-body(d )

=
∫∫∫ 2π

0

∫ vmax

vmin
�ψ (θ, v,�v, �ξ (d, αi j ))vdvdωvdαi jdθ

4π3(vmax − vmin)2
, (A7)

where θ , v, and �v , represent the internal orientation, speed
and orientation of the velocity of particle i, whereas d and αi j

represent the distance and angle determined by the vector that
goes from particle i to j.

In the case of the chiral Active Brownian system, the only
modification done to ActiveNet with respect to the previous
case of Brownian dynamics was to increase the output di-
mension of the node function to 3, now �ψ (�ci, �ξ (�ci, �c j )) =
(ψvx (. . . ), ψvy (. . . ), ψω(. . . )) = (v p

x , v
p

y , ωp), where ωp is
the predicted orientational velocity. We train and test Ac-
tiveNet using 400 simulation frames equally spaced through-
out the full simulation time for 200 epochs. Similarly, as we
did previously for the Brownian dynamics case, the active
and two-body forces are extracted with Eqs. (A1) and (A3),
respectively. The torque is extracted with

T p(�c ) = kBT

Dr
ψω(�c, �0). (A8)

In Fig. 8 we can see the ActiveNet predictions for the the two-
body force (top, left) and the torque and active force (top right)
for the case of T = 10. In Fig. 8 bottom row we can see the

FIG. 8. Top left panel: ActiveNet predictions (continuous black
line) and ground-truth force (dashed gray) for the two-body force.
Top right panels: torque and active force predictions for the case
of T0 = 10 and ground-truth values (dashed gray). In these panels
the shaded area depicts the difference between the predicted and
ground-truth values. Bottom panel: predicted (T p) vs. ground-truth
(T0) torque values (black dots) for the five simulations studied and
ground-truth reference (dashed gray line). In this panel the shaded
area represents the standard deviation of the predicted torques along
the given orientations.
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FIG. 9. Visual representation of the evaluation of the errors. The solid black curves are forces learned by ActiveNet, the dashed curves are
the ground-truth forces programed into the simulation. The shaded region in between them is a measure of ActiveNet’s prediction error. The
top four panels correspond to the four limit cases for the two-body force: (a) low data—high temperature, (b) high data—high temperature,
(c) low data—low temperature, and (d) low data—low temperature. The dotted vertical lines show the range in which the error was computed.
The bottom four panels (e)–(h) correspond to the same cases for the active force.

predicted versus ground-truth values for the five simulations
studied.

3. Estimating the mean absolute error (MAE)

To estimate the validity range of ActiveNet, we compute
the mean absolute error for the predicted active and two-body
forces [Eqs. (A10) and (A9)] of particles in a two-dimensional
dilute suspension of 2 500 active repulsive (WCA) Brownian
particles characterized by an active force of 30 (reduced LJ
units):

MAE
( �Gp

i j

) = 1

N

∑
d

∣∣ �Gp
i j (d ) − �F theo

WCA(d )
∣∣, (A9)

MAE
(
F p

x

) = 1

N

∑
θ

∣∣F p
x (θ ) − |Fp| cos θ

∣∣,

MAE
(
F p

y

) = 1

N

∑
θ

∣∣F p
y (θ ) − |Fp| sin θ

∣∣,

MAE( �F p) =
√

MAE2
(
F p

x
) + MAE2

(
F p

y
)
. (A10)

As shown in the main text, Fig. 5 displays the mean ab-
solute error for the predicted active and two-body forces as a
function of the temperature and the amount of data used for
training the network (measured as the number of frames). The
red dot in these panels shows the value of these parameters
used for Fig. 4. Now, in Fig. 9 we show the evaluation of
errors for the two-body force and the active force. The solid
black curves are the forces learned by ActiveNet, the dashed
curves are the input forces in the simulation: a WCA potential
for the pairwise interactions and an isotropic active force with
a modulus of 30 in reduced LJ units.
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