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Chemical herding as a multiplicative factor for top-down manipulation of colloids
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Colloidal particles can create reconfigurable nanomaterials, with applications such as color-changing, self-
repairing, and self-regulating materials and reconfigurable drug delivery systems. However, top-down methods
for manipulating colloids are limited in the scale they can control. We consider here a new method for using
chemical reactions to multiply the effects of existing top-down colloidal manipulation methods to arrange large
numbers of colloids with single-particle precision, which we refer to as chemical herding. Using simulation-
based methods, we show that if a set of chemically active colloids (herders) can be steered using external forces
(i.e., electrophoretic, dielectrophoretic, magnetic, or optical forces), then a larger set of colloids (followers) that
move in response to the chemical gradients produced by the herders can be steered using the control algorithms
given in this paper. We also derive bounds that predict the maximum number of particles that can be steered in
this way, and we illustrate the effectiveness of this approach using Brownian dynamics simulations. Based on
the theoretical results and simulations, we conclude that chemical herding is a viable method for multiplying the
effects of existing colloidal manipulation methods to create useful structures and materials.
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I. INTRODUCTION

Colloids are ideal building blocks for the next generation
of reconfigurable nanomaterials. Researchers have already
demonstrated colloidal micromachines [1,2], swarms of mi-
crorobots [3,4], and groups of light-controlled micromotors
[5], all of which can reconfigure their structure. Such recon-
figurable materials pave the way for advanced technologies
such as color-changing materials [6], self-repairing and self-
regulating materials [7,8], and reconfigurable drug delivery
systems [9–11]. These reconfigurable systems can be under-
stood using the paradigm of top-down control of bottom-up
(self-assembly) processes. However, top-down (i.e., human
controllable) forces tend to be limited in either the amount
of local control they can apply or on the scale they can con-
trol [12]. For example, direct printing can only make static
arrangements that are not reconfigurable, magnetic and fluidic
forces tend to act globally and can upset areas of the domain
that have already been configured, and local actuators such as
optical tweezers can only control a small number of particles
at a time. To address this last challenge, we propose using
chemical forces in combination with existing top-down tech-
niques to facilitate the precise, local control of larger numbers
of particles. This approach has the potential to advance the
technologies capable of developing reconfigurable colloidal
materials.

Individual colloidal particles can be moved using elec-
tric fields [13–15], fluid flow [16–18], magnetic forces [19],

*Contact author: tree.doug@byu.edu

optical forces [20,21], and acoustic forces [22–24]. Chemical
forces have also been investigated. For example, we have
shown in simulation how direct feedback control of chemical
reactions can be used to steer individual colloidal particles
[25]. Other researchers have shown that chemically propelled
active colloids can be individually steered using feedback con-
trol of magnetic fields and light-controlled localized chemical
reactions [26–28]. Also, recent experimental work has also
demonstrated colloidal shuttles, in which a “shuttle” colloid
attracts other particles as cargo through chemical or electri-
cal forces, and then it transports and releases this cargo at
some other location [29–31]. We see these examples as early
demonstrations of how chemical forces offer vast potential to
increase the design space of colloidal systems.

Chemical forces are an especially intriguing method of
manipulating colloids because natural biological systems are
known to move and adapt in response to chemical signals [32],
and because chemical reactions provide new and unexplored
degrees of freedom that can be used in tandem with optical,
magnetic, electric, or fluidic forces. For example, chemical
forces may act on particles that do not have the required
dielectric or magnetic properties to be manipulated directly
using optical or magnetic tweezers. Even more significantly,
we expect that chemical forces can be used to increase the
number of particles that can be manipulated through other
top-down methods and, for example, make relatively inex-
pensive electrophoretic steering techniques viable for a wider
range of applications. In this paper, we use simulation-based
methods to present a new technique for using chemical reac-
tions to multiply the effects of other single-particle colloidal
manipulation methods by using a small number of chemically
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FIG. 1. An illustration of chemical herding. We wish to move
passive “follower” particles (red circles) to target positions (red
x’s). A chemically active “herder” particle (orange circle) creates a
chemical gradient that attracts the followers through diffusiophoretic
interactions. We use external forces to move the herder on a path
(solid black line) that allows it to lead a follower to its target.
Followers are made to move to predesignated positions, separated
by a distance of �.

active particles to control the positions of a larger group of
nonreactive colloids. We refer to this method as chemical
herding.

Chemical herding is inspired by a technique used for
unmanned aerial vehicles (UAVs) called indirect herding
[33–35]. Indirect herding uses directly controllable agents
(referred to as herders) to move passive agents (followers)
to a desired location. While the small size of colloidal par-
ticles prevents them from being controlled using the same
technologies as UAVs, the principle of indirect herding can
still be applied. In chemical herding, the herder is a colloid
that catalyzes a chemical reaction to create a solute concentra-
tion gradient, and the followers are nonreactive colloids. This
situation is illustrated in Fig. 1. The followers (red circles)
are attracted to or repelled from the herder (orange circle)
by diffusiophoretic interactions with the solute (illustrated by
gray lines). The herder is directly moved using external forces,
and it is made to herd the followers to target locations (red x’s)
through interactions with the solute it produces. The herder is
capable of moving many followers, one at a time, as illustrated
by Fig. 1. In this paper, we will move colloids onto regularly
spaced, predefined target locations, as shown in the figure.

We present simulations of chemical herding using Brow-
nian dynamics (BD) techniques. The BD simulations model
a physical system with the following properties, illustrated in
Fig. 2:

(1) A vision system that measures the position of each
particle in real time,

(2) A top-down manipulation method such as optical
tweezers or electrokinetic actuators that can be used to steer
the herder, and

(3) A microfluidic device filled with colloidal particles in
a solvent/solute system.

Finally, in addition to the simulated system above, we add
(4) A feedback controller to calculate the optimal values

for the actuators (e.g., electrode voltages or optical trap posi-
tion) using information from the vision system.

While this paper contains only simulation results, a physi-
cal system that employs chemical herding would include the

FIG. 2. A diagram that explains the steps of chemical herding.
Nine follower particles (red circles) are moved through interactions
with a herder particle (orange circle) in a microfluidic device. The
position of each particle is measured by a vision system and supplied
to a control algorithm to calculate values for the actuator that will
move the herder on its calculated path. The actuator implements a
force or field that will move the herder on its desired path.

following elements: followers that are nonreactive colloids
such as silica or polystyrene, a herder that is a metal col-
loid that catalyzes an H2O2 reaction, which has been seen
in literature to attract other particles [1,36,37], and exter-
nal forces to move the herder implemented using optical
tweezers, magnetic tweezers, or electrokinetic forces [13].
In our simulations, we have attempted to choose physical
parameters that replicate physical conditions as closely as
possible.

In the remainder of this paper, we will introduce our feed-
back controller and present simulations demonstrating the
steering of colloids using chemical herding. In Sec. II, we
will explain the simulation methods and controller. In Sec. III,
we will use Lyapunov stability theory to derive bounds on the
range of physical parameters that can be used for chemical
herding. Then, in Sec. IV we will present the results of the
simulations, including steering many particles with a single
herder and using multiple herders working together. We will
end with our conclusions in Sec. V.

II. METHODS

In this section, we will first briefly describe our BD sim-
ulations, including the methods for calculating the chemical
concentration profile for diffusiophoresis and implementing
interparticle interactions. Then we will explain the values
of the physical parameters we used in our simulations. Af-
terward, we will compare the various timescales present in
the system. Finally, we will explain the controller used for
chemical herding.

For the remainder of this paper, we will use the following
notational conventions. We will represent vectors in bold, with
the norm of the vector being nonbold and the unit vector
indicated by a hat, meaning the vector r has a norm r and unit
vector r̂. We will use the subscript i as the index for an arbi-
trary follower particle, and the subscript c for the follower that
is currently being chased, or herded, to its target. Additionally,
the subscript f refers to followers and h refers to herders.
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A. Brownian dynamics simulation methods

Our simulations consider nh reactive colloidal particles
(herders) with radius Rh and n f nonreactive colloidal particles
(followers) with radius R f . The motion of these particles is
determined using BD simulations. We limit the motion of the
colloidal particles to the z = 0 plane. While the colloids move
in quasi-2D, we will use a chemical concentration field that
diffuses in 3D space to be physically realistic.

