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Thermo-osmosis of a near-critical binary fluid mixture: A general formulation
and universal flow direction
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We consider a binary fluid mixture, which lies in the one-phase region near the demixing critical point, and
study its transport through a capillary tube linking two large reservoirs. We assume that short-range interactions
cause preferential adsorption of one component onto the tube’s wall. The adsorption layer can become much
thicker than the molecular size, which enables us to apply hydrodynamics based on a coarse-grained free-energy
functional. For transport processes induced by gradients of the pressure, composition, and temperature along a
cylindrical tube, we obtain the formulas of the Onsager coefficients to extend our previous results on isothermal
transport, assuming the critical composition in the middle of each reservoir in the reference equilibrium state.
Among the processes, we focus on thermo-osmosis—mass flow due to a temperature gradient. We explicitly
derive a formula for the thermal force density, which is nonvanishing in the adsorption layer and causes thermo-
osmosis. This formula for a near-critical binary fluid mixture is an extension of the conventional formula for a
one-component fluid, expressed in terms of local excess enthalpy. We predict that the direction of thermo-osmotic
flow of a mixture near the upper (lower) consolute point is the same as (opposite to) that of the temperature
gradient, irrespective of which component is adsorbed on the wall. Our procedure would also be applied to
dynamics of a soft material, whose mesoscopic inhomogeneity can be described by a coarse-grained free-energy
functional.
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I. INTRODUCTION

Osmotic transport of a fluid through a channel at microm-
eter, or smaller, scales has gained much attention because
it is applied in lab-on-a-chip processes [1–6] and involves
fundamental problems in nonequilibrium physics [7–12]. A
gradient of temperature (solute concentration) along the chan-
nel induces a flow, called thermo-osmosis (diffusio-osmosis),
because of force density generated in a heterogeneous layer
near the channel wall [13–15]. In particular, the force den-
sity in thermo-osmosis, which does not involve the buoyancy
responsible for thermal convection, is called the thermal
force density. Derjaguin and his coworkers rationalize thermo-
osmosis and diffusio-osmosis in terms of the continuum
description [16–18]. In addition to these osmotic processes,
pressure-driven transport through a micropore or a nanopore
has also been actively investigated for applications to separa-
tion and purification [19,20].

Studies on thermo-osmosis in liquids date back to
Refs. [21,22], where electrolyte solutions were observed to
permeate porous membranes. Applying Onsager’s reciprocity
in the continuum theory, Derjaguin and Sidorenkov (DS)
proposed a formula expressing the thermal force density
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in terms of the local excess enthalpy for a one-component
fluid [13–16]. According to this formula, the direction of
the flow is the same as (opposite to) that of the temperature
gradient if the excess enthalpy density is negative (positive)
everywhere near the wall. This is expected naively by con-
sidering that the flow in this direction tends to eliminate
the temperature gradient by carrying the fluid with lower
(higher) enthalpy to the region with higher (lower) temper-
ature. However, the local excess enthalpy is not easy to access
experimentally and is numerically evaluated only on the
basis of simplified microscopic models [7,23]. Besides, well-
definedness of microscopic expression of excess enthalpy is
questioned especially near the surface [7,24]. Therefore, it
remains difficult to incorporate detailed microscopic interac-
tions theoretically, and even predicting the flow direction is
often challenging [8,23,24]. In Ref. [7], the authors propose
an extension of DS’s formula for a multicomponent fluid using
the continuum description, while questioning its validity in a
microscopic slip layer. The validity is numerically examined
in Refs. [25,26].

Thermo-osmosis has not been studied in relation to critical
phenomena to the best of our knowledge. In the present study,
for a binary fluid mixture lying in the one-phase region close
to the demixing critical point, we extend our previous study on
isothermal dynamics [27] to cover nonisothermal dynamics of
thermo-osmosis. Below, this mixture, simply referred to as a
mixture, is assumed to be filled in a container composed of
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FIG. 1. Schematic of a situation considered in our formulation.
A mixture is filled in the container composed of two reservoirs and
a capillary tube connecting them. One component drawn in yellow
is preferentially adsorbed onto the tube’s wall, which is imperme-
able and adiabatic. There may be preferential adsorption onto the
reservoir’s wall, which is not assumed in this figure. Thick walls rep-
resent pistons. Imposing difference in pressure, composition, and/or
temperature between the reservoirs generates mass flow through the
tube.

two large reservoirs and a capillary tube connecting them. The
tube’s wall is impermeable and adiabatic. Differences in tem-
perature, composition, and pressure can be imposed between
the two reservoirs (Fig. 1). Between each mixture component
and tube’s wall, we assume a short-range interaction, which
in general attracts one component to the wall more than the
other. The resulting preferential adsorption (PA), becoming
remarkable owing to large osmotic susceptibility [28,29], has
been studied for a long time [30–33]. The adsorption layer
can be much thicker than the molecular size when the mix-
ture temperature, denoted by T , approaches within 1 K of
the critical temperature, Tc, as discussed later. Due to this
unique feature of the near-criticality, the continuum descrip-
tion can be justified in studying some processes of the mixture
transport [34].

In Ref. [27], applying the hydrodynamics based on a
coarse-grained free-energy functional [35], the present au-
thors studied isothermal transport in the linear regime with
respect to thermodynamic forces to calculate the involved
Onsager coefficients and conductance in diffusio-osmosis.
Order-parameter fluctuations in a mixture are significant on
length scales smaller than the correlation length, denoted by
ξ , and enhance the transport coefficients to cause universal
properties [36–40]. However, the PA prevents the mixture
composition in a tube from approaching the critical one, and
thus the critical enhancement does not affect diffusio-osmosis
of a mixture significantly [27]. Hydrodynamics can be applied
to a flow in the tube, where ξ is locally smaller than a typical
length of the flow. It is also suggested in Ref. [27] that, in a
critical regime, the mixture velocity due to diffusio-osmosis
far from a flat surface should exhibit a power-law dependence
on the reduced temperature, τ ≡ (T − Tc)/Tc, if the adsorp-
tion is sufficiently strong and the composition is critical far
from the surface. This originates from the universal order-
parameter profile at equilibrium [41,42]. The same power law
is numerically suggested for the diffusiophoretic mobility of
a colloidal particle in a mixture [43,44]. Universal properties,
if confirmed experimentally, would expand our knowledge of
the critical phenomena in general.

Our general formulation is described in Secs. II A and II B.
We employ the hydrodynamics under inhomogeneous tem-
perature formulated from a coarse-grained free-energy
functional [45,46]. The formulation may be extended to

nonisothermal dynamics of various soft materials. Imposing
the no-slip condition at the tube’s wall and neglecting effects
of the tube’s edges, we discuss flow fields in the tube in
the linear regime in Sec. II C. In Secs. III A and III B, we
derive formulas of the Onsager coefficients and a formula of
the thermal force density for a cylindrical tube, assuming the
total mass density to be homogeneous inside the tube and
the mixture composition to be critical in the middle of the
reservoir in the reference equilibrium state. The former formu-
las include extensions of our previous results of Ref. [27] to
nonisothermal transport, whereas the latter can be regarded as
an extension of DS’s formula to a mixture considered here. We
apply the renormalized local functional theory [41,47] to spec-
ify the free-energy functional in Sec. III C, and rewrite our
formulas in Sec. III D. This theory can incorporate the effects
of the critical fluctuations in the adsorption layer, where ξ is
inhomogeneous. In Sec. IV we focus on thermo-osmosis to
show numerical results and predict that, irrespective of which
component is adsorbed on the wall, the flow direction is the
same as (opposite to) the direction of the temperature gra-
dient in thermo-osmosis of a mixture near the upper (lower)
consolute point. Further discussion and summary are given in
Sec. V.

II. FORMULATION

We write ρa (ρb) for the mass density of a mixture com-
ponent named a (b). The sum ρa + ρb is denoted by ρ, which
represents the total mass density, whereas the difference ρa −
ρb is denoted by ϕ. We write cn for the mass fraction ρn/ρ

and μn for the chemical potential conjugate to ρn, where
n is a or b. In an equilibrium mixture with homogeneous
mass densities, μn is a function of T , ca, and the pressure
(denoted by P), and is also a function of T , ρ, and ϕ. We
write μ± for (μa ± μb)/2; ρ and ϕ are conjugate to μ+ and
μ−, respectively. In Fig. 1, difference of a quantity in the left
reservoir subtracted from the quantity in the right is indicated
by δ. For example, δμa denotes the difference in μa between
the reservoirs. If a component is preferentially adsorbed not
only onto the tube’s wall but also onto the reservoir’s wall, ρn

is also inhomogeneous in the reservoir. Then δρn indicates the
difference in ρn between the central regions of the reservoirs.
The difference between the pressures on the pistons is given
by δP.

A. Thermodynamics

The partial volume and partial entropy per unit mass of the
component n, are denoted by v̄n and s̄n, respectively. In an
equilibrium mixture with homogeneous densities, we have

v̄n =
(

∂μn

∂P

)
T,ca

and s̄n = −
(

∂μn

∂T

)
P,ca

, (1)

where the subscript of a right parenthesis indicates the fixed
variables in the partial differentiation. Writing s for the en-
tropy per unit volume, we have

1 = v̄aρa + v̄bρb and s = s̄aρa + s̄bρb (2)

at equilibrium with ρn and s being homogeneous. We write
v̄− and s̄− for (v̄a − v̄b)/2 and (s̄a − s̄b)/2, respectively; the
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equations in Eq. (1) remain valid after the subscript n is
replaced by − throughout.

We consider the Helmholtz free-energy functional of a
mixture, where fields are coarse grained up to the local cor-
relation length ξ . A part of the functional is given by the
volume integral of a function over the mixture region, Vtot.
The function, denoted by fbulk, is assumed to depend on ρa, ρb,
their gradients, and T , with the dependence on the gradients
being via |∇ρa|2, |∇ρb|2 and (∇ρa ) · (∇ρb). The gradient
terms are indispensable because ξ can be much larger than the
length scale where the local equilibrium is defined. The other
part, representing the wall-component interaction, is given by
the area integral of a function over the interface, ∂Vtot. This
function, denoted by fsurf , depends on ρa, ρb, and T . Thus, the
free-energy functional is given by

F [T, ρa, ρb] =
∫

Vtot

dr fbulk (T, ρa, ρb,∇ρa,∇ρb)

+
∫

∂Vtot

dA fsurf (T, ρa, ρb), (3)

where T and ρn depend on the position r. The volume (area)
element is represented by dr (dA). In Vtot, we write u for the
internal energy per unit volume to have

s = −
(

∂ fbulk

∂T

)
ρn,∇ρn

and

u = fbulk + T s = −T 2

(
∂

∂T

fbulk

T

)
ρn,∇ρn

. (4)

B. Hydrodynamics

We can neglect order-parameter fluctuations to formulate
hydrodynamics on length scales larger than ξ . The mixture’s
velocity field, v, is defined in the frame fixed to the container.
The time derivative of ρ equals −∇ · (ρv). In the stationary
state, we have

0 = ∇ · (ρv). (5)

Although ρ is not assumed to be a constant in the dynamics,
we have ∇ · v = 0 for a weak, laminar, and stationary flow in
the tube, as mentioned in the next subsection. For this flow,
the momentum conservation is represented by

2∇ · (ηsE) = ∇ · Π, (6)

where E is the rate-of-strain tensor, ηs is the shear viscosity
dependent on the local composition, and Π is the reversible
part of the pressure tensor. As shown later, Π is expressed
in terms of fbulk. Because of the mass conservation of each
component, the time derivative of ρn is equal to the negative of
the divergence of its flux, whose deviation from the convective
part, ρnv, gives the diffusion flux, denoted by jn. It is defined
so that ja + jb vanishes [48]. In the stationary state, we have

0 = ∇ · (ϕv + j), (7)

where j is defined as ja − jb. The energy conservation is
described in the next subsection.

The scalar pressure P is given by the negative of the grand-
potential density,

P = μnρn − fbulk = μ+ρ + μ−ϕ − fbulk. (8)

If T is homogeneous, μn(r) is given by the functional deriva-
tive of the first term on the right-hand side (r.h.s.) of Eq. (3)
with respect to ρn(r) in Vtot. Otherwise, it is given by

μn = ∂ fbulk

∂ρn
− T ∇ ·

[
1

T

∂ fbulk

∂ (∇ρn)

]
. (9)

With 1 denoting the identity tensor of order two and repeated
indices summed up, we have

Π = P1 + (∇ρn)
∂ fbulk

∂ (∇ρn)
, (10)

which is symmetric. The gradient terms in fbulk can make
μn and 	 dependent on the gradient terms and make
	 nonisotropic. Equations (9) and (10) are derived for a
one-component fluid in Ref. [45] and are applied in a straight-
forward way to a binary fluid mixture in Ref. [46]. The
previous derivation is not applicable to fbulk specified in
Sec. III C. The coefficient of the square-gradient term, M−/2
in Eq. (37), depends on T slightly nonlinearly although the
linear dependence was assumed in the previous derivation.
In Appendix A we show a more general derivation, which
can be applied to fbulk of Eq. (37). Notably, this derivation
remains relevant to our later calculation of thermo-osmosis
under the linear regime, because the hydrodynamic equa-
tions including this nonlinearity must be derived before their
linearization with respect to the temperature gradient. Equa-
tions (9) and (10) yield an extended Gibbs-Duhem relation

∇ · Π = ρn∇μn + s∇T + ∇T

T
· ∂ fbulk

∂ (∇ρn)
∇ρn, (11)

which is consistent with principles of linear nonequilibrium
thermodynamics; Eq. (11) guarantees positive entropy pro-
duction rate after combined with irreversible terms and the
Onsager’s reciprocity for osmotic fluxes through the tube. The
former is shown in Ref. [45], whereas the latter is mentioned
below Eq. (24) in the next subsection.

We write MnR and UR for the total mass of the component
n and the mixture’s internal energy in the right reservoir of
Fig. 1, respectively. We have a flow in the tube by impos-
ing the thermodynamic forces, −δ(P/T ), −δ(μ−/T ), and
δ(1/T ), on an equilibrium mixture. This equilibrium state,
referred to as reference state, is assumed to be close to the
critical point. In this section, we do not specify the reference
state further for a general formulation. A superscript (ref ) is
added to a quantity in the middle of a reservoir in the reference
state. As shown in Appendix B, the thermodynamic fluxes
conjugate to the thermodynamic forces, denoted by I,J , and
K, are given by⎡
⎣I
J
K

⎤
⎦ =

⎡
⎢⎣ 1/ρ (ref ) 1/ρ (ref ) 0

2c(ref )
b −2c(ref )

a 0
−u(ref )/ρ (ref ) −u(ref )/ρ (ref ) 1

⎤
⎥⎦

⎡
⎣dMaR/(dt )

dMbR/(dt )
dUR/(dt )

⎤
⎦,

(12)

where t denotes the time. We can define a 3 × 3 matrix L,
composed of the Onsager coefficients, so that the linear phe-
nomenological equation

[I,J ,K]T = L[−δ(P/T ),−δ(μ−/T ), δ(1/T )]T (13)
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holds, with the superscript T indicating the transpose. We use
Eq. (1) to obtain

δμ− = −s̄(ref )
− δT + v̄

(ref )
− δP +

(
∂μ−
∂ca

)
T,P

δca, (14)

where the partial derivative is evaluated in the middle of
the reservoir in the reference state. Thus, the thermodynamic
forces in Eq. (13) are determined by δT , δP, and δca, and
determine δμ+ because the usual Gibbs-Duhem (GD) relation
gives

δP = ρ (ref )
n δμn+ s(ref )δT = ρ (ref )δμ++ ϕ(ref )δμ−+ s(ref )δT .

(15)

C. Fields in the tube

We assume that δT , δP, and δca are proportional to a di-
mensionless smallness parameter ε and expand the fields with
respect to ε. The superscripts (0) and (1) are used to indicate
the order of ε. We have μ± = μ

(0)
± + εμ

(1)
± up to the order of

ε, μ
(0)
± = μ

(ref )
± , and T (0) = T (ref ). In contrast, ρ (0)

n becomes
inhomogeneous and different from ρ (ref )

n in the presence of
PA. Because the fields are assumed to be coarse grained up to
ξ , the mass densities at the equilibrium specified by T (ref) and
μ(ref )

n minimize the grand-potential functional,

F [T (ref ), ρa, ρb] −
∫

Vtot

dr [μ(ref )
+ ρ(r) + μ

(ref )
− ϕ(r)]. (16)

Thus, ρ (0)
n is the solution of Eq. (9) with T and μn replaced

by T (ref ) and μ(ref )
n , respectively, together with the boundary

conditions given by Eq. (A8). Below we consider stationary
and laminar flow in the tube at the order of ε. The mixture
is assumed to remain in one-phase region throughout inside
the container. As in the previous study [27], we assume that
the tube is so long and thin that effects of the tube’s edges
on the flow are negligible. We regard δμn and δT as equal to
the differences in μn and T between the edges, respectively;
μn and T are regarded as homogeneous over the tube’s cross
section at each edge.

Assuming the tube to extend along the z axis with the same
cross section, we take the Cartesian coordinates (x, y, z) so
that the right reservoir lies on the positive z side. A field with
the superscript (0), such as ρ (0)

n , is independent of z in the tube.
Thus, for the laminar flow with vx = vy = 0, Eq. (5) gives

0 = ∇ · v(1) = ∂zv
(1)
z , (17)

where ∂z denotes the partial derivative with respect to z. This
justifies Eq. (6) in the tube up to the order of ε. We write η(0)

s
for ηs evaluated at ε = 0; η(0)

s depends on ϕ(0). In the absence
of PA, ρ (0)

n and η(0)
s are homogeneous, and thus Eq. (6) gives

η(0)
s �v(1) = ∇P(1).

We write e for the total-energy density, given by u +
ρ|v|2/2, to have u(0) = e(0). The heat flux, denoted by jq,
is defined so that the Eulerian time derivative of e equals
−∇ · (ev + v · Π + jq). In a stationary state in the tube, the
energy conservation gives

0 = ∇ · (
u(0)v(1) + v(1) · Π(0) + j (1)

q

)
. (18)

The transport coefficients, �, λ, and κ are defined so that we
have [48,49]

j = −T �∇μ−
T

+ κ∇ 1

T
and jq = −κ∇μ−

T
+ λ∇ 1

T
.

(19)
The coefficients depend on ξ owing to the critical enhance-
ment. If evaluated using ξ at ε = 0, they are denoted by
�(0), κ (0), and λ(0), respectively, and are independent of z. In
Eq. (19) at the order of ε, we can use T (0)�(0), κ (0), and λ(0)

for T �, κ , and λ, respectively.
As calculated in Appendix C, the z component of Eq. (6)

at the order of ε is found to become

ε∇̄ · (
η(0)

s ∇̄v(1)
z

)
= T (0)

Ltube

{
ρ (0)

ρ (ref )
δ

(
P

T

)
+

(
ϕ(0) − ρ (0)ϕ(ref )

ρ (ref )

)
δ
(μ−

T

)

+
(

ρ (0)u(ref )

ρ (ref )
− u(0) − P(0)

)
δ

(
1

T

)}
(20)

in the tube, whose length is denoted by Ltube. Here, ∇̄ repre-
sents the two-dimensional nabla on the (x, y) plane with v(1)

z

regarded as a scalar. Equation (20) determines v(1)
z together

with the no-slip boundary condition at the wall; v(1)
z is inde-

pendent of z because of Eq. (17). As shown in Appendix C,
the x and y components of j (1) and j (1)

q vanish in the tube, and
Eq. (19) yields

ε j (1)
z = 1

Ltube

[
T (0)�(0)δ

(−μ−
T

)
+ κ (0)δ

(
1

T

)]
(21)

and

ε j (1)
qz = 1

Ltube

[
κ (0)δ

(−μ−
T

)
+ λ(0)δ

(
1

T

)]
(22)

in the tube. Up to the order of ε, dMnR/(dt ) and dUR/(dt ) are
respectively given by the area integral of ε(ρ (0)

n v(1)
z + j (1)

nz ) and
that of ε(u(0) + P(0) )v(1)

z + ε j (1)
qz over a tube’s cross section,

which is denoted by Stube. Thus, we use Eq. (12) to obtain

I = ε

ρ (ref )

∫
Stube

dA ρ (0)v(1)
z ,

J = ε

∫
Stube

dA

[(
ϕ(0) − ρ (0)ϕ(ref )

ρ (ref )

)
v(1)

z + j (1)
z

]
(23)

and

K = ε

∫
Stube

dA

[(
u(0) + P(0) − ρ (0)u(ref )

ρ (ref )

)
v(1)

z + j (1)
qz

]
.

(24)
In Appendix B, our formulation up to here is shown to be
consistent with Onsager’s reciprocal relation, as it should be.
Because of Eq. (8), P(0) can be inhomogeneous on a tube’s
cross section in the presence of PA. In its absence, because
P(0) is homogeneously equal to P(ref ), the r.h.s. of Eq. (20),
and thus v(1)

z , vanish when δP vanishes. This is consistent with
the results in Chapter XV-5 of Ref. [48].

With the subscript c, we refer to the value at the critical
point under the pressure P(ref ). The deviation of ϕ from its
value at the critical point, ϕ − ϕc, plays a role of the or-
der parameter of phase separation and is denoted by ψ . In
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the fluctuations about the equilibrium, correlated clusters of
ψ are randomly convected on length scales smaller than ξ .
On larger length scales, the convection is averaged out to
enhance the transport coefficient for the interdiffusion in a
mixture at the critical composition, as mentioned in Sec. I.
The critical enhancement suppresses the critical slowing down
of the relaxation of the two-time correlation function of ψ .
This function follows the diffusion equation. According to the
mode-coupling theory [36], the singular part of the diffusion
coefficient coincides with the self-diffusion coefficient of a
rigid sphere with the radius being equal to ξ . This result
is slightly modified by the dynamic renormalization-group
calculation for the model H, with the weak singularity of
ηs taken into account [37,38,40,50,51]. We write zψ for the
dynamic critical exponent for the order-parameter fluctuations
and use zψ = 3.067 [52,53]. The singular part of ηs, denoted
by ηsing, becomes proportional to ξ zψ−3 as the critical point is
approached; details are mentioned in Appendix E of Ref. [27].
Because multiplying the diffusion coefficient by the osmotic
susceptibility, denoted by χ , gives the transport coefficient �,
we have

� = χRkBTc

ξηsing
, (25)

where R is a universal constant close to 1/(6π ) and kB is
the Boltzmann constant. The regular part of � is usually
negligible in the critical regime, judging from the data in
Ref. [54], for example. The partial enthalpy per unit mass of
the component n, denoted by H̄n, is given by

H̄n = μn + T s̄n = −T 2

(
∂

∂T

μn

T

)
P,ca

. (26)

We neglect the regular parts in the results of Ref. [55], as
shown in Appendix D, and use

κ = �T H̄− and λ = �T (H̄−)2, (27)

where H̄− is defined as (H̄a − H̄b)/2.
Equation (25) holds at equilibrium with the critical compo-

sition. In our problem, to evaluate �(0), we simply extend this
result to a homogeneous off-critical composition and use the
extended result even when the composition is inhomogeneous.
Hence, we evaluate the r.h.s. of Eq. (25) by using T (0), ψ (0)(r),
and the resulting local value of ξ , to obtain �(0). This is the
same procedure as used in Refs. [27,35]. Likewise, we obtain
κ (0) and λ(0) in the dynamics by replacing �, T , and H̄− with
�(0), T (0), and H̄ (0)

− , respectively, in Eq. (27). Like �(0), H̄ (0)
−

is evaluated using the local composition at ε = 0.