The Brownian dynamics equation of motion for a colloidal
particle is given by [38,39]

dri

dt
= 1

γi
F i +

√
2Diξi, (1)

where ri is the position vector of particle i, γi is the friction
coefficient and Di is the diffusion coefficient of the parti-
cle, ξi is a Gaussian white noise term, and F i is the sum
of non-Brownian forces acting on the particle. We consider
forces from diffusiophoresis, interparticle interactions, and
externally applied forces (such as electrophoresis or optical
tweezers). Diffusiophoresis accounts for the interactions be-
tween the herder and the followers. Diffusiophoresis in a
nonionic solute [40] can be modeled using

Fdiff,i = γiμi∇Cs(ri ), (2)

where μi is the diffusiophoretic mobility and Cs is the con-
centration of the solute. Externally applied forces depend on
the method of actuating the herder (for example, an applied
electric field) and will be designated as Fext,i. Interactions
between particles are modeled using the Heyes–Melrose al-
gorithm [41], with the interaction force given by

F int,i =
{ −γi

�tsim

∑
j κ (Ri + Rj − di j )d̂ i j di j < Ri + Rj,

0 otherwise,
(3)

where d i j is the vector from particle i to particle j, d̂ i j is
the unit vector in direction d i j , �tsim is the timestep of the
simulation, Ri is the radius of particle i, Rj is the radius of
particle j, and κ is a constant. Following Heyes and Melrose,
we chose κ = 1.0.

All other forces, including hydrodynamic flows, are not
accounted for in this model. Although colloids induce fluid
motion, which creates additional forces on each particle,
accounting for hydrodynamics introduces significant compu-
tational expense and analytical difficulties due to the complex
coupling between hydrodynamics and concentration profiles.
Therefore, we have chosen to neglect hydrodynamic interac-
tions at present to emphasize the development and validation
of our feedback controller. We further hypothesize that the
method of chemical herding described here may prove robust
to the addition of hydrodynamic flows, because the feedback
controller may compensate for errors introduced by their ne-
glect. We plan to test this assumption in future studies.

Using the above assumptions, Eq. (1) can be expressed as

dri

dt
= μi∇Cs(ri ) + F int,i

γi
+ Fext,i

γi
+

√
2Diξi. (4)

Our simulations contain two types of particles: followers and
herders, and for each of these two types of particles, we can
make further simplifications.

The forces acting on a follower particle are diffusiophore-
sis and interparticle interactions. We assume the followers
are not impacted by the external forces from the actuator
that steers the herders, i.e., optical/magnetic tweezers or elec-
trokinetic forces, which primarily affect the herders. Thus the
equation of motion of the followers is

dri

dt
= μ f ∇Cs(ri ) + F int,i

γ f
+ √

2D f ξi, (5)

where μ f is the diffusiophoretic mobility of a follower particle
in the solute, Cs is the concentration of the solute, γ f is the
friction coefficient and D f is the diffusion coefficient of the
followers, and F int,i is the force of interparticle interactions
felt by the particle.

A herder particle experiences externally applied forces for
steering, Fext,h, and interparticle interactions, F int,h. To sim-
plify the following analysis, we assume a single herder. We
also neglect diffusiophoretic forces on the herder (i.e., self-
diffusiophoresis). Applying these simplifications to Eq. (4)
gives the equation of motion for a herder particle,

drh

dt
= Fext,h

γh
+ F int,h

γh
+

√
2Dhξh, (6)

where rh is the position vector of the herder with diffusion co-
efficient Dh, the friction coefficient is γh, and ξh is a Gaussian
white noise term.

Assuming the reaction only occurs on the surface of a
spherical herder, the solute concentration Cs is determined by
solving the reaction-diffusion equation,

∂Cs(x, t )

∂t
= Ds∇2Cs(x, t ) + ghδ(x − rh), (7)

where x is the spatial coordinate, Ds is the solute diffusion
coefficient, δ is the Dirac δ function, and gh is the rate of solute
production on the surface of the herder located at rh.

We find the concentration profile around a herder by ap-
plying a pseudo-steady-state approximation (∂Cs/∂t ≈ 0) to
Eq. (7). We can nondimensionalize Eq. (7) using x̃ = x/R f ,
r̃h = rh/R f , C̃s = Cs/C∞, and t̃ = t/therder, where therder is the
timescale of the herder moving at maximum speed as defined
in Sec. II C, to produce

R2
f

Dstherder

∂C̃s

∂ t̃
= ∇̃2C̃s + ghR f

DsC∞
δ(X̃ − ỹ). (8)

If the Peclet number Pe = R2
f /Dstherder is small, then the

∂Cs/∂t term of Eq. (7) will be negligible. This will be explored
further in Sec. II C.

If the boundary condition for concentration is C∞ at a
distance of ||x − rh|| → ∞, then Eq. (7), in the steady-state
limit, has a solution of [42]

Cs(x) ≈ gh

4πDs||x − rh|| + C∞, (9)

with gradient

∇Cs(x) ≈ −gh(x − rh)

4πDs||x − rh||3 . (10)

These expressions are valid in the far field limit, and it has
been shown that such a pseudo-steady-state approximation
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TABLE I. Physical parameters used in the BD simulations.

Symbol Explanation Value

Jh Reaction flux of herder 0.02 mol/m2 s
Ds Diffusion coefficient of solute 2.01 × 10−9 m2/s
μ f Diffusiophoretic mobility 2.0 × 10−10 m2/Ms
T Temperature 298 K
η Solvent viscosity 0.89 cP
vmax Maximum speed of herder 5 µm/s
Rf Radius of followers 4 µm
Rh Radius of herders 4 µm

gives a useful limit for modeling attractive phoretic interac-
tions [43,44].

We now have all that we need to create our BD simulations.
The dynamics of a follower are given by Eq. (5), using the
∇Cs from Eq. (10). The dynamics of a herder are given by
Eq. (6), with Fext,h coming from the controller we will de-
velop in Sec. II D.

B. Brownian dynamics model parameters

We model the herder as a platinum-coated colloidal parti-
cle that catalyzes the reaction of H2O2. Table I presents the
physical parameters used in our simulations. In the following
paragraphs, we will provide a detailed explanation of the
selection of values for each parameter. These values serve as
a base case, and they will be varied in our later analysis.

The herder produces solute at a constant rate gh. For a
spherical herder, we can write gh = 4πR2

hJh, where Jh is
the flux of solute from the surface of the herder. We set Jh

based on the reaction rate of hydrogen peroxide to a platinum
catalyst, which we have taken as a prototype reaction for
chemical herding. The reaction surface flux of platinum in
10% H2O2 is approximately 0.02 mol/m2s [45]. This gives
gh = 0.02 × 4πR2

h ≈ 0.25R2
h mol/s.

Experimental observations indicate that particles that cat-
alyze H2O2 create gradients that tend to attract other particles
[1,36,37]. Thus, we use a positive value for the diffusio-
phoretic mobility μ f of the follower particles, with the
magnitude of μ f based on a typical nonionic solute, as pre-
dicted by Anderson [40]. To simplify our simulations and
analysis, we modeled the reaction as a single solute species,
which allowed us to use a single value for the diffusiophoretic
mobility. We also set the diffusion coefficient of the solute,
Ds, as the diffusion coefficient of O2 in water.