III. CALCULATION UNDER SOME SPECIFICATIONS

We specify the problem by making the following assump-
tions. First, we assume fsurf to be independent of ρ, which
means ρ (0) = ρ (ref ). Second, we assume the critical composi-
tion in the middle of the reservoir in the reference state, i.e.,
ψ (ref ) = 0. Third, we assume the tube to be a cylinder with the
radius of rtube. In the tube, a field depends only on the distance
from the central axis, r, on a cross section, and we can write
ψ (0)(r), η(0)

s (r), v(1)
z (r), and j (1)

z (r), for example. The left-
hand side (l.h.s.) of Eq. (20) becomes εr−1∂r (rη(0)

s ∂rv
(1)
z ); v(1)

z

vanishes at r = rtube owing to the no-slip condition, and ∂rv
(1)
z

vanishes at r = 0 owing to the axisymmetry and smoothness
of v(1)

z . Thus, we obtain v(1)
z in the tube, as shown by Eq. (C8).

Substituting this result, together with Eqs. (21) and (22), into
Eqs. (23) and (24) yields formulas for the Onsager coefficients
Li j , as described in Sec. III A.

A. Formulas for the Onsager coefficients

A dimensionless radial distance r̂ is defined as r/rtube. We
define T∗ so that ξ becomes rtube for ψ = 0 at T = T∗. A char-
acteristic order parameter ψ∗ is defined so that ξ becomes rtube

for ψ = ψ∗ at T = Tc. A dimensionless order parameter at
ε = 0, ψ̂ (0)(r̂), is defined as ψ (0)(r̂rtube )/ψ∗. A characteristic
chemical potential, μ∗, is defined as

μ∗ = kBT∗
3u∗r3

tubeψ∗
, (28)

where u∗ is the scaled coupling constant at the Wilson-Fisher
fixed point and equals 2π2/9 at the one loop order. This value
is used in the renormalized local functional theory [47] and μ∗
is defined as above for convenience after Sec. III C. We define
η∗ and �∗ as ηsing and � at ψ = 0 and T = T∗, respectively.
Dimensionless transport coefficients η̂(r̂) and �̂(r̂) are de-
fined as η(0)

s /η∗ and T (0)�(0)/(T∗�∗) evaluated at r = r̂rtube,
respectively. The flow rate of Hagen-Poiseulle flow of a fluid,
with the viscosity being η∗, driven by the pressure gradient
μ∗ψ∗/Ltube, is denoted by I∗ and is given by

I∗ = πr4
tubeμ∗ψ∗

8η∗Ltube
. (29)

We define a functional �[g1, g2], where g1 and g2 are
functions, as

�[g1, g2] = 16
∫ 1

0
dq1 q1g1(q1)

∫ 1

q1

dq2
1

q2η̂(q2)

×
∫ q2

0
dq3 q3g2(q3), (30)

which is found to be equal to �[g2, g1] by exchanging the
order of integrals. The formulas for L11, L12, and L22, given
by Eqs. (C9) and (C10), are essentially the same as obtained
in Ref. [27]. Introducing

Ŷ (0)(r̂) = 1

μ∗ψ∗
[u(0)− u(ref ) + P(0)] and Ĥ (0)

− (r̂) = H̄ (0)
−

μ∗
,

(31)
where u(0), P(0), and H̄ (0)

− are evaluated at r = r̂rtube, we obtain
new formulas:

L13 = L31 = I∗T (0)�[1, Ŷ (0)], (32)

L23 = L32 = I∗ψ∗T (0)�[ψ̂ (0), Ŷ (0)]

+ 2πr2
tube

μ∗�∗T∗
Ltube

∫ 1

0
dr̂ r̂�̂(r̂)Ĥ (0)

− (r̂), (33)

and

L33 = I∗μ∗ψ∗T (0)�[Ŷ (0), Ŷ (0)]

+ 2πr2
tube

μ2
∗�∗T∗
Ltube

∫ 1

0
dr̂ r̂�̂(r̂)[Ĥ (0)

− (r̂)]2. (34)
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We use Eq. (27) to derive the last terms of these two equations.

B. Formulas for thermo-osmosis

The thermal force density causes thermo-osmosis. This
density on a tube’s cross section in the linear regime, denoted
by σ (th)

z , is given by the negative of the r.h.s. of Eq. (20), or the
z component of −ε∇ · 	(1), under δT �= 0 and δP = δca = 0.
We have

σ (th)
z (r) = − δT

T (0)Ltube
(u(0)(r) + P(0)(r) − u(ref )

− P(ref ) − H̄ (ref )
− ψ (0) ). (35)

The factor H̄ (ref )
− above is derived by rewriting δ(μ−/T ) in

Eq. (20) with the aid of Eqs. (14) and (26). The first four
terms in the parentheses above can be interpreted as the excess
enthalpy density in DS’s formula for a one-component fluid;
the enthalpy density u + P is calculated using Eqs. (4) and (8).
In the presence of PA, Π(0)

zz = P(0) is equal to neither Π(0)
xx

nor Π(0)
yy . Thus, Eq. (35) is consistent with the claim that

the zz component should be involved in the thermal force
density [7,15].

Here, we compare our derivation of the thermal force
density with the corresponding part in Ref. [7], which is
mentioned in Sec. I. Because the sum of the last three terms
in the parentheses of Eq. (35) equals −ρ (0)

a H̄ (ref )
a − ρ

(0)
b H̄ (ref )

b ,
the negative of Eq. (35) formally coincides with the r.h.s. of
Eq. (5) of Ref. [7], where the r.h.s. is treated as the negative
of the thermal force density. However, its l.h.s., ∂zΠzz in our
notation, is not equal to −σ (th)

z in general, since ∂xΠxz + ∂yΠyz

does not vanish in the presence of PA; 	 can have off-
diagonal components in our problem. In Ref. [7], this sum
∂xΠxz + ∂yΠyz is also missing in the l.h.s. of Eq. (2), which the
authors employ as an extended GD relation in deriving their
Eq. (5). In the present study, we use our Eq. (11), whose l.h.s.
includes ∂xΠxz + ∂yΠyz, as an extended GD relation to derive
Eq. (35), consistently with principles of linear nonequilibrium
thermodynamics.

The superscript (th) is used to indicate a result in the linear
regime for thermo-osmosis, where the z component of the
velocity is found from Eq. (20) to be given by

v(th)
z (r) =

∫ rtube

r
dr1

1

r1η
(0)
s (r1)

∫ r1

0
dr2 r2σ

(th)
z (r2). (36)

Integrating ρ (ref )v(th)
z (r) over the tube’s cross-section gives the

total mass flow rate, for which we write dM(th)
R /(dt ). Using

the free-energy functional introduced in Sec. III C, we rewrite
Eq. (35) and give an explicit expression of dM(th)

R /(dt ) in
Sec. III D. In the absence of PA, because Eq. (35) van-
ishes, v(th)

z and dM(th)
R /(dt ) vanish. Thus, in our formulation,

thermo-osmosis of a mixture occurs only in the presence of
PA. The expression of dM(th)

R /(dt ) is also derived via the
formulas for Li j , as mentioned in Appendix C.

C. Free-energy functional in the renormalized local
functional theory

The scaled reduced temperature τ̂ is defined as τ/τ∗, where
τ∗ is defined as |T∗ − Tc|/Tc. In the one-phase region, we have

τ > 0 near the upper consolute (UC) point and τ < 0 near the
lower consolute (LC) point [56–58]. Using the conventional
notation, we write α, β, γ , ν, and η for the critical exponents
of a mixture. We adopt ν = 0.630 and η = 0.0364 [59]; the
(hyper)scaling relations give 2β + γ = 3ν = 2 − α and γ =
ν(2 − η). In the reference state, the mixture has ψ = 0 in the
absence of PA. In this situation, with ξ0 denoting a material
constant, ξ is given by ξ0|τ |−ν , for which we write ξ (ref ).

The reference state in the absence of PA is obtained
by changing T from the critical point with P = P(ref ) = Pc

and ψ = 0 being fixed. The chemical potentials, μ(ref )
a and

μ
(ref )
b , are tuned so that this change is realized. Thus, the

ϕ-dependent part for the bulk of a mixture in Eq. (16) can
be obtained by coarse graining the bare ψ4 model up to ξ

under no external field [47]. The bare model is defined at a mi-
croscopic scale and identifies the order-parameter fluctuations
with spacial resolution much smaller than ξ . We can regard the
coarse-grained average profile as maximizing the probability
density functional coarse grained up to ξ , by assuming the
fluctuations to be negligible after coarse graining [47]. This is
consistent with the statement given at Eq. (16). We assume

fbulk = −CT τ 2

2
+ uc − scT + f−(ψ ) + M−

2
|∇ψ |2 + f+(ρ).

(37)
Although the variable τ is dropped for conciseness, f+ is a
regular function of ρ and τ , and f− is a function of ψ and τ .
The coefficient M− is described later; uc and sc respectively
represent the values of u and s at the critical point. The
coefficient C involves the fluctuations of the internal-energy
density. In the critical regime, the singular contribution to
C [39,60] becomes equal to 2kBξ−3

0 |τ |−α multiplied by a
universal number, as mentioned in footnote 51 of Ref. [47].
We neglect coupling between ρ and ϕ in Eq. (37) because
ρ can be regarded as a constant approximately. Some details
on these points are mentioned in Appendix E. As shown in
Eq. (E1), we can define A0 so that the bare ψ4 model has
a term A0τψ2/2, which is positive in the one-phase region.
Thus, A0 is positive (negative) near a UC (LC) point [39].
The sign is maintained in the coarse-graining procedure. We
use the coarse-grained result given by the renormalized local
functional theory (RLFT) [47].

In the RLFT, ω is defined as (ξ0/ξ )1/ν and M− is given by
kBTC1ω

−ην with C1(> 0) being a material constant. The self-
consistent condition, ω = |τ | + C2ω

1−2βψ2, determines how
ξ depends on τ and ψ , where the constant C2 equals 3u∗C1ξ0.
This condition gives

τ∗ =
(

ξ0

rtube

)1/ν

and ψ∗ = τ
β
∗√
C2

. (38)

Defining a dimensionless function f̂ as

f̂ (ψ̂ ) = 1
2 ω̂γ−1|τ̂ |ψ̂2 + 1

12 ω̂γ−2βψ̂4, (39)

where ψ̂ ≡ ψ/ψ∗, τ̂ ≡ τ/τ∗, and ω̂ ≡ ω/τ∗ are used, we have

f−(ψ ) + M−
2

|∇ψ |2 = μ
(ref )
− ϕ + μ∗ψ∗T

T∗
f̂ (ψ̂ )

+ μ∗ψ∗T

2T∗
ω̂−ην |rtube∇ψ̂ |2. (40)
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As already explained, μ(ref )
− is determined so that the reference

state at T is realized; μ
(ref )
− depends on T . The sum of the

second and third terms on the r.h.s. above is kBT multiplied
by the coarse-grained result of the ψ4 model under no external
field. The self-consistent condition is rewritten as

ω̂ = |τ̂ | + ω̂1−2βψ̂2, (41)

which means that ω̂ is a function of ψ̂ and τ̂ . It is even
with respect to ψ̂ , and hence f̂ (ψ̂ ) is an even function. The
function f̂ (ψ̂ ) also depends on τ̂ , but the variable τ̂ is dropped
for conciseness. The osmotic susceptibility χ is given by the
inverse of the second partial derivative of f− with respect to ψ ,
1/ f ′′

−(ψ ), where the prime indicates the differentiation with
respect to the variable shown explicitly. The partial derivative
∂ f̂ /(∂τ̂ ), appearing in the later calculation, equals

±1

2
ω̂γ−1ψ̂2+ ∂ω̂

∂τ̂

(
γ − 1

2
ω̂γ−2|τ̂ |ψ̂2+ γ − 2β

12
ω̂γ−2β−1ψ̂4

)
,

(42)
where Eq. (41) gives

∂ω̂

∂τ̂
= ±1

1 + (2β − 1)ω̂−2βψ̂2
. (43)

The same sign as τ is taken in each double sign of these
equations. The first term on the r.h.s. of Eq. (39) originates
from A0τψ2/2 in the bare model, and the first term of Eq. (42)
from A0ψ

2/2. Equation (41) gives |ψ̂ |1/β < ω̂ and |τ̂ | < ω̂.
For ψ̂ �= 0, the sign of Eq. (42), or that of ∂ f̂ /(∂τ̂ ), coincides
with that of τ , considering β = 0.326 and γ = 1.24. If |τ̂ |
is much smaller than ω̂, Eq. (41) gives |ψ̂ |1/β ≈ ω̂, and thus
Eq. (43) is approximately equal to ±1/(2β ). Then, in Eq. (42),
the first term is found to be dominant over the rest. If |τ̂ | is
close to ω̂, Eq. (43) is found to be close to ±1 with the aid
of Eq. (41). Then the first term remains dominant in Eq. (42),
accounting for approximately 80% of the total owing to the
numerator γ − 1 = 0.24 in the parentheses.