The values for the diffusion coefficient of the followers,
D f , and for the herders, Dh, were determined using the Stokes-
Einstein relations

D f = kbT

6πηR f
, (11)

Dh = kbT

6πηRh
, (12)

where kb is Boltzmann’s constant, T is the temperature, η is
the viscosity of the solvent, and R f and Rh are the radii of the
followers and herders, respectively. For our simulations, we
used a temperature of 298K and the solvent viscosity of water.
Both Rh and R f were set to 4 µm, which is a reasonable size

for colloidal particles that can be observed using an optical
microscope.

Finally, the upper limit on the velocity of the herder is
determined by the maximum speed a physical actuator can
achieve, and is set to a fixed value of vmax. We set vmax

to 5 µm/s to ensure that the top-down forces applied to the
system are not exceeded, which is a speed easily achievable
by using electrode voltages to steer colloids, as reported by
Armani [13].

C. Timescale analysis

We will now analyze five different timescales present in
the system: Brownian motion, diffusion of the solute, motion
of the herder, diffusiophoretic motion of a follower being
herded, and diffusiophoretic motion of a follower not being
herded. Then we will compare the timescales to understand
the relative strengths of each type of motion.

Both the diffusion of the solute and the Brownian motion of
the particle can be described using the time it takes the solute
or particle to diffuse over a root mean square distance of x
[46]. The timescale of Brownian motion for the followers is
given by

tbrown = x2

4D f
. (13)

Similarly, diffusion of the solute occurs on a timescale of

tsolute = x2

4Ds
. (14)

The timescale for the motion of the herder when it is
moving between follower particles at a speed of vmax is

therder = x

vmax
, (15)

where x is the length scale of interest. This assumes the herder
travels in a straight line at its maximum speed vmax and does
not need to dodge any obstacles.

The timescale for the motion of the follower particles due
to their attraction to the herder can be derived from the dy-
namics of the follower particles given by Eq. (5), with the
concentration gradient defined in Eq. (10). This concentration
profile was derived using a pseudo-steady-state approxima-
tion. We will also neglect Brownian motion and interparticle
interactions to simplify the analysis; such particles may be
referred to as “phantom” because of the lack of interactions
and “non-Brownian” due to the lack of Brownian motion. We
substitute Eq. (10) into Eq. (5), and suppose the particles are
phantom and non-Brownian, to obtain

dri

dt
≈ −kdiff (ri − rh)

||ri − rh||3 , (16)

where

kdiff = ghμ f

4πDs
. (17)

If we replace the velocity dri/dt with a length x divided by a
time t and take the norm of Eq. (16), then we find that

t = xd2
ih

kdiff
, (18)
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TABLE II. Length scales used in the chemical herding controller.

Symbol Explanation Value/expression

dprec Controller precision 1 µm
dtol Controller end tolerance 9 µm
� Target spacing 30 µm

where dih = ||ri − rh||. We will look at two different distances
dih between the follower and the herder. A follower that is
currently being herded is made to maintain a distance that is
as close as plausible to the herder. Hard-sphere interactions
make the minimum distance between the follower and the
herder R f + Rh, and we add on an additional 0.2R f to give the
follower enough space to move, as explained in the following
section. This leaves a total distance of R f h = Rh + 1.2R f be-
tween the follower and herder, giving a timescale of

tchased = xR2
f h

kdiff
. (19)

A follower that is not currently being herded tends toward
a distance of at least � (the characteristic scale of the target
pattern) from the herder, giving a timescale of

tunchased = x�2

kdiff
. (20)

Using the parameters given in Tables I and II, and at a
length scale of x = R f , we find that tbrown = 65.2s, tsolute =
0.002s, therder = 0.8s, tchased = 4.9s, and tunchased = 56.5s. In
the following paragraphs, we will make several observations
about how these timescales demonstrate that chemical herding
is plausible.

First, since the timescales for the Brownian motion (tbrown)
and the diffusiophoretic motion of an unchased particle
(tunchased) are much slower than the timescale of the desired
motion of a particle being herded (tchased), the followers will
be drawn to their target locations much faster than they are
moved away. This suggests that chemical herding can be
plausibly performed using our choices of physical parameters.

Second, the diffusion of the solute (tsolute) is much faster
than the motion of the herder (therder). This fact is what makes
our pseudo-steady-state approximation to the concentration
profile valid. As previously stated, a small Peclet number
allows us to assume pseudo-steady-state. The Peclet number
is equivalent to the ratio of timescales Pe = tsolute/therder =
0.0025. Since this number is much smaller than unity, we
conclude that the pseudo-steady-state approximation is valid.

Third, the timescale for the motion of the herder at its
maximum speed (therder) is much faster than the timescale for
the motion of the chased follower (tchased), which allows the
herder to detach from a follower after that follower reaches its
target.

This idea can be understood more clearly by referencing
Fig. 3. This figure illustrates both how the concentration gra-
dient emitted by the herder decays with distance away from
the herder, and how the speed of the follower depends on
that distance. The follower reaches a theoretical maximum
speed when the follower is in contact with the surface of the
herder, which we represent using the timescale tchased. Since

FIG. 3. A herder (orange circle) produces a solute gradient (blue
background) which attracts the follower particles (red circles). Fol-
lowers closer to the herder are attracted more strongly due to the
steeper gradient, while followers further away are attracted more
weakly. This produces a “catch radius” R at which a follower will
move at the same speed as the herder.

attraction is solely through diffusiophoresis, a follower can
only be dragged if the herder moves at the same speed or more
slowly than the speed of the diffusiophoretic motion of the
follower. If the herder moves faster than the timescale tchased,
then no particles can follow and the herder detaches from the
follower, which is necessary for leaving the follower behind
once it reaches its target.

Figure 3 also shows why only one follower at a time will
be dragged by the herder. For a given herder speed (which is
set by the controller), there is some “catch radius” R where
colloids that are located at dih < R will move closer to the
herder, colloids at dih = R will exactly move with the herder,
and colloids at dih > R will be left behind. Also, if the herder
moves at this maximum speed, only a follower that is in
contact with its surface can be dragged along with the herder,
and all other particles will not be able to “keep up” and will
be left behind.

D. Switched systems control

In this section, we derive the control law that will be used
to move the herder. For evenly spaced target positions with a
spacing of �, as shown in Fig. 1, we wish to create a controller
that will move one particle onto each target position. We will
derive the algorithms to do this in the following paragraphs.

In deriving our control law, we assume that the herder can
be moved much faster using external forces than the speed
at which the followers can move via diffusiophoresis. This
allows us to decouple the path planning of the herder from
the calculation of where we want the herder to be in relation
to the followers. With this assumption, the herding problem
can be divided into three parts:

(1) setting a switching strategy for choosing which fol-
lower the herder will chase,

(2) calculating the optimal placement of the herder, and
(3) planning the path for the herder to lead the follower to

the target in a way that avoids collisions with other particles.
These steps are shown schematically in Fig. 4, along with

the equation or algorithm to perform that step.
In the first step, we set a switching strategy for the herder

to select which follower to chase. We use the word “chase”
following the terminology of Licitra et al. [35], even though
in the present work, the nature of the attractive interactions
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Switching rule

Algorithm 1

Herder placement

Equation (21)

Path planning

Equation (23)

Colloid 
movement

FIG. 4. A schematic diagram showing the three steps in our
chemical herding controller. First, a switching rule given by Algo-
rithm 1 dictates that the herder should chase the particles one at a
time, beginning with the particle farthest away from its target and
then moving to the next farthest. Second, the optimal placement of
the herder which will move the selected follower towards its target is
given by Eq. (21). Third, a GVF (given in Sec. I of the Supplemental
Material [47]) is used to plan the path of the herder to avoid obstacles
while guiding the selected follower to its target, which produces the
force to apply to the herder, given in Eq. (23).

means the herder leads the follower particles rather than pur-
suing from behind. We chose a simple and intuitive switching
strategy described in the pseudocode in Algorithm 1. Note that
in the pseudocode, curly brackets refer to a set, i.e., {ri} is the
set of all the followers.

Algorithm 1 proceeds as follows. First, in line 2, each
follower position ri is matched to a target r∗

i using the Python
algorithm linear_sum_assignment to minimize the dis-
tance to the assignment. Next, in lines 3–6, one selects the
follower that is farthest from its target. Then, in lines 7–9, one
herds the selected particle by applying Eqs. (21)–(23) until the
particle is within precision dprec of its target position. Finally,
the process is repeated until all particles are within tolerance
dtol if their target position.

Note that it is necessary to have two different tolerance
length scales dprec and dtol in the switching algorithm, because
there are two different timescales associated with the Brow-
nian motion that can occur during the inner and outer loops.
The inner loop (with scale dprec) lasts for only a single time
step of the numerical integration of Eqs. (21)–(23). However,
the outer loop (with scale dtol) encompasses the time it takes
the herder to visit each follower particle. Values of dprec and
dtol are given in Table II, along with the length scale of the
target pattern, �. The significance of these values will be
discussed further in Sec. IV.

In the second step, we calculate the optimal placement
of the herder that will move the selected follower towards
its target. Figure 5 depicts this step graphically. We define
ec = rc − r∗

c as the difference between the position of the
currently herded follower rc (red circle in the figure) and its
target position r∗

c (red x), where the subscript c refers to the
follower that is being chased by the herder. We wish to ensure
ec = ||ec|| approaches zero as quickly as possible, and we do

ALGORITHM 1. Switching rule.

1: repeat
2: {r∗

i } = linear_sum_assignment({ri}, {r∗
i })

3: for i = 1 to nf do
4: ei = ri − r∗

i

5: end for
6: ec = max({ei})
7: repeat
8: Apply Eqs. (21)–(23)
9: until ec < dprec

10: until all ei satisfy ei � dtol

this by placing the herder on a location r∗
h (orange x in the

figure). Since the herder attracts the follower, placing r∗
h on

the line in the direction of the unit vector êc leading from the
particle to its target (dotted line in the figure), will attract the
follower to location r∗

c . We place the herder as close to the
follower as feasible to decrease this error as quickly as possi-
ble. Due to hard-sphere interactions, the closest that the herder
can approach the follower is R f + Rh, where R f is the radius
of the follower and Rh is the radius of the herder. To give the
follower enough space to move, we add in a constant 0.2R f ,
for a total distance of R f h = R f + Rh + 0.2R f . Therefore, the
ideal trajectory of the herder is given by

r∗
h(t ) = rc(t ) − êc(t )R f h. (21)

Equation (21) gives the trajectory of a herder that will
move the selected follower towards its target as quickly as
possible. However, to produce this trajectory from any given
initial position would require that the herder moves arbitrarily
quickly. To relax this assumption, we instead consider Eq. (21)
as a relationship that lets us find the optimal placement of the
herder as a goal for the herder to move towards during any
discrete timestep. The actual trajectory of the herder will be
given in the following paragraph.

For the third step, we compute the trajectory for the herder
to lead the follower to the target in a way that does not
disrupt other particles or attempt to pass through the particle
being herded. A straight-line trajectory is not suitable for this
purpose. Instead, we adopt a path-planning approach com-
monly used in UAV navigation called a gradient vector field
(GVF). The GVF is a vector-valued function V g(rh, r∗

h, {ri})

FIG. 5. A schematic of a herder (orange circle) moving to its
optimal placement (orange x), next to a follower (red circle). The
target associated with that follower (red x) is also displayed. The
solid black line represents the motion of the herder, and the dotted
black line represents the motion of the herder-follower pair to the
follower target.
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that produces a direction for the herder to move at each time
step. We treat the followers as obstacles that the herder must
avoid and use a modified version of the GVF proposed by
Wilhelm and Clem [48] to calculate the direction V̂ g that
will move the herder to r∗

h while avoiding collisions with the
follower particles. The function V g is defined in Sec. I of the
Supplemental Material [47].

The resulting velocity we wish to produce is then

drh

dt
= V̂ g(rh, r∗

h, {ri}) min

(
vmax,

eh

�tcontrol

)
, (22)

where eh = ||rh − r∗
h|| is the distance from the herder to its

target position and �tcontrol is the timestep of the controller,
which we set to �tcontrol = 0.1s. We then solve Eq. (6) for the
force that will produce this velocity. If we neglect Brownian
motion and hydrodynamic interactions, then the external force
we need to apply to the herder particle is

Fext,h = γhV̂ g(rh, r∗
h, {ri}) min

(
vmax,

eh

�tcontrol

)
. (23)

Chemical herding is achieved by using an external controller
that produces the desired value of Fext,h to move the herder.
As indicated in Algorithm 1, this process is then repeated for
each follower particle until all are within dtol of their target
positions.

Practical implementation of chemical herding in a physical
system will require a few additional considerations that are not
accounted for in the present simulations. The force produced
by the controller Fext,h given in Eq. (23) will also require
a control law. For example, electrokinetically steering the
particles would need a least squares minimization algorithm to
set the electrode voltages [13,49]. By contrast, the simulations
presented in this paper are independent of the method used
to steer the herder, which allows our conclusions to be more
generally applicable. Note also that in an experimental realiza-
tion of chemical herding, the variables rh and {ri} would come
from a measurement of the system, and not from the Brownian
dynamics equations of motion. Finally, Eq. (23) assumes a
constant friction coefficient γh, which may not be accurate
when there are hydrodynamic interactions between particles
[50]. Consequently, an experimental realization of the path
planning algorithm may need to account for hydrodynamic
interactions or use a model-free approach.

III. LYAPUNOV STABILITY LIMITS ON HERDING

In this section, we introduce the concept of Lyapunov
stability and show how it can be used to derive a limit on
the maximum number of particles that can be steered using
a single herder. Then, we show that Brownian motion creates
another limit on the number of particles that can be steered,
and we analyze the sets of physical parameters where chemi-
cal herding is possible.

A. Lyapunov stability analysis

Lyapunov theory provides a rigorous framework to en-
sure the stability of dynamical systems, which, in the context
of chemical herding, means that followers will converge to
and stay at their target locations. Lyapunov stability analysis

requires defining a positive definite function V (x), referred to
as the Lyapunov function, and then showing that this function
consistently diminishes as time progresses, i.e., its derivative
V̇ (x) is negative definite. If this is achieved, then it follows that
x evolves towards zero over time. For some systems, it is also
possible to show that x approaches zero at an exponential rate,
or x � x(0) exp(−λt ) for some constant λ. More information
on these topics can be found in Khalil [51].

We derive the maximum number of particles that can
be steered with a single herder by using Lyapunov stability
analysis to find conditions for which the switched system is
stable, i.e., the conditions for which the distance between the
followers and their targets approaches zero as time increases.
As shown by Licitra et al. [34], the stability criterion is a
function of the number of followers, meaning that we can use
our stability result to find the maximum number of particles
that can be herded. To aid the reader in understanding the
following analysis, we introduce the following terminology.
By desired attraction, we mean the force of attraction between
the herder and the follower currently being chased. By un-
wanted attraction, we mean the force of attraction between the
herder and an unchased follower, which moves the follower
away from its target position. The stability analysis shows that
the relative strengths of these two forces limit the number of
particles that can be steered.

We prove the stability of the switched system in three parts:
First, we prove the chased particle converges exponentially
to its target due to the desired attraction to the herder. After-
ward, we show that the unchased particles remain within an
exponentially bounded area around their targets, despite the
unwanted attraction to the herder. Then, we use a theorem of
switched system analysis [52] and relate the two exponential
functions to show that the entire system is stable. Finally, we
rearrange the stability criterion we derived to write a function
for the maximum number of particles that can be steered.

1. Convergence of chased particle

First, we use Lyapunov stability theory to show that the
currently chased follower particle converges exponentially to
its target. We consider a single follower particle i, with the dis-
tance from its target defined as ei = ri − r∗

i . We assume that
the particle is phantom and non-Brownian, so its dynamics
can be described by Eq. (16).