We assume fsurf to be a linear function of ϕ, or ψ , as usual
in studying the PA [32,47]. The surface field h is defined as
the negative of the coefficient of ψ . This assumption and this
definition are involved in calculating the equilibrium profile,
which is used in Sec. IV; |h| represents the strength of the
PA and vanishes in its absence. The calculation procedure is
mentioned below Eq. (16) and is the same as that of Ref. [47].
Applying Eqs. (37) and (40), we find that ψ̂ (0)(r̂) is the solu-
tion of

0 = f̂ ′(ψ̂ ) − 1

2

∂ω̂−ην

∂ψ̂
(∂r̂ψ̂ )2

− ω̂−ην

(
∂2

r̂ + 1

r̂
∂r̂

)
ψ̂ for r̂ < 1, (44)

together with the boundary condition at the wall, (ψ̂0))′(1) =
ĥω̂ην , where ĥ is defined as hT∗/(T μ∗rtube ). These equa-
tions are shown in Appendix D of Ref. [27]. Notably, ψ̂ (0) is
totally determined by |τ̂ | and ĥ, and is changed to its negative
when ĥ is changed to its negative. The latter property follows
from the parities of ω̂ and f̂ mentioned below Eq. (41). In
particular, when h vanishes to make the PA absent, ψ (0) equals
ψ (ref ) = 0.

D. Formulas incorporating the RLFT

We apply Eqs. (4), (37), and (40) to obtain

u(0) − u(ref ) = − (T (0) )2μ∗ψ∗
TcT∗

∂

∂τ

(
f̂ + ω̂−ην

2
|∂r̂ψ̂

(0)|2
)

+ H̄ (ref )
− ψ (0), (45)

where the partial derivative with respect to τ is done with ψ̂

fixed and is evaluated at ε = 0. In deriving the second term
on the r.h.s. above, we drop one term, which is proportional to
the thermal expansion coefficient. This term gives negligibly
small contribution to our later numerical results, as described
in Appendix F. Owing to Eqs. (8), (37), and (40), we have

P(0) − P(ref ) = −μ∗ψ∗T (0)

T∗

(
f̂ + ω̂−ην

2
|∂r̂ψ̂ |2

)
. (46)

We define a scaled thermal force density, σ̂ (th)
z , so that Eq. (35)

is rewritten as

σ (th)
z (r̂rtube ) = μ∗ψ∗δT

τ∗T∗Ltube
σ̂ (th)

z (r̂) (47)

and have

σ̂ (th)
z = τ∗

(
f̂ + 1

2ω̂ην
|∂r̂ψ̂ |2

)

+ T (0)

Tc

(
∂ f̂

∂τ̂
− ην

2ω̂ην+1

∂ω̂

∂τ̂
|∂r̂ψ̂ |2

)
, (48)

which is evaluated at ε = 0. Equation (48) is determined by τ̂

and ĥ except for the factors τ∗ and T (0)/Tc, and is independent
of the sign of ĥ. This independence follows from the parities
of ω̂, f̂ , and ψ̂ (0) mentioned at the end of the preceding sub-
section. The magnitude of the sum in the second parentheses,
in particular, is determined by |τ̂ | and |ĥ| owing to Eqs. (42)
and (43).

The independence of Eq. (48) from the sign of h implies
that the thermal force density, and therefore, the direction of
thermo-osmosis, are determined irrespective of which com-
ponent is preferentially adsorbed onto the tube’s wall. This
property presupposes ψ (ref ) = 0 and results from the parities
of ω̂, f̂ , and ψ̂ (0). In deriving Eq. (48), the last term on the
r.h.s. of Eq. (45) cancels out the last term in the parentheses
of Eq. (35). This last term comes from the thermodynamic
force −δ(μ−/T ), whereas the rest gives the excess enthalpy
density. As a result, Eq. (48) becomes even with respect to
ψ̂ (0) in the framework of the RLFT, which describes universal
properties near the critical point. In particular, the even parity
of the free-energy density with respect to the order parameter
is inherent to the ψ4 theory, and should hold universally near
the critical point regardless of the approximations made in the
derivation of the RLFT.

Equation (36) is rewritten as

v(th)
z (r̂rtube ) = 8I∗δT

T∗τ∗πr2
tube

∫ 1

r̂
d r̂1

1

r̂1η̂(r̂1)

∫ r̂1

0
dr̂2 r̂2σ̂

(th)
z ,

(49)
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TABLE I. Parameter values. Origins of the values are described in the text.

Mixture Tc [K] ξ0 [nm] τ∗ × 105 C2 [cm6/g2] ψ∗ [g/cm3] μ∗ [cm2/s2] η∗ [mPa s]

LW 307 0.198 5.12 0.714 0.0470 137 2.44
NEMP 300 0.230 6.49 1.05 0.0419 150 0.510

whereas the total mass flow rate in thermo-osmosis is given
by

dM(th)
R

dt
= ρ (ref )I∗δT

T∗τ∗
�

[
1, σ̂ (th)

z

]
, (50)

which is proportional to δT . The constant of proportionality
represents the thermo-osmotic conductance. We define the
dimensionless thermo-osmotic conductance, denoted by Ĝ(th),
as the quotient of the constant divided by ρ (ref )I∗/(T∗τ∗), and
have

Ĝ(th) = �
[
1, σ̂ (th)

z

] = 16
∫ 1

0
dr̂ r̂v̂(th)

z (r̂), (51)

where v̂(th)
z (r̂) is defined as the double integral of Eq. (49).

If we change the sign of ĥ, σ̂ (th)
z (r̂) remains the same. How-

ever, it is not the case with v(th)
z of Eq. (49), dM(th)

R /(dt ) of
Eq. (50), and Ĝ(th) of Eq. (51) because η̂ is not always an even
function of ψ̂ .

Some of the formulas of the Onsager coefficients are sim-
plified using Eqs. (37) and (40). We have f̂ ′′(0) = |τ̂ |γ and

f ′′
−(0) = kBTC2|τ |γ

3u∗ξ 3
0

. (52)

Equation (25), where χ can be replaced by 1/ f ′′
−(ψ ), gives

�∗ = 3u∗RTcξ
2
0 τ

ν−γ
∗

C2T∗η∗
. (53)

Thus, as described in Appendix E of Ref. [27], we have

�̂ =ω̂ν(zψ−2)[ f̂ ′′(ψ̂ )]−1 (54)

evaluated at ε = 0. In the second terms on the r.h.s.’s of
Eqs. (33) and (34), the coefficients outside the integrals are
respectively rewritten as

I∗ψ∗T (0) 16πTc

9T (0)
and I∗μ∗ψ∗T (0) 16πTc

9T (0)
(55)

by using Eq. (25) with R = 1/(6π ) and Eq. (54). The integrals
can be calculated if Ĥ (0)

− can be calculated. To calculate Ŷ (0)

contained in the first terms on the r.h.s.’s of Eqs. (32)–(34), we
can use Eq. (45), which involves H̄ (ref )

− . Thus, it is necessary to
know how H̄− depends on ρ and ϕ to calculate these integrals
and terms. The dependence is given in such a theoretical
framework as used in Refs. [61–64].

IV. NUMERICAL RESULTS OF THERMO-OSMOSIS

In this section we study thermo-osmosis numerically with
the aid of the formulas in Sec. III D and the software Mathe-
matica (Wolfram Research), using the material constants of a
mixture of 2,6-lutidine and water (LW) near the LC point and
a mixture of nitroethane and 3-methylpentane (NEMP) near

the UC point. In each mixture, the former (latter) component
is taken to be the component a (b). The tube radius rtube is
set to 0.1 µm. The parameter values we use are listed in
Table I and are the same as used in Ref. [27]. The values
of ξ0 are taken from the experimental data of Refs. [54,65].
The first entry of Eq. (38) gives the values of τ∗, which
appears in Eq. (48). In Appendix C of Ref. [27], we esti-
mate C2 from the data of Refs. [66,67]. The second entry
of Eq. (38) gives the value of ψ∗, and then Eq. (28) gives
that of μ∗. In Appendix E of Ref. [27], we take into account
the weak singularity to obtain the viscosity as a function
of τ and ψ according to Refs. [68,69], and find the value
of η∗ from the data of Refs. [65,70–72]. These values give
I∗Ltube = 1.04 × 10−2 (4.84 × 10−2) μm4/s for a mixture of
LW (NEMP). The correlation length in the middle of the reser-
voir in the reference state, given by ξ (ref ), reflects the thickness
of the adsorption layer. To study the total mass flow rate when
ξ (ref ) is distinctly larger or smaller than rtube, we mainly use
|τ | = 1.25 × 10−5 and 3.2 × 10−3, which respectively give
ξ (ref ) ≈ 2rtube and rtube/10.

We mainly use ĥ = 73.0 (66.6) for a mixture of LW
(NEMP), which amounts to h ≈ 0.1 cm3/s2. This value comes
from the following estimation; the value of h has not been
measured experimentally to the best of our knowledge. The
minimum of the Leonard-Jones potential between the wall
and a component molecule generally differs depending on
whether the component is a or b. An estimate of the dif-
ference is kBTc/10 [73]. We write lint for the typical range
of the interaction potential. The change in ψ can be related
with the corresponding change in na − nb, where n j denotes
the molecule-number density of the component j. Regarding
hψ as the deviation of (na − nb)kBTclint/10 from its value at
the critical point, we use lint ≈ 0.1 nm to obtain the above-
mentioned value of h.

A. Equilibrium profile and thermal force density

Numerical results of ψ̂ (0) are obtained using the procedure
described at the end of Sec. III C and shown in Fig. 2. Because
of ĥ > 0, ψ̂ (0)(r̂) increases with r̂. At |τ | = 3.2 × 10−3, the
adsorption layer appears to localize near the tube’s wall, and
ψ̂ (0)(r̂) is larger for a mixture of NEMP than for a mixture of
LW in the whole region of 0 � r̂ � 1 although the difference
can be identified only for some values of r̂ in the figure. This
magnitude relationship is reasonable considering that |τ̂ | is
smaller for a mixture of NEMP. The relationship holds only
for r̂ < 0.7 at |τ | = 1.25 × 10−5, where ξ (ref ) exceeds rtube. At
this value of |τ | and at r̂ = 0, the compositions become defi-
nitely off-critical, and the local values of ξ are approximately
reduced to rtube/2 for both mixtures.