Lemma 1. Assume that the trajectory of a herder rh(t ) fol-
lows its optimal trajectory r∗

h(t ) given by Eq. (21), and that a
follower with dynamics given by Eq. (16) is currently being
herded. Then that follower will converge exponentially to its
target with an exponential bound of

ei(t ) � ei(0)e−λst/2, (24)

where λs is a positive constant.
The proof of this lemma is given in Sec. II of the Supple-

mental Material [47]. In the proof, we start with the Lyapunov
function

V s
i = 1

2 eT
i ei, (25)

and we find that the system is exponentially stable, with

λs = 2kdiff

R2
f hei(0)

. (26)
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2. Divergence of unchased particles

We next show that a follower particle that is not be-
ing chased by the herder will stay within an exponentially
bounded region around its target. In other words, we write a
function that gives a bound for how far a follower can wander
after it has been herded. A particle i may move away from its
target because, as the herder chases a different particle, parti-
cle i still feels a diffusiophoretic attraction to the herder. The
distance a particle can move due to this unwanted attraction to
the herder is bounded as described by the following lemma.

Lemma 2. Assume that the trajectory of a herder rh(t ) fol-
lows its optimal trajectory r∗

h(t ) given by Eq. (21), and that
a follower with dynamics given by Eq. (16) is not currently
being chased. Then that follower will remain within an expo-
nentially bounded area around its target with an exponential
bound of

ei(t ) � ei(0)eλut/2, (27)

where λu is a positive constant.
The proof for this lemma is given in Sec. II of the Supple-

mental Material [47]. In the proof, we start with the Lyapunov
function

V u
i = 1

2 eT
i ei, (28)

and we find that the system is exponentially bounded, with

λu = 2kdiff

mint (dih)2ei(0)
. (29)

3. Switched systems analysis

We now show that the entire switched system is stable. To
do so, we make use of a theorem from Yang et al. [52] (see
also Ref. [53].) To paraphrase the theorem, a switched system
is exponentially stable if the following conditions are met.

(1) One subsystem is exponentially stable with decay con-
stant λs and another subsystem is exponentially bounded with
growth constant λu.

(2) The Lyapunov functions for each subsystem satisfy
V s

i � μV u
i for some μ � 1.

(3) If ts,i is the time the system is stable and tu,i is the time
the system is unstable, then there must exist some constant
λ∗ ∈ (0, λs) such that

ts,i
tu,i

� λu + λ∗

λs − λ∗ . (30)

(4) The average dwell time τa, or the average time the
switched system spends in each individual subsystem, must
obey

τa >
ln μ

λ∗ . (31)

Applying this theorem to chemical herding, Condition (1)
says that the herder must drive the follower to its target at
a faster rate than the follower runs away (due to unwanted
attraction to the herder) when it is left alone. Condition (2)
is a common condition in switched system analysis that says
that the Lyapunov function for the unstable system cannot be
of a higher order than the stable system. Condition (3) requires
that the time a follower is unchased must be less than a certain
fraction of the total time. Finally, condition (4) constrains how

fast the herder can switch between chasing different followers.
We will now show that, if Eq. (30) holds, then these conditions
are true for chemical herding.

Theorem 1. Assume that the trajectory of a herder rh(t )
is equal to the optimal trajectory r∗

h(t ) given by Eq. (21),
followers have dynamics given by Eq. (16), and there exists
a constant λ∗ ∈ (0, λs) such that Eq. (30) is satisfied. Then the
chemical herding system is exponentially stable.

Proof. We have already shown in Lemmas 1 and 2 that
Condition (1) is satisfied with λs = 2kdiff/R2

f hei(0) and λu =
2kdiff/ mint (dih)2ei(0). Also, from Eqs. (25) and (28), Condi-
tion (2) is satisfied with μ = 1. Since ln(1) = 0, Condition (4)
is trivially satisfied. Then, if Eq. (30) holds, then Condition (3)
is true, and the switched system is exponentially stable. �

B. Limits on the number of steerable particles

We can now derive two limits on the number of particles
n f that can be steered. First, using Theorem 1, we can derive
a limit on the number of particles that can be steered by
finding the conditions where Eq. (30) holds. This limit occurs
because, as n f increases, the herder must spend more time
moving particles back to their targets after unwanted attraction
between the herder and unchased particles moves them away.
Second, we can derive a bound on the number of particles
by comparing the timescale of Brownian motion to the time
it takes the herder to visit each particle. This limit occurs
because, as n f increases, the herder must spend more time
correcting for the effects of Brownian motion. In this paper,
we treat these two limits independently of each other and
claim that herding works as long as both limits are kept.

1. Limit from unwanted attraction to herder

We now use Theorem 1 to derive a limit on the number of
particles that can be steered. In Eq. (30), the ratio of timescales
tu,i and ts,i is a function of an arbitrary parameter λ∗. Since
Eq. (31) is satisfied regardless of the value of λ∗, we are free
to take λ∗ to be as small as possible. In the limit of λ∗ → 0, we
can rearrange Eq. (30) to give

tu,i

ts,i
� mint (dih)2

R2
f h

. (32)

We have found it useful to add 1 to each side and produce

tu,i + ts,i
ts,i

� 1 + mint (dih)2

R2
f h

. (33)

Next, we will find a relationship for tu,i + ts,i. Note that,
tu,i + ts,i equals the total time for the herder to travel between
and herd each of the n f followers. We define the variable
th as the average time for the herder to travel between two
followers. Then

tu,i + ts,i = n f th +
n f∑
i

ts,i. (34)

The maximum number of particles for which the inequality
in Eq. (33) holds occurs when each follower takes the same
amount of time to move to its target. With this assumption,
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we drop the subscript i, giving

tu + ts = n f (ts + th). (35)

Equation (33) can now be evaluated by substituting in
Eq. (35) and solving for n f , which yields

n f �
(

1 + mint (dih)2

R2
f h

)(
1 + th

ts

)−1

. (36)

This expression gives a limit for the number of particles
that can be steered before the herder requires more time to
correct for unwanted attraction than for moving the chased
particle to its target. However, is not yet useful, because dih,
th, and ts and x are functions of time. Let us address these
variables one at a time.

To evaluate th, assume the herder moves at a constant speed
vmax and an average distance � every time it switches follow-
ers. Then the average time for the herder to travel between
followers is

th,avg = �/vmax, (37)

which is equivalent to evaluating Eq. (15) at a distance of x =
�.

We can evaluate ts using Eq. (19), though we must choose
an appropriate length scale x. The right-hand side of Eq. (36)
is at its tightest bound when ts is minimized, which happens
when x is minimized, so we can substitute x with its minimum
value to get a function of constant parameters. The minimum
value of x is dtol, the tolerance at which we will stop the
herding, as defined in Sec. II D, so we will replace x with dtol

and define

ts,min = dtolR2
f h

kdiff
. (38)

Finally, mint (dih) is both time-varying and unrealistically
restrictive. In practice, mint (dih) may be equal to R f h, the
closest the herder can approach a follower. This would imply
that a particle could be dragged away at the same rate as it
moves towards the target. Such behavior is never observed in
our simulations. However, if the herder can move arbitrarily
fast, then mint (dih) will be approximately equal to the distance
between follower i and follower i + 1. We have already said
that this distance approaches �. With this reasoning, and our
empirical observations, we postulate that replacing mint (dih)
with � will produce a more useful bound.