We use ψ̂ (0) for ψ̂ of Eq. (48) to calculate σ̂ (th)
z numer-

ically. The results at |τ | = 3.2 × 10−3, shown by circles in
the graphs of Fig. 3, distinctly increase in magnitude near
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FIG. 2. Plots of the dimensionless order parameter at equilib-
rium, ψ̂ (0)(r̂), against the dimensionless radial distance r̂(≡ r/rtube ).
The surface field is set to h = 0.1 cm3/s2. For a mixture of LW
(NEMP), open circles (crosses) represent ψ̂ (0)(r̂) at |τ | = 1.25 ×
10−5, whereas closed circles (asterisks) represent ψ̂ (0)(r̂) at |τ | =
3.2 × 10−3. We use the values of τ∗ in Table I to find τ̂ =
−0.24 (0.19) for open circles (crosses) and τ̂ = −63 (49) for closed
circles (asterisks).

the wall, similarly to ψ̂ (0) in Fig. 2. Hereafter, τ represents
the reduced temperature in the reference state. The first term
of Eq. (42) contributes to the second term on the r.h.s. of
Eq. (48) via the term ∂ f̂ /(∂τ̂ ). Crosses in Fig. 3 represent
this contribution, which is denoted by σ̂ (sq) and is given by

σ̂ (sq)
z (r̂) = ±T (0)

2Tc
ω̂γ−1ψ̂2. (56)

This is evaluated at ε = 0 with the same sign as τ being
taken. This sign for ψ̂ �= 0 comes from that of A0, which
is negative (positive) for the LC (UC) point. The rest in
the second term on the r.h.s. of Eq. (48) is plotted with
triangles. The first term on the r.h.s. of Eq. (48), which
originates from the scalar-pressure deviation Eq. (46), is
plotted with squares. This term gives negligibly small con-
tributions to σ̂ (th)

z in the whole region of r̂. It remains the
case as far as we examine for the values of |τ | ranging from
1.25 × 10−5 to 6.4 × 10−3 although data are not shown. Near
the wall in Fig. 3, we can see that σ̂

(sq)
z (r̂) is dominant in

σ̂ (th)
z (r̂), and the ratio σ̂

(sq)
z (r̂)/σ̂ (th)

z (r̂) at r̂ = 1 is 0.86 (0.85)

for a mixture of LW (NEMP). When |τ | is set to 1.25 ×
10−5, the ratio remains approximately the same, 0.88 (0.87),
although each of σ̂

(sq)
z (r̂) and σ̂ (th)

z (r̂) at r̂ = 1 roughly
doubles.

In Fig. 4 for a mixture of NEMP, σ̂
(sq)
z (r̂) and σ̂ (th)

z (r̂)
become larger as τ is smaller and h is larger. For various
values of |τ | and h examined in Figs. 3 and 4, over the whole
region of r̂, the ratio σ̂

(sq)
z (r̂)/σ̂ (th)

z (r̂) remains approximately
the same as the ratio at r̂ = 1. Thus, as far as examined,
σ̂ (th)

z (r̂) is negative (positive) for a mixture of LW (NEMP)
and is contributed dominantly from σ̂

(sq)
z (r̂). In each inset

of Fig. 4, ψ̂ (0)(r̂) increases more steeply near the wall as h
is larger, similarly to σ̂ (th)

z (r̂) in the main figure. For each
value of h in Figs. 4(a) and 4(b), as r̂ decreases, σ̂ (th)

z (r̂)
decreases more gradually at the smaller value of τ , similarly to
ψ̂ (0)(r̂). These similarities can be explained by the dominance
of Eq. (56) in σ̂ (th)

z (r̂). The dominance of Eq. (56) in the term
involving ∂ f̂ /(∂τ ) on the r.h.s. of Eq. (48) is expected from
the approximate estimation mentioned below Eq. (43).

B. Velocity field and conductance

As mentioned in the preceding subsection, ψ̂ (0) is used
in calculating σ̂ (th)

z , which appears in the double integral
of Eq. (49). We numerically calculate the double integral,
which gives v̂(th)

z (r̂) as mentioned below Eq. (51), to show
the results in Fig. 5. When δT is positive, v̂(th)

z has the same
sign as v(th)

z . At |τ | = 3.2 × 10−3, it appears that v̂(th)
z (r̂)

changes only for r̂ > 0.8 to make the velocity slip across a
narrow region near the wall. This is because, as shown in
Fig. 4(b), the adsorption layer and the thermal force den-
sity localize sharply in this region. The dimensionless slip
velocity is given by v̂(th)

z (0), which is −0.042 (0.061) for a
mixture of LW (NEMP) at h = 0.1 cm3/s2. Converting the
value to the slip velocity with dimensions, we find it to be
−7.09 (38.2) (μm)2/(s K) multiplied by δT/Ltube, which is
comparable in magnitude to typical thermophoretic mobil-
ity far from the critical point [8,74–76]. In passing, these
values can be evaluated approximately using the Gaussian
model mentioned in Appendix G. For each value of h in
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FIG. 3. Plots of the scaled thermal force density, σ̂ (th)
z , and its components against the dimensionless radial distance r̂(� 0.8) at |τ | =

3.2 × 10−3 for a mixture of LW (a) and a mixture of NEMP (b). Here, the reduced temperature τ is evaluated at T = T (0) and is negative
(positive) in the former (latter) mixture. The surface field is set to h = 0.1 cm3/s2. Circles represent σ̂ (th)

z of Eq. (48), whereas squares represent
its first term. Its second term can be separated into two parts; σ̂ (sq)

z of Eq. (56) and the rest. Crosses represent the former, whereas triangles
represent the latter. The results continue to approach zero as r̂ decreases to zero, although the results for r̂ < 0.8 are not shown here.
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FIG. 4. Plots of the scaled thermal force density, σ̂ (th)
z , and its dominant term σ̂ (sq)

z against the dimensionless radial distance r̂(� 0.8) for
a mixture of NEMP. The reduced temperature τ evaluated at T = T (0) is 1.25 × 10−5 in (a) and 3.2 × 10−3 in (b). The surface field h is set
to 10−1 cm3/s2 for circles (σ̂ (th)

z ) and solid curves (σ̂ (sq)
z ); these results in (b) are also shown in Fig. 3(b). Setting h to 10−0.5 (10−1.5) cm3/s2,

we obtain results shown by red crosses and dash-dot curves (blue asterisks and dashed curves); symbols represent σ̂ (th)
z and curves represent

σ̂ (sq)
z . The change of h is indicated by arrows. (Insets) Plots of the dimensionless order parameter at equilibrium, ψ̂ (0)(r̂), against r̂(� 0.4). The

parameter values for each symbol are the same as those for the same symbol in the main figure in each of (a) and (b). The results of the circles
are also shown in Fig. 2.

Fig. 5, |v̂(th)
z (r̂)| at |τ | = 1.25 × 10−5 is larger than |v̂(th)

z (r̂)|
at |τ | = 3.2 × 10−3 inside the tube and increases gradually in
magnitude as r̂ decreases without showing an obvious slip.
In Fig. 5(b), v̂(th)

z (r̂) increases with h inside the tube, as ex-
pected. The spatial resolution of our formulation is given by
ξ . For h = 0.1 cm3/s2 and |τ | = 1.25 × 10−5 (3.2 × 10−3), a
mixture of LW has ξ/rtube = 0.030 (0.036) and a mixture of
NEMP has 0.032 (0.038) at r̂ = 1. With the resolution given
by these values, one would trace rapid changes of v̂(th)

z near
the wall shown in Fig. 5.

When δT is positive, σ (th)
z (r̂) has the same sign as σ̂ (th)

z (r̂).
For each mixture in our numerical results, the sign of σ̂ (th)

z (r̂)
remains the same for 0 � r̂ � 1, and thus is the same as
that of v̂(th)

z (r̂) and that of Ĝ(th) of Eq. (51); Ĝ(th) > 0 (< 0)
means that the flow direction is the same as (opposite to) the
direction of the temperature gradient. Thus, according to our
numerical results, a mixture of NEMP near the UC point flows
towards the reservoir with the higher temperature, whereas
a mixture of LW near the LC point flows in the opposite

direction. The flow direction is determined irrespective of
which component is adsorbed onto the tube’s wall; the irre-
spectiveness comes from the independence of Eq. (48) from
the sign of h.

Logarithmic plots of |Ĝ(th)| against |τ | are shown in Fig. 6,
where |Ĝ(th)| increases as |τ | decreases. This is because larger
susceptibility makes the PA stronger. For smaller values of
|τ |, the increase becomes more gradual. This would represent
effect of the size of the tube, considering that ξ (ref ) exceeds
rtube approximately for |τ | < 5 × 10−5. Equation (56), σ̂

(sq)
z ,

contributes to Ĝ(th) dominantly in the range of τ examined in
Fig. 6. Changing the value of h for a mixture of NEMP, we
calculate Ĝ(th) to show the results in Fig. 7. As h increases,
Ĝ(th) increases, as expected since ψ̂ (0), σ̂ (th)

z , and v̂(th)
z then

increase in Figs. 4 and 5(b). In Fig. 7(b), Ĝ(th) becomes less
dependent on h in the logarithmic scale for the smaller value
of τ . This tendency is also observed for the dependence of v̂(th)

z

on h in Fig. 5(b). The contribution from σ̂
(sq)
z to Ĝ(th) remains

dominant for the values of τ and ĥ examined in Fig. 7(b).
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FIG. 5. The z component of the dimensionless velocity in thermo-osmosis, v̂(th)
z (r̂), is plotted against the dimensionless radial distance

r̂. (a) Closed and open circles represent v̂(th)
z (r̂) for a mixture of LW at τ = −3.2 × 10−3 and −1.25 × 10−5, respectively. The reduced

temperature τ is evaluated at T = T (0). Asterisks and crosses represent v̂(th)
z (r̂) for a mixture of NEMP at τ = 3.2 × 10−3 and 1.25 × 10−5,

respectively. The surface field is set to h = 10−1 cm3/s2. (b) Asterisks and crosses represent the same results as those in (a), respectively. The
solid curve (dashed curve) represents v̂(th)

z (r̂) for a mixture of NEMP at τ = 3.2 × 10−3 with h set to 10−0.5 (10−1.5) cm3/s2. The dash-dot
curve (dash-dot-dot curve) represents v̂(th)

z (r̂) at τ = 1.25 × 10−5 with h set to 10−0.5 (10−1.5) cm3/s2. The change of h is indicated by arrows.
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FIG. 6. Logarithmic plots of the absolute value of the dimen-
sionless thermo-osmotic conductance against that of the reduced
temperature |τ |, evaluated at T = T (0), for a mixture of LW (cir-
cle) and a mixture of NEMP (triangle) with the surface field set to
h = 0.1 cm3/s2. The dimensionless conductance, Ĝ(th) = �[1, σ̂ (th)

z ]
is negative (positive) for a mixture of LW (NEMP). Red crosses
(asterisks) represent �[1, σ̂ (sq)

z ] for a mixture of LW (NEMP).