After these substitutions, we have

n f �
(

1 + �2

R2
f h

)(
1 + th,avg

ts,min

)−1

. (39)

Finally, we substitute in kdiff from Eq. (17), th,avg from
Eq. (37), and ts,min from Eq. (38) to illustrate the full set of
parameters that affect n f . The maximum number of particles
that can be steered is then given by

n f �
(

1 + �2

R2
f h

)(
1 + ghμ f �

4πDsdtolvmaxR2
f h

)−1

. (40)

We note some interesting aspects of Eq. (40). To begin
with, in the limit as vmax → ∞, the number of followers n f

depends only on the ratio of the square of the distance � be-
tween two targets and the square of the distance R f h between
the herder and a chased particle, or

lim
vmax→∞ n f � 1 + (l/R f h)2. (41)

This relationship can be explained by comparing the strengths
of desired attraction and unwanted attraction. If � is increased,
then the unchased followers are allowed to remain farther
from the herder, and the force of unwanted attraction is de-
creased, meaning more particles can be steered. If R f h is
increased, then only the chased follower is farther from the
herder, and the force of desired attraction is decreased rela-
tive to unwanted attraction, meaning fewer particles can be
herded. Also, both desired and undesired attraction have a
squared dependence on distance, as seen in Eq. (16), which
explains the squared relationship between n f and � and R f h.
However, we note that a number of approximations were made
in deriving this result, and so information may have been lost.
If the distance � is not representative of the average distance
between the herder and an unchased particle, then Eq. (40)
may not be accurate. We will analyze this possibility further
using simulations in Sec. IV.

If the herder cannot move sufficiently fast (vmax is not
infinite), then we must use the full form of Eq. (40). If vmax

is of comparable size to the diffusiophoretic velocities of the
followers, then the unwanted attraction between the herder
and unchased particles will have time to act while the herder is
moving betweeen followers, and this will decrease the number
of particles that can be steered. The diffusiophoretic velocity,
from Eq. (16), is directly proportional to gh and μ f and in-
versely proportional to Ds. That is why, in Eq. (40), the bound
on n f gets tighter as gh and μ f increase and as Ds decreases.

It is also interesting to note that Eq. (40) is a function of
dtol. This happens because dtol is the length scale over which
the desired attraction happens when the particles are being
maintained near their targets. If the time for the herder to
travel between followers, with length scale �, is large com-
pared to the time for the herder to interact with the followers,
with length scale dtol, then this will decrease the number of
followers that can be herded. Thus, if we want more precise
placement of the particles (a smaller dtol), we cannot herd as
many particles.

2. Limit from Brownian motion

We now consider the effects of Brownian motion. We must
have the herder visit each particle more quickly than Brownian
motion can move the particles away from their targets, or

ts + tu � tbrown, (42)

where tbrown comes from Eq. (13). As in the previous section,
we will evaluate tbrown at a length scale of x = dtol, which
creates the tightest bound. Starting with Eq. (42), substituting
in Eq. (13), and solving for n f , we get

n f �
d2

tol

4D f (ts,min + th,avg)
. (43)
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FIG. 6. The number of particles that can be steered as a function of six different parameters. In each plot, one parameter is varied, and the
rest take values given in Tables I and II. The bound given by Eq. (40) is shown as a dashed line, and the bound given by Eq. (44) is shown as
a solid line. The region in which both equations are satisfied is shaded in blue, and the choice of parameters used in the simulation below for
nine particles is shown as a black x.

Finally, substituting in Eqs. (37) and (38) to see the full set of
parameters, we get

n f �
d2

tol

4D f

(
4πDsdtolR2

f h

ghμ f
+ l

vmax

)−1

. (44)

3. Predicted limits based on combined bounds

Equations (40) and (44) give two different bounds on
the maximum number of particles that can be steered. Both
bounds must be satisfied for steering to be viable.

Figure 6 shows the number of particles that can be steered
as a function of the six parameters R f , l, dtol, Rh, Jh, and
vmax. The area shaded in blue shows the set of parameters
for which particle steering is viable. For example, Fig. 6(a)
has a maximum of n f ≈ 11 when R f is between 2 and 4 µm.
Note that this plot is only valid for the specific values of the
other parameters that have been selected, and different values
of �, dtol, Rh, Jh, or vmax may move the maximum to the left
or right.

Both the follower radius R f and the herder radius Rh

strongly affect the number of particles that can be steered, as
shown in Figs. 6(a) and 6(b). Each of these plots peaks (with
our chosen values of other parameters) between 2 µm and
4 µm. For smaller particle sizes, the number of particles ca-
pable of being steered falls sharply. At smaller sizes of R f , the
diffusion coefficient of the followers D f becomes large and
Brownian motion moves the followers away from their targets
faster than the herder can correct them. At smaller sizes of Rh,

the smaller reaction rate (since gh is proportional to Rh) makes
the herding take longer, which also allows Brownian motion
to dominate. At larger sizes of either parameter, the herder
and followers are forced to be farther apart, which lowers the
force of desired attraction compared to unwanted attraction
and lowers the number of particles that can be steered. This
analysis suggests that chemical herding is scale-dependent
and may only be viable for a narrow range of particle sizes.
We also note that the simulations in this paper only tested a
herder that was the same size as the followers; we expect that
if the herder is much larger than the followers, then it would be
more likely to attract multiple followers at once, which would
make herding more difficult.

The number of particles that can be steered also depends
on how close together the target positions for the particles
are, represented by variable �. As shown in Fig. 6(c), a target
distance of less than 20 µm (with our choice of other parame-
ters) will only allow four or fewer particles to be steered, due
to the limit created by unwanted attraction. This is because
the unwanted attraction between the herder and the unchased
particles gets stronger as the particles get closer together. A
target distance that is too large will also create a limit on n f

due to Brownian motion. If the targets are placed far away
from each other, then the herder will take longer to move
between followers and Brownian motion will have time to
move followers away from their targets before the herder has
a chance to correct them. However, with the choice of parame-
ters we used, this upper limit is less restrictive, and up to eight
particles can still be steered at � = 100 µm. We wish to note
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that the bounds we have derived assumed a distance � that is
both the average distance between the herder and an unchased
follower and also the average distance the herder must move
when traveling between followers. Different shapes of target
positions might make either of these assumptions inadequate
to capture the behavior of the system. Thus, the shape of the
target may affect the behavior of the system in ways we have
not been able to fully capture with this analysis.

The reaction flux of the solute on the surface of the herder,
Jh, also affects the number of particles that can be steered, as
shown in Fig. 6(d). We plotted Jh instead of gh to separate the
effects of changing the herder radius, but the two variables
can be related using gh = 4πR2

hJh. As seen in Fig. 6(d), a
reaction flux of less than about 0.005 mol/m2s (for our choice
of other parameters) will only allow fewer than four particles
to be herded, though the bound on n f increases steadily as Jh

increases to about 0.02 mol/m2s. Values of Jh in this range are
realistic for the H2O2 reaction we have chosen as our example.
Increasing Jh will increase the desired attraction between the
herder and chased follower, which will increase the speed at
which the herder moves a follower to its target and allow the
herder to correct for Brownian motion more quickly. But a
larger Jh will also increase the force of unwanted attraction on
the unchased particles, as discussed previously. This means
that if Jh is too large, unwanted attraction will limit the number
of particles that can be steered.

The variable dtol, the tolerance at which we conclude that
the followers are close enough to their targets, also plays a
role in the number of particles that can be steered, as shown in
Fig. 6(e). In this plot, the Brownian motion curve is limiting
until about 8 µm, where it crosses the unwanted attraction
curve. Since dtol is the tolerance that we require the herding
to achieve, it makes sense that a smaller tolerance will be
more difficult to produce. At small values of dtol, Brownian
motion moves the followers away from their targets faster than
the herder can visit each follower to correct the disturbance.
At large values of dtol Brownian motion is not a significant
factor, but unwanted attraction becomes important for reasons
discussed previously, and n f approaches the asymptote of
n f = 1 + l2/R2

f h, as given by Eq. (41).
Finally, the effects of the maximum speed of the herder,

vmax, are shown in Fig. 6(f). In this plot, both bounds increase
monotonically, but for our choice of parameters, unwanted
attraction remains the more restrictive bound. A larger vmax

will decrease the time the herder takes to travel between
followers, which will allow the herder to meet both bounds
more easily. However, the effects of this increase asymptote
to n f = 1 + l2/R2

f h, as discussed previously.

IV. BROWNIAN DYNAMICS SIMULATIONS

Now we will demonstrate BD simulations of chemical
herding. First, we will demonstrate a single herder steer-
ing particles from random initial positions into a lattice and
into a circular formation, with parameters selected using the
relationships given in the previous section. Then we will
demonstrate that it is possible to use multiple herders in tan-
dem to move many particles at a time.

A. Single-herder simulations

We will now show simulations of chemical herding and
demonstrate how the rules developed in the previous sec-
tion work in practice, by looking at the time it takes to solve
the herding problem under different conditions. We will also
show that chemical herding can be used to produce different
target shapes. Then, we will look at ways to reduce the time
needed for chemical herding.

Figure 7 shows a chemical herding simulation where nine
followers are steered from an initial random arrangement to a
regular lattice with � = 30 µm spacing. The initial positions
were chosen from a random uniform distribution on the por-
tion of the domain between 50 and 150 µm. Each particle
was steered to a target using the control algorithms explained
previously, and the simulations were ended after each particle
was steered to within dtol of its target, plus another 5 min
to show that the herder could maintain the particles on their
targets. A full simulation is shown in Supplemental Video
1 [47]. We repeated this simulation 100 times with different
initial conditions, and the example shown in Fig. 7 is a typical
result.

The herding problem can be divided into two phases, as
illustrated by Fig. 7: first, initially moving each particle to
within dtol of its target, and second, maintaining the particles
near their target positions. Figures 7(a)–7(c) shows part of the
initial phase, and Figs. 7(d)–7(f) shows the latter maintenance
phase.

In the initial phase, the herder moves each follower from
their initial position to their target position. Fig. 7(a) shows
the initial positions of the particles. Figure 7(b) shows the tra-
jectory of each particle as the herder moves the first follower
to its target. According to our switching rule, the follower
farthest from its target is chased first. Then, once the first
follower reaches its target, the herder switches to chasing
another follower that is now the farthest from its target at the
new time. Figure 7(c) shows the trajectories of each particle
as the herder moves a second particle to its target and begins
chasing a third particle.

Herding continues similarly until all particles are within
dtol of their targets, and then a maintenance phase begins.
Figure 7(d) shows the positions of the particles after each
particle has been moved to within dtol of its target position.
Brownian motion and unwanted attraction continue to affect
the particles, so the herder must continue to herd the follow-
ers to maintain their positions. Figure 7(e) shows how the
herder uses the same switching rule and control algorithms
to maintain the particles on their target positions and correct
for the Brownian motion moving the particles away from their
targets. And Fig. 7(f) shows the positions of the particles
5 min after the particles reached dtol, illustrating that the
arrangement of particles can be maintained.

Using similar simulations, we tested the theoretical predic-
tions made in the previous section that Eqs. (40) and (44)
provide bounds for the number of particles n f that can be
steered as a function of different parameters. To do this, we
ran simulations for many values of the number of followers
n f and the radius of a herder R f , and tracked the time to
completion. If the herder took longer than 2 h (7200 s) to move
all followers to their targets, then we ended the simulation,

064609-11



MCDONALD, TREE, AND PETERSON PHYSICAL REVIEW E 109, 064609 (2024)

50 75 100 125 150
Position ( m)

50

75

100

125

150

t = 0.0 s

0

10

20

30

40

C
on

ce
nt

ra
tio

n 
(m

M
)

50 75 100 125 150
Position ( m)

50

75

100

125

150

t = 105.0 s

0

10

20

30

40

C
on

ce
nt

ra
tio

n 
(m

M
)

50 75 100 125 150
Position ( m)

50

75

100

125

150

t = 210.0 s

0

10

20

30

40

C
on

ce
nt

ra
tio

n 
(m

M
)

50 75 100 125 150
Position ( m)

50

75

100

125

150

t = 630.4 s

0

10

20

30

40

C
on

ce
nt

ra
tio

n 
(m

M
)

50 75 100 125 150
Position ( m)

50

75

100

125

150

t = 700.0 s

0

10

20

30

40

C
on

ce
nt

ra
tio

n 
(m

M
)

(a) (b) (c)

(d) (e)

50 75 100 125 150
Position ( m)

50

75

100

125

150

t = 905.2 s

0

10

20

30

40

C
on

ce
nt

ra
tio

n 
(m

M
)

(f)

FIG. 7. One herder (orange circle) is used to move nine follower particles (red circles) to their associated target positions (red x’s) on a
lattice with a spacing � = 30 µm. Contours show the concentration produced by the herder. Plot (a) shows the random initial condition. Plot
(f) shows the particles after they have been moved to within dtol of their target positions and maintained there for 5 min. Plots (b)–(e) show
intermediate times. The tails (orange and red lines) behind the particles show their trajectory over different time periods, with the choice of tail
length explained in the text.

reasoning that two hours would be an unrealistically long
time to perform this type of experiment in a physical system.
We performed 100 iterations for each n f between 1 and 17,
and for each of six different radii, with the results shown in
Fig. 8. Figure 8(a) shows the parameter values used in our
simulations compared to the bounds predicted by Eqs. (40)
and (44) from Fig. 6(a). Figure 8(b) shows the time to reach

the desired configuration as a function of n f , and Fig. 8(c)
shows the time as a function of R f .

The results in Figs. 8(a) and 8(b) where the number of
follower particles (n f ) is varied show that the bounds we
predicted by Lyapunov stability theory are close but conser-
vative. The theoretical bounds in Fig. 8(a) predict that only
10 particles can be steered, but in Fig. 8(b), up to 14 particles
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FIG. 8. Statistics of BD simulations performed over a range of parameters. Plot (a) shows the parameter values for the simulations. Plot
(b) shows box plots of the time to solve at each value of nf . Red x markers represent simulations that did not end in the two-hour time limit.
Plot (c) shows box plots of the time to solve at each value of Rf . Again, red x markers represent simulations that did not end in the two-hour
time limit.
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FIG. 9. One herder (orange) is used to move ten followers (red) to their target positions (red x’s), arranged in a circle with a spacing
between targets � = 30 µm. Plot (a) shows the random initial condition. Plot (b) shows the particles after the herder has moved each particle
to within dtol of their targets. Plot (c) shows after it has maintained them there for 5 min.

were consistently moved to their targets within the two-hour
time limit. For n f = 15, five (out of 100) simulations did not
finish, for n f = 16, 46 simulations did not finish, and for
n f = 17, 65 simulations did not finish within the two-hour
time limit. Thus the bounds we derived can be interpreted as
a conservative estimate of how many particles can be steered
in a reasonable amount of time.

The results in Figs. 8(a) and 8(c) that show variation in
the follower radius R f demonstrate that both qualitative ef-
fects predicted by theory—unwanted attraction and Brownian
motion—are important bounds. Figure 8(c) shows the time it
took the herder to move nine particles onto a lattice for radii
of 0.6, 1, 2, 4, 6, and 8 µm. The time gets very large for
radii that are too small or too large. For both R f = 0.6 µm
and R f = 8 µm, at least some simulations were cut off at
the two-hour mark. For R f = 0.6 µm, three simulations (of
100) exceeded the 2 h limit, and for R f = 8 µm, 91 of the
simulations exceeded the 2 h limit. This shows that there is
both a bound on how small and how large follower particles
can be, as predicted by our theory.

We also investigated patterns other than a lattice. Figure 9
shows a simulation in which a single herder steers 10 particles
into a circular pattern. Particles started from initial positions
taken from a random uniform distribution on the portion of
the domain between 25 and 175 µm. The full simulation is
shown in Supplemental Video 2 [47]. We again used the pa-
rameters from Table I, which, as seen from Fig. 6, allows us to
steer up to 10 particles with a single herder without violating
the constraints given by Eqs. (40) and (44). As previously
noted, these bounds are only approximate; we have observed
some situations in which a greater number of particles can be
steered. The shape of the target arrangement likely impacts
the actual number of particles that can be herded. We expect
that, in general, when the average distance between targets is
much greater than the minimum distance �, Eqs. (40) and (44)
will not adequately predict the number of particles that can be
steered.