C. Prediction of universal properties

As mentioned below Eq. (56), in our numerical results, the
first term on the r.h.s. of Eq. (48) is negligible. This would
be mainly because it contains a very small positive factor τ∗
(Table I). Thus, owing to Tc ≈ T (0), it is strongly suggested
that

σ̂ (th)
z ≈ ∂ f̂

∂τ̂
− ην

2ω̂ην+1

∂ω̂

∂τ̂
|∂r̂ψ̂ |2, (57)

evaluated at ε = 0, holds for any mixture. The r.h.s. above
does not presuppose a special mixture because it is determined
only by the scaled reduced temperature τ̂ and the magnitude
of the scaled surface field |ĥ|. Using various values of (τ̂ , ĥ),
we numerically find that Eq. (56) is dominant in σ̂ (th)

z . In this
sense, we have

σ̂ (th)
z ≈ ± ω̂γ−1

2
ψ̂2 (58)

evaluated at ε = 0, where the sign is taken as that of τ , i.e.,
as that of A0 in the bare model. Notably, Eq. (58) is strongly

τ
τ

only dominant term
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h
h
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FIG. 7. (a) Logarithmic plots of the dimensionless thermoo-
smotic conductance, Ĝ(th), against the reduced temperature τ ,
evaluated at T = T (0), for a mixture of NEMP. Triangles here
and in Fig. 6 represent the same results with the surface field
set to h = 10−1 cm3/s2. Circles (crosses) represent Ĝ(th) for h =
10−0.5 (10−1.5) cm3/s2. The corresponding values of the scaled sur-
face field ĥ are shown in the figure; the change of h is indicated by an
arrow. (b) Logarithmic plots of Ĝ(th) against ĥ for a mixture of NEMP.
Squares and circles represent Ĝ(th) = �[1, σ̂ (th)

z ] at τ = 1.25 × 10−5

and 3.2 × 10−3, respectively. The values of τ are evaluated at T =
T (0). Red asterisks (crosses) represent �[1, σ̂ (sq)

z ] at τ = 1.25 × 10−5

(3.2 × 10−3).

expected to hold in the critical regime for any mixture, which
is also supported by the approximate estimation given below
Eq. (43) and by the results in Figs. 6 and 7(b). Therefore,
we can predict that, for any mixture near the UC (LC) point,
the direction of thermo-osmosis is the same as (opposite to)
that of the temperature gradient if the critical composition
is kept in the middle of each reservoir, irrespective of which
component is adsorbed onto the wall.

V. FURTHER DISCUSSION AND SUMMARY

Our numerical results are based on the calculation up to
the order of ε, or in the linear regime with respect to δT .
Obviously, as compared with the value of τ in the reference
equilibrium state, the change in τ caused by imposing δT
should be sufficiently small in magnitude throughout inside
the tube. For example, if |τ | is set to 10−3 at T = T (0), we may
set |δT |/Tc to be smaller than its 10%, 10−4. The resultant
local changes of T and ψ̂ shift σ̂ (th)

z . As far as examined,
although data are not shown, the shift is roughly smaller than
10% in the adsorption layer. For |δT | = 100 mK 	 |T (0) −
Tc| ≈ 1 K and Ltube = 10 μm, we find from the results in
Fig. 5(a) that the slip velocity is approximately 0.1 μm/s,
which would be measured experimentally. In passing, in the
experiments on the Brownian motion of colloidal particles
in a mixture, |τ | is set to be smaller than 10−4 homoge-
neously [77,78].

For a mixture in a semi-infinite space bounded by a flat
surface, we use Eq. (58) to derive a possible power-law depen-
dence of the slip velocity on |τ | in thermo-osmosis, as shown
in Appendix G. Thermophoresis would occur for a particle
in a mixture in the presence of PA onto the particle surface;
the direction of the particle motion is expected to be the same
as (opposite to) that of the imposed temperature gradient if
the mixture is near the LC (UC) point and has the the critical
composition far from the particle. These points clearly require
further investigation in future.

The RLFT succeeds in describing several phenomena of a
mixture [47]. However, in the theory, crossover to the regular
part of the free energy [61–64,79–81] is not considered, the
results up to the one-loop order approximation are used, and
validity of the definition of the local correlation length in
the inhomogeneous composition is not fully discussed. In
the present study, the regular parts of the transport coeffi-
cients [82] are considered only for the viscosity ηs. In our
numerical study, fsurf is simply regarded as equal to −hψ

apart from a constant term. These points are to be improved
in the future for quantitatively better numerical results on
transport properties not only of thermo-osmosis but also of
the other phenomena described by the Onsager coefficients.
Still, the qualitative property on the flow direction in thermo-
osmosis of a mixture should be robust to changes of details in
the formulation, considering that it originates from the sign of
the coefficient, A0, in the bare model.

The pressure-driven transport has attracted much attention,
as mentioned in the beginning of Sec. I. For a near-critical
mixture in the presence of PA, this transport is numerically
studied in Ref. [83]. Claiming that the composition current
sensitively depends on the reduced temperature and can be
controlled reversibly by either pressure gradient or tempera-
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ture, the authors of Ref. [83] suggest potential applications
of the transport of a mixture for separation and purification
processes. The present study suggests that thermo-osmotic
flow is also sensitive to the reference temperature near the
critical point and that thermo-osmosis of a mixture may be
applied to the processes. Mixture transport driven by multiple
thermodynamic forces can also be studied in our framework.

Our present study is summarized as follows. We consider
transport of a binary fluid mixture, lying in the one-phase
region near the demixing critical point, through a capillary
tube. One component is assumed to be adsorbed onto the
tube’s adiabatic wall and the adsorption layer can be much
thicker than the molecular size. Consistently with principles
of nonequilibrium thermodynamics, we formulate the hydro-
dynamics from a coarse-grained free-energy functional using
an extended Gibbs-Duhem relation, Eq. (11). The previous
derivation of this relation, given in Ref. [45], is general-
ized in Appendix A to suit the present study. Assuming the
critical composition in the middle of each reservoir in the
reference equilibrium state, we derive the Onsager coefficients
in Sec. III A. In particular, on this assumption, we explicitly
derive the formula for the thermal force density, Eq. (35),
which is rewritten as Eq. (48) in terms of the renormalized
local functional theory [41,47], and predict that, for any binary
fluid mixture in the one-phase region near the upper (lower)
consolute point, the direction in thermo-osmotic flow is the
same as (opposite to) that of the temperature gradient, irre-
spective of which component is adsorbed onto the tube’s wall.
The magnitude of the thermo-osmotic conductance increases,
with the increase being more gradual owing to the size effect,
as the critical point is approached. The thermal force density
is given in a scaled form by Eq. (57), which depends only on
the scaled reduced-temperature and the scaled surface field,
and is dominantly contributed from Eq. (58).

Such mesoscopic inhomogeneity as is generated in a
mixture by the surface field can occur in many soft mat-
ter systems—polymer solutions, polyelectrolytes, and liquid
crystals [39,84]. In particular, their dynamics driven by a
temperature gradient would be studied by applying our pro-
cedure to a suitable set of hydrodynamic equations based
on a coarse-grained free-energy functional. Also, for thermo-
osmosis of a solution far from the critical point, our results
may help as a guide regarding properties independent of the
microscopic details. Hence, our present study would lay solid
foundations on nonisothermal hydrodynamics in the presence
of mesoscopic inhomogeneity and predict universal properties
on thermo-osmosis of a near-critical binary fluid mixture.
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APPENDIX A: NONDISSIPATIVE PART
OF THE STRESS TENSOR

For conciseness, we here write (T, ρn,∇ρn) for the vari-
ables of fbulk in Eq. (3). Because of Eq. (4), s and u also
depend on these variables. The entropy density is also a func-
tion of u, ρn, and ∇ρn, and we define s̃ so that

s(T, ρn,∇ρn) = s̃(u(T, ρn,∇ρn), ρn,∇ρn) (A1)

holds. Explicit expressions of s̃, given in special cases [45,46],
are not required in a general argument given below. We have

∂ s̃

∂u
= 1

T
and

∂ s̃

∂ζ
= − 1

T

∂ fbulk

∂ζ
(A2)

for ζ = ρn or ∇ρn. The coefficients in the quadratic form
of ∇ρn in fbulk can depend on T and ρn. Below, as in Ap-
pendix A of Ref. [27], we consider a quasistatic deformation
of a mixture to derive Eqs. (9) and (10). We write Vt for a small
region comoving with the deformation. Here, t is not time but
a parameter of the deformation. In general, an infinitesimal
change in the entropy is contributed independently from the
mechanical work, from the change in the composition, and
from the change in the internal energy. Thus, regarding T , Π,
and μn as homogeneous over a small region Vt , we have

T
d

dt

∫
Vt

dr s̃ = Π :
∫

∂Vt

dA n∂Vt v − μn
d

dt

∫
Vt

dr ρn(r, t )

+ d

dt

∫
Vt

dr u. (A3)

Here, the symbol : is defined so that A : B = Ai jB ji holds
for two tensors A and B, and n∂Vt is the outward facing unit
normal vector of the surface of Vt .

Each locus of a mixture is assumed to have each bath of
particles and heat. We here write jn and ju for their respective
fluxes to the bath, and write v for a displacement vector per
unit value of t . The meanings of jn and v are different from
the ones in the main text, respectively; ja + jb does not always
vanish here. We can treat t as the time formally to define the
Eulerian time derivative ∂/(∂t ) and Lagrangian time deriva-
tive D/(Dt ). We have

Dρn

Dt
= −ρn∇ · v − ∇ · jn and

Du

Dt
= −u∇ · v − ∇ · ju.

(A4)
The whole region occupied by the mixture, Vtot, is deformable
here, unlike in the main text. The l.h.s. of Eq. (A3) is rewritten
as the integral of T [Ds̃/(Dt ) + s̃∇ · v] over Vt . Rewriting the
last two terms on the r.h.s. similarly and applying the diver-
gence theorem for the first term, we obtain an equation for the
integrands owing to arbitrariness of Vt . With the aid of this
equation, the change in the entropy in Vtot per unit value of t
is found to be∫

Vtot

dr
[

Ds̃

Dt
+ s̃∇ · v

]

=
∫

Vtot

dr
[

Π

T
: ∇v + μn

T
∇ · jn − 1

T
∇ · ju

]
, (A5)

where T , Π, and μn can be inhomogeneous. The factor ∇ ·
v in Eqs. (A4) and (A5) comes from the change rate of the
Jacobian between the Eulerian and Lagrangian coordinates.
We have

Ds̃

Dt
= ∂ s̃

∂u

Du

Dt
+ ∂ s̃

∂ρn

Dρn

Dt
+ ∂ s̃

∂ (∇ρn)
· ∇

(
Dρn

Dt

)

− ∂ s̃

∂ (∇ρn)
· (∇v) · (∇ρn), (A6)
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which can be rewritten using Eqs. (A2) and (A4). Substituting
the result into the l.h.s. of Eq. (A5) and applying integration
by parts, we find the l.h.s. to be the sum of

−
∫

∂Vtot

dr
1

T

Dρn

Dt

∂ fbulk

∂ (∇ρn)
· n∂Vtot (A7)

and the r.h.s. of Eq. (A5) with μn and Π being replaced by
the r.h.s.’s of Eqs. (9) and (10), respectively. Hence, these
two equations are derived. Because Π is symmetric, we can
derive Eq. (11), or equivalently, ∇ · (Π/T ) = ρn∇(μn/T ) −
u∇(1/T ), which is of the same form as Eq. (2.44) of Ref. [45].
Equation (9) can be used in calculating not only ϕ(0) but also
ϕ(1); the latter need not be obtained in the present study.

We next consider thermodynamics of the mixture in a thin
interfacial region regarded as ∂Vtot. The free energy per unit
area of this region is denoted by fsurf in Eq. (3) and is here
denoted by f (s). The superscript (s) in general indicates a
thermodynamic quantity in ∂Vtot; a density with the super-
script represents a quantity per unit area. As in Eq. (4), we can
introduce internal energy u(s) and entropy s(s) using f (s). These
three quantities are functions of T (s) and ρ (s)

n . As Eq. (A3)
yields Eq. (A5), an equation for a small comoving area on
∂Vtot yields an equation representing the change of the entropy
on ∂Vtot. Two points are to be noted in this derivation. First,
the mechanical contribution consists of a term involving the
two-dimensional pressure tensor Π(s) and a term involving
the force normal to the small area. Because f (s) includes no
gradients of mass densities, the pressure tensor is written as
the two-dimensional scalar pressure multiplied by the identity
tensor on ∂Vtot. The scalar pressure is denoted by P(s). We
define P(s)

⊥ so that the normal force is P(s)
⊥ n∂Vtot per unit area.

Second, the factor coming from the change rate of the Jaco-
bian is ∇‖ · v‖ − 2Hmv · n∂Vtot , where v‖ is the projection of
v on the plane tangential to ∂Vtot, ∇‖ · v‖ indicates the diver-
gence defined on ∂Vtot, and Hm denotes the mean curvature of
∂Vtot [85]. The curvature is defined so that it is positive when
the center of curvature lies on the side directed by n∂Vtot .

The temperature at a local area on ∂Vtot, T (s), should be
equal to T at its adjacent local region of Vtot. Similarly, ρ (s)

n
is determined by ρn at the adjacent region so that the former
equals the latter multiplied by the interfacial region’s width.
No other factor is involved in determining ρ (s)

n , which means
μ(s)

n = 0. Through these relationships, fsurf (T, ρn) equals
f (s)(T (s), ρ (s)

n ). Taking Eq. (A7) into account, we find

0 = ∂ fsurf

∂ρn
+ ∂ fbulk

∂ (∇ρn)
· n∂Vtot at ∂Vtot (A8)

from the equation representing the change of the entropy on
∂Vtot. We also find P(s) = − fsurf , which gives the Laplace
pressure P(s)

⊥ = −2 fsurf Hm [86]. Notably, fsurf equals the
grand-potential density of ∂Vtot owing to μ(s)

n = 0. We need
not consider these interfacial forces in calculating the velocity
field in the tube. The force exerted on the mixture by the tube’s
wall is determined so that the no-slip condition is realized.

APPENDIX B: ONSAGER COEFFICIENTS AND
RECIPROCAL RELATIONS

We first consider entropy fluctuations of an equilibrium
mixture in the isolated container with the pistons fixed

(Fig. 1). Neglecting the contribution from the mixture in the
tube, we can regard the total entropy of the mixture in the
container, denoted by S, as a function of MaR, MbR, and UR.
We have

dS

dt
= dUR

dt
δ

(
1

T

)
+ dMnR

dt
δ

(−μn

T

)
(B1)

holds up to the second order of the magnitudes of the devia-
tions, with repeated indices being summed up. Equation (B1)
is included in Eq. (XV-55) of Ref. [48]. The thermodynamic
fluxes are given by the time derivatives on the r.h.s. and are
driven by the conjugate thermodynamic forces, δ(1/T ) and
−δ(μn/T ). They are respectively the partial derivatives of S
with respect to UR and MnR [49]. We apply the GD relation
to obtain

⎡
⎣ −δ(P/T )

−δ(μ−/T )
δ(1/T )

⎤
⎦ =

⎡
⎢⎣ρ (ref )

a ρ
(ref )
b u(ref )

1/2 −1/2 0
0 0 1

⎤
⎥⎦

⎡
⎣−δ(μa/T )

−δ(μb/T )
δ(1/T )

⎤
⎦.

(B2)
The l.h.s. above gives a new set of thermodynamic forces,
which is considered in Sec. II B. The transpose of the inverse
of the 3 × 3 matrix above equals the 3 × 3 matrix in Eq. (12).

We consider two sets of flow fields, each being driven
by the thermodynamic forces (−δ(P/T )k,−δ(μ−/T )k,

δ(1/T )k ), with k being i or ii. The resultant thermodynamic
fluxes and fields in the tube are also indicated by the subscript
k. Different ways of applying the divergence theorem to the
volume integral of η(0)

s E (1)
i : E (1)

ii over the tube interior, de-
noted by Vtube, give∫

Vtube

dr v
(1)
ii · [∇ · (

η(0)
s E (1)

i

)] =
∫

Vtube

dr v
(1)
i · [∇ · (

η(0)
s E (1)

ii

)]
(B3)

with the aid of Eq. (17) and the no-slip condition at the tube’s
wall. Here, we neglect effects of the tube’s edges on the
laminar flow. Substituting Eq. (20) into Eq. (B3), we find that

∫
Stube

dA v
(1)
ii,z

[
ρ (0)

ρ (ref )
δ

(
P

T

)
i

+
(

ϕ(0) − ϕ(ref )

ρ (ref )

)
δ
(μ−

T

)
i

−
(

P(0) + u(0) − ρ (0)u(ref )

ρ (ref )

)
δ

(
1

T

)
i

]
(B4)

equals the above equation with the subscripts i and ii ex-
changed. Putting δ(P/T )i, δ(μ−/T )i, δ(P/T )ii, and δ(1/T )ii

equal to zero, we use Eqs. (21)–(24) to find L23 = L32. Like-
wise, we can obtain L13 = L31 by putting δ(P/T )i, δ(μ−/T )i,
δ(μ−/T )ii, and δ(1/T )ii equal to zero. The other reciprocal
relations can be derived similarly, as shown in Appendix B of
Ref. [27].

APPENDIX C: CALCULATION OF THE FIELDS
IN THE TUBE

We rewrite the l.h.s. of Eq. (6) as ε multiplied by

2∇ · (
η(0)

s E(1)
) = ∇ · {

η(0)
s [∇v(1) + (∇v(1) )T]

}
. (C1)
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With the aid of Eq. (11), we rewrite the r.h.s. of Eq. (6) as ε

multiplied by

∇ · Π(1) = ρ (0)
n ∇μ(1)

n + s(0)∇T (1)

+ ∇T (1)

T (0)
· ∂ fbulk

∂ (∇ρn)

(∇ρ (0)
n

)
, (C2)

where the partial derivative of fbulk is evaluated at ε = 0.
Thus, the x and y components of Eq. (6) give

0 = ρ (0)∇̄μ
(1)
+ + ϕ(0)∇̄μ

(1)
− + s(0)∇̄T (1). (C3)

Because P(0), ρ (0)
n , and u(0) are independent of z, we obtain

∇ · j (1) = 0 and ∇ · j (1)
q = 0. (C4)

The first entry comes from Eqs. (7) and (17), and the second
comes from Eqs. (10), (11), and (18). The components of j
and jq normal to the tube’s wall vanish at the impermeable and
adiabatic wall. These conditions, the conditions at the tube’s
edges mentioned in the beginning of Sec. II C, Eq. (C3), and
Eq. (C4) are satisfied if μ(1)

n and T (1) are linear functions of z
and are independent of x and y. Then, j (1) and j (1)

q have only
z components and are independent of z, considering Eq. (19)
up to the order of ε. With the aid of Eqs. (C1) and (C2), the z
component of Eq. (6) give

∇̄ · (
η(0)

s ∇̄v(1)
z

) = ρ (0)
n ∂zμ

(1)
n + s(0)∂zT

(1). (C5)

The derivatives on the r.h.s. above are constants determined
by the thermodynamic forces in Eq. (13). We obtain

ε∂zT
(1) = −T (0)2

Ltube
δ

(
1

T

)
,

ε∂zμ
(1)
− = T (0)

Ltube

[
δ
(μ−

T

)
− μ

(0)
− δ

(
1

T

)]
, (C6)

and

ε∂zμ
(1)
+ = 1

ρ (ref )Ltube
(δP − ϕ(ref )δμ− − s(ref )δT ), (C7)

with the aid of Eq. (15). Thus, we use Eqs. (4) and (8) to
rewrite Eq. (C5) as Eq. (20).

Under the specifications mentioned in the preface of
Sec. III, Eq. (20) gives

εv(1)
z (r) =

∫ rtube

r
dr1

1

r1η
(0)
s (r1)

∫ r1

0
dr2 r2

× T (0)

Ltube

[
δ

(−P

T

)
+ ψ (0)(r2)δ

(−μ−
T

)

+ (u(0)(r2) − u(ref ) + P(0)(r2))δ

(
1

T

)]
. (C8)

Substituting Eqs. (21) and (C8) into Eqs. (23) and (24) yields

L11 = I∗T (0)

μ∗ψ∗
�[1, 1], L12 = L21 = I∗T (0)

μ∗
�[1, ψ̂ (0)],

(C9)
and

L22 = I∗ψ∗T (0)

μ∗
�[ψ̂ (0), ψ̂ (0)] + 2πr2

tube
�∗T∗
Ltube

∫ 1

0
dr̂ r̂�̂(r̂).

(C10)

The other components are given by Eqs. (32)–(34). The fac-
tor outside the integral of the second term on the r.h.s. of
Eq. (C10) equals 16πTcI∗ψ∗/(9μ∗) if we use Eq. (25) with
R = 1/(6π ) and Eq. (54), as mentioned in Ref. [27].

Setting δP = δca = 0, we use Eqs. (12)–(14) and (26) to
obtain dM(th)

nR /(dt ) as

δT

(T (0) )2

[
ρ (ref )

n (P(ref )L11 + H̄ (ref )
− L12 − L13)

± 1

2
(P(ref )L21 + H̄ (ref )

− L22 − L23)

]
, (C11)

where the upper (lower) sign is taken for n = a (b) in
the double sign. The sum of Eq. (C11) over n = a and b
gives dM(th)

R /(dt ). Rewriting the resultant sum with the aid
of Eqs. (32) and (C9), we obtain the same expression of
dM(th)

R /(dt ) as derived in the way mentioned in Sec. III B.
The last term in the parentheses of Eq. (35) involves L12,
which is also involved in the diffusio-osmotic conductance
calculated in Ref. [27].

APPENDIX D: DISSIPATIVE FLUXES

In an equilibrium mixture, we consider a region where the
mass densities are homogeneous. There, fbulk is a function of
T , ρ, and ϕ, and we have(

∂μ−
∂ϕ

)
T,P

=
(

∂μ−
∂ϕ

)
T,ρ

+
(

∂μ−
∂ρ

)
T,ϕ

(
∂ρ

∂ϕ

)
T,P

. (D1)

The first partial derivative of the second term on the
r.h.s. above equals ∂2 fbulk/(∂ρ∂ϕ), which vanishes because
Eq. (37) is assumed. The second derivative does not diverge,
as mentioned in Appendix E. Thus, whether T and P are fixed
or T and ρ are fixed, ∂μ−/(∂ϕ) is the same, being equal to
the inverse of χ , which appears in Eq. (25). We have

1

χ
=

(
∂μ−
∂ca

)
T,P

(
∂ca

∂ϕ

)
T,P

= 1

2ρ2v̄+

(
∂μ−
∂ca

)
T,P

, (D2)

where v̄+ denotes (v̄a + v̄b)/2. The second equality above
comes from Eq. (34) of Ref. [27]. Because a mixture we
consider has ρv̄+ ≈ 1 [27], Eq. (25) is consistent with the
result in Refs. [55,87].