Another important consideration in chemical herding is the
time it takes the system to reach the desired configuration.
For the simulations where ten particles were herded into a
circle, the average time to converge was 1200 s with a standard
deviation of 370 s (in 100 runs with random initial conditions).

In the simulation shown in Fig. 9, it took 1480 s to move all
ten particles to within dtol of their targets, which may be longer
than convenient for many types of experiments.

There are several methods that may potentially increase the
speed of the chemical herding system. First, a more efficient
switching strategy could be chosen. In Supplemental Video 2
[47], there are numerous times where the herder travels across
the diameter of the circle to chase the next particle, when it
would be preferable to first chase a closer particle. A more
efficient switching strategy could account for the distance the
herder must travel.

Second, unwanted attraction to the herder could be lever-
aged to speed up chemical herding. Unwanted attraction
causes the followers to be pulled off their targets as the herder
chases other particles. But for some target orientations, like
the circle, the particles could be placed farther out from their
target positions, knowing that the unwanted attraction would
tend to move them towards the center. This observation sug-
gests that a more advanced control technique such as model
predictive control could be used to plan the trajectory of the
herder to use unwanted attraction as beneficially as possible.

Third, physical parameters could be selected to cause the
herder and followers to move faster. When a herder travels
between followers, the maximum speed vmax it can travel is
constrained by how much force (e.g., electrophoretic forces
on the herder) can be applied by the actuator. A more powerful
actuator would increase vmax and thereby reduce the time
for the herder to travel between followers. More importantly,
much of the time spent in chemical herding is at the slower
diffusiophoretic speed of the follower particles. The time for
diffusiophoresis to move a follower a given distance is given
by Eq. (19). Thus a larger mobility, a higher reaction rate,
a smaller solute diffusion coefficient, or smaller herder and
follower sizes would increase the herding speed.

Fourth, the chemistry of the physical system could affect
the amount of unwanted attraction present. For example, some
chemical reactions can be turned on and off using light [1,2].
Such a light-controlled reaction could be used to eliminate
the unwanted attraction that occurs when the herder is mov-
ing between followers. As another example, a bulk reaction
that consumes the solute as it diffuses away from the herder
could serve to reduce the unwanted attraction between the
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FIG. 10. Three herders (orange) are used to move 12 followers (red) to their target positions (red x’s). Plot (a) shows the random initial
condition. Plot (b) shows the particles after the herder has moved each particle to within dtol of their targets. Plot (c) shows after it maintained
them there for 5 min.

herder and unchased followers. Such a bulk reaction has been
referred to as “chemical screening” [44,54]. If the solute is
consumed by a bulk reaction, then that would decrease the
strength of the gradient that is felt far from the herder, which
could allow us to greatly relax the bound created by unwanted
attraction and also save time by reducing the number of times
the herder must go back and correct the positions of followers.

Finally, hydrodynamics could both positively or negatively
affect the number of followers that can be herded. Though
hydrodynamic interactions were not included in this paper,
we hypothesize that they would have three main effects. First,
hydrodynamics introduces convection that alters the concen-
tration profile around both herders and followers, which could
affect both desired and unwanted attraction. Second, hydro-
dynamic interactions from the herder or other followers could
perturb followers from their target positions (analogous to un-
wanted attraction), making herding more difficult. And, third,
hydrodynamic interactions would create a coupling (i.e., alter
the drag forces) between the herder and the chased follower,
which would tend to make the pair move faster than expected
from diffusiophoresis alone [50], possibly make herding eas-
ier. Because of the apparent complexity of these interactions,
the effects of hydrodynamics will need to be studied further in
future work.

B. Multiple herders

The BD equations and control laws derived in this paper
assume a single herder, but they only need slight modifica-
tions to the concentration profile to model multiple herders.
With multiple herders, we neglect the diffusiophoresis felt
between herders. With this assumption, the BD equation for
each herder is still given by Eq. (6) and the BD equation for
each follower is still given by Eq. (5). However, ∇Cs is now
evaluated as the sum of the solute gradient [Eq. (10)] produced
by each herder, or

∇Cs(x) ≈
∑

i

−gh(x − rh,i )

4πDs||x − rh,i||3 . (45)

The control algorithm developed in Sec. II D can be applied
to each herder independently, with two modifications. These
modifications prevent the herders from getting too close to

each other and causing the followers to group together, which
was a common failure condition before these changes. First,
the switching strategy was modified by adding the constraint
that a herder could not chase a follower located within dapproach

of another herder. Second, the GVF for each herder was mod-
ified to consider an area around each of the other herders as
an obstacle to avoid, as detailed in Sec. I of the Supplemental
Material [47].

In Fig. 10, three herders move 12 followers onto targets
arranged on a regular lattice, using parameters from Table I.
This example illustrates that scale-up to multiple herders is
possible. With the modifications mentioned above to ensure
that herders never get too close together, we quickly and accu-
rately arrange the particles on a lattice. The full simulation is
shown in Supplemental Video 3 [47], and it took 370 s to move
all followers within dtol of their targets. In 100 simulations
with different initial conditions, the average time was 430 s,
with a standard deviation of 130 s.

We note that in Supplemental Video 3, there are times when
a herder attracts multiple follower particles at once. At the low
densities of follower particles we used in our simulations, the
controller is able to deal with this situation and quickly leave
all but one behind. This is because our controller makes the
herder move away from the followers at the same speed as the
diffusiophoretic attraction moves the nearest (and therefore
the fastest) follower towards the herder. Since diffusiophoretic
interactions fall off with distance, all but one follower is left
behind.

We also note that Eqs. (40) and (44), which we used to
predict the number of particles that can be steered by a single
herder, do not apply to these multiple herder simulations. The
analysis that led to those bounds was based on a single herder.
However, while the numerical predictions are no longer valid,
we expect the general principles that underlie Eqs. (40)
and (44)—that herding is limited by Brownian motion
and unwanted attraction—still apply to the multiple herder
case.

Finally, it might be reasonable to attempt to make each
herder steer a subset of particles so that no herder has to
move too far, and so that scale-up is more intuitive. How-
ever, initial attempts with this approach were unsuccessful
because particles on the edges of the target pattern were
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attracted to the middle too strongly. Particles near the edges
need more attention than particles in the middle, so future
herding strategies could focus on how to more efficiently
partition herders and followers so that scale-up is intuitive and
effective.

V. CONCLUSION

In summary, we have used an externally steered reactive
particle to place passive particles on target positions, in a
process we have dubbed chemical herding. We did this using a
control law divided into three parts: First, a switching strategy
was employed and the optimal herder position was calculated.
Second, a GVF was used to determine the herder trajectory.
And third, an actuator-specific controller was needed to find
the actuator values (e.g., electrode voltages) to make the
herder move. Using Lyapunov stability theory, we derived a
bound on the number of particles that could be steered using
a single herder, by comparing the desired attraction between
the herder and a chased particle with the undesired attraction
between the herder and an unchased particle. We added to this
another bound due to Brownian motion and found the range
of parameters in which particle steering is viable.

Simulations were performed to validate the bounds we
derived, and it was discovered that while these bounds are

conservative, they capture the qualitative behavior of how
parameters such as the radius of the followers cannot be either
too large or too small for chemical herding to work. We
conclude that chemical herding is viable for a narrow range
of particle sizes, which, for the parameters chosen in our sim-
ulations, is roughly between 1 and 10 µm. These sizes roughly
correspond to the sizes of particles that are small enough to be
considered colloids but large enough to be viewed through an
optical microscope.

Finally, multiple herders were used in tandem to demon-
strate that chemical herding is a viable means to create a
multiplicative factor on the number of particles that can
be moved using top-down single-particle steering methods.
Chemical herding shows promise as a means to facilitate the
precise, local control of a large number of particles using
top-down methods and has great potential for the creation of
dynamically configurable colloidal materials.
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