With δ̄ indicating the deviation from the average, the ther-
modynamic forces are δ̄(1/T ), −δ̄(μ+/T ), and −δ̄(μ−/T ) in
Eq. (19). This equation is rewritten as

j = −4α̃∇μ− + 2β̃∇T and

jq − μ− j = 2T β̃∇μ− − γ̃∇T, (D3)

whereby α̃, β̃, and γ̃ are defined. We write š(≡ s/ρ) for
entropy per unit mass. As can be seen from Ref. [88], the
irreversible fluxes of ca and š are respectively given by the
quotient of the first entry in Eq. (D3) divided by 2ρ and that
of the second divided by ρT , whereas the conjugate thermo-
dynamic forces are respectively given by −2ρ(δ̄μ−)/T and
−ρ(δ̄T )/T . After the division, the second term on the r.h.s. of
the second entry becomes equal to the product of −ρ(∇T )/T
multiplied by γ̃ /ρ2, which is one of the Onsager coefficients.
The other coefficients can be similarly obtained. Comparing
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Eq. (19) with (D3), we obtain

� = 4α̃, κ = 2T (2μ−α̃ − T β̃ ), and

λ = 4μ−T (μ−α̃ − T β̃ ) + T 2γ̃ . (D4)

In Refs. [55,87,89], the singular parts of α̃, β̃, and γ̃ , indicated
by the subscript sing, are shown to satisfy

β̃sing

2α̃sing
= −

(
∂ca

∂T

)
P,μ−

(
∂μ−
∂ca

)
T,P

= −s̄−, (D5)

whose second equality comes from Eq. (1), and

γ̃sing

4α̃sing
= ρT

χ

(
∂ š

∂T

)
P,μ−

≈ T s̄2
−. (D6)

The approximate equality of Eq. (D6) is explained in the next
paragraph. Because of the singular properties of α̃ and β̃, the
Ludwig-Soret effect has universal properties in a near-critical
binary fluid mixture [55,82,87,90–92]. Equations (D4)–(D6)
yield Eq. (27). It is to be noted that this equation leads to
neglect of the thermal conductivity not exhibiting the critical
enhancement [87].

The partial derivative in Eq. (D6) equals(
∂ š

∂T

)
P,ca

+
(

∂ š

∂ca

)
T,P

(
∂ca

∂T

)
P,μ−

= cP

ρT
+ 2s̄−

(
∂ca

∂T

)
P,μ−

,

(D7)
where cP denotes the isobaric specific heat under constant ca.
The equality between the second terms on both sides above
comes from a Maxwell relation and Eq. (1). The second partial
derivative in Eq. (D5) can be rewritten using Eq. (34) of
Ref. [27]. As a result, the last partial derivative in Eq. (D7)
equals s̄−χ/(2ρ2v̄+). As mentioned in Appendix E, cP di-
verges more weakly than χ in the critical regime, where the
approximate equality in Eq. (D6) is valid.

An alternative explanation is as follows. In the mode-
coupling theory, the singular part of an Onsager coefficient
is calculated in terms of the time integral of the two-time
correlation function of the reversible fluxes, as mentioned in
Sec. 6.5 of Ref. [39]. The Onsager coefficients mentioned
above Eq. (D4) are found to be γ̃ /ρ2, −β̃T/ρ2, and α̃T/ρ2,
and their singular parts are linked with the autocorrelation
of (δ̄š)v, the cross-correlation of (δ̄š)v and (δ̄ca )v, and the
autocorrelation of (δ̄ca )v, respectively. This means that, in the
critical regime, the ratio of γ̃sing to −β̃singT and that of −β̃singT
to α̃singT are given by ∂ š/(∂ca ) with T and P fixed, which is
consistent with Eqs. (D5) and (D6).

APPENDIX E: INTERNAL-ENERGY FLUCTUATIONS
AND APPROXIMATE INCOMPRESSIBILITY

We define H as the effective Hamiltonian in the bare model
so that the equilibrium probability density functional (EPDF)
of ρ and ψ is proportional to e−H, without the contribution
from ∂Vtot taken into account. As mentioned in Sec. III C, H
includes the ψ4 model,∫

Vtot

dr
[

1

2
A0τψ2 + λ0

4!
ψ4 + a2

0

2
|∇ψ |2

]
, (E1)

where λ0(> 0) and a0 are constants, and the integrand above
becomes a part of Eq. (37) divided by kBT after coarse

grained. The value of Tc in the definition of τ depends on the
stage of the coarse graining. Writing m for (u − uc)/(kBTc),
we can also consider the EPDF of ρ, ψ , and m. We define Hs

so that this EPDF is proportional to e−Hs in the bare model.
Integrating out m from this EPDF should yield the EPDF of
ρ and ψ . In other words, the latter’s Legendre transform is
the former, and vice versa. Thus, owing to a term A0τψ2/2
in H, Hs has a term proportional to mψ2 and H has a term
proportional to τ 2 [39,60]. We define C0 so that this term
equals −C0τ

2/(2kB), and the variance of m is proportional
to C0. Coarse graining the ψ4 model and imposing the self-
consistent condition for off-critical compositions set up the
RLFT [47]. We can also set it up by coarse graining Hs,
imposing a self-consistent condition, and integrating out m. In
this procedure, C0 becomes C of Eq. (37) because fluctuations
of m are affected by those of ψ via their coupling term [39,60].
Instead of using Eq. (37) as it is, we can calculate σ̂ (th) by
evaluating the dependence of C on ξ locally. Although data
are not shown, the resultant changes from the results of Fig. 3
are negligibly small [64].

The isochoric specific heat cV , given by −T ∂2 fbulk/(∂T 2)
with ρ and ϕ being fixed, remains finite at the critical point,
although it appears to diverge in the regime accessible to
usual experiments [39,93]. Linked with the fluctuations of m,
the isobaric specific heat cP becomes proportional to C (∝
|τ |−α with α = 0.11) in the critical regime with ca = cac

kept [39,94]. The same power-law dependence is shared by
the isothermal compressibility κT and the thermal expansion
coefficient αP, which are given by

κT = 1

ρ

(
∂ρ

∂P

)
T,ca

and

αP = − 1

ρ

(
∂ρ

∂T

)
P,ca

= κT

(
∂P

∂T

)
ρ,ca

. (E2)

These quantities are related with each other via κT (cP −
cV ) = α2

PT . The singularity of κT is generated by coupling
between ρ − ρc and ψ2 in the ρ-dependent part in the EDPF.
We neglect this coupling in Eq. (37), considering that the
singularity is not accessible to usual experiments [39,95].
Observed values of κT and αP are typically 10−9 Pa−1 and
10−3 K−1, respectively, near the critical point [95,96].

In this paragraph, we show that the last partial derivative
of Eq. (D1) is finite. In the region mentioned at the beginning
of Appendix D, we simply write f for fbulk and refer to its
derivatives by adding subscripts. For example, fρϕ represents
∂2 fbulk/(∂ρ∂ϕ), which vanishes because of Eq. (37). We have

δP = ρ( fρρδρ + fρT δT ) + ϕ( fϕϕδϕ + fϕT δT ) + sδT (E3)

owing to Eq. (15). Here, unlike in the main text, δ indicates an
infinitesimal change. Using Eq. (E3) and ϕ = ρ(2ca − 1), we
find δϕ (δρ) equal to ϕ (ρ) multiplied by

δP
1

ρ2 fρρ + ϕ2 fϕϕ

(E4)

when T and ca are fixed. The fraction is found to equal κT

because of the first entry of Eq. (E2) and Eq. (E3). Consider-
ing that the sum in the first (second) parentheses of Eq. (E3)
equals δμ+ (δμ−), we use Eq. (E4) to find that the first en-
tries of Eqs. (1) and (2) give v̄− = ϕ fϕϕκT and v̄+ = ρ fρρκT .
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Thus, we use Eq. (E3) to find that the last partial derivative
in Eq. (D1) equals −v̄−/v̄+, which result can be derived if
fρϕ does not vanish. At the critical point, this fraction can be
written in terms of ρc and ϕc and is finite.

For the following reason, we can use ρc approximately for
ρ (ref ), which appears in Eq. (50) and is involved in returning
the dimension to Ĝ(th). For definiteness, we here write τ (ref ) for
the value of τ in the reference state. At the state we reach by
changing τ from zero to τ (ref ) with P and ca being fixed, how
ρ changes from ρc can be approximately calculated from the
regular part of αP [95]. The difference between the value of ρ

at this state and ρ (ref ) can be calculated using the last partial
derivative in Eq. (D1). Thus, the ratio (ρ (ref ) − ρc)/ρc is found
to be smaller in magnitude than 10−3 for τ (ref ) = 1/300.

APPENDIX F: APPROXIMATION IN THE DERIVATION
OF EQ. (45)

By using Eq. (E3) to calculate the second entry of Eq. (1),
we obtain s̄− = ϕ fϕϕαP − fϕT . The term μ

(ref )
− ϕ is included in

f−, as shown in Eq. (40). Its contribution to the second entry
of Eq. (4) is

−T 2

(
∂

∂T

)
ρ,ϕ

μ
(ref )
− ϕ

T
= μ

(ref )
− ϕ − T ϕ

(
∂

∂T

)
ρ,ϕ

μ
(ref )
− . (F1)

The value of the last partial derivative above equals that
of fϕT in the middle of the reservoir in the reference state
owing to fρϕ = 0. Thus, because of Eq. (26), Eq. (F1) con-
sists of H̄ (ref )

− ϕ and the other term. This term gives an extra
term

T∗τ∗
μ∗

(ϕ fϕϕαP)(ref )ψ̂ (0) (F2)

to Eq. (48), where the superscript (ref ) implies that the prod-
uct in the parentheses should be evaluated in the middle of
the reservoir in the reference state. We can use Eq. (52) to
evaluate fϕϕ and find Eq. (F2) to be smaller than 30|τ |γ |ψ̂ (0)|
in magnitude. This magnitude is found to be much smaller
than the corresponding magnitude given by the circles in

Fig. 3, with the aid of the results in Fig. 2. Thus, Eq. (F2)
is negligible in deriving Eq. (45).

APPENDIX G: THERMOOSMOTIC FLOW FAR
FROM A FLAT SURFACE

For a mixture occupying a semi-infinite space bounded by
a flat wall surface, we consider imposing a temperature gradi-
ent along the z axis, which is parallel to the wall surface. The
equilibrium profile ψ (0) becomes a function of the distance
from the surface, denoted by X , and is assumed to approach
zero as X → ∞. The velocity field in this situation can be
obtained in the same way as Eq. (49) is derived. Assuming that
ηs to be η∗ homogeneously and using Eq. (58), we find that the
z component of the mixture velocity far from the surface, or
the slip velocity, is approximately given by

kBC1|τ |
2η∗ξ 2

0 τ

∫ ∞

0
dX1

∫ ∞

X1

dX ωγ−1[ψ (0)(X )]2 (G1)

multiplied by the z component of the temperature gradient.
When the second term is much smaller than the first term

on the r.h.s. of Eq. (41), ω̂ ≈ |τ̂ | holds and the second term on
the r.h.s. of Eq. (39) is negligible. We further approximate M−
to be kBTcC1 to obtain the free-energy density in the Gaussian
model, where ξ becomes homogeneous and ψ (0)(X ) equals
hξe−X/ξ /M− [97,98]. Substituting this into Eq. (G1) with
ω = |τ | and h = 0.1 cm3/s2, we find that the slip velocity in
terms of v̂(th)

z for a mixture of LW (NEMP) is −0.082 (0.12)
at |τ | = 3.2 × 10−3, and −0.017 (0.025) at |τ | = 6.4 × 10−3.
Here, for the critical exponents, we use the values mentioned
in Sec. III C, not the values in the Gaussian model. These
values of the slip velocity are comparable to the corresponding
values calculated with the procedure used for Fig. 5, which
are −0.042 (0.061) at |τ | = 3.2 × 10−3 and −0.014 (0.021)
at |τ | = 6.4 × 10−3.

The equilibrium profile ψ (0)(X ) becomes universal in
the adsorption layer as the critical point is approached be-
yond the regime of the Gaussian model [32,41,42]. As is
done for the diffusio-osmosis in Appendix D of Ref. [27]
and in Sec. V C of Ref. [44], we use the universal profile
ψ (0)(X ) ∝ X −β/ν in Eq. (G1). With the aid of Eq. (41), we
find that the resultant slip velocity in thermo-osmosis becomes
proportional to |τ |ν−1 as τ approaches zero.
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