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Finite-size scaling in kinetics of phase separation in certain models of aligning active particles
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To study the kinetics of phase separation in active matter systems, we consider models that impose a Vicsek-
type self-propulsion rule on otherwise passive particles interacting via the Lennard-Jones potential. Two types of
kinetics are of interest: one conserves the total momentum of all the constituents and the other does not. We carry
out molecular dynamics simulations to obtain results on structural, growth, and aging properties. Results from
our studies, with various finite boxes, show that there exist scalings with respect to the system sizes, in both the
latter quantities, as in the standard passive cases. We have exploited this scaling picture to accurately estimate the
corresponding exponents, in the thermodynamically large system size limit, for power-law time dependences. It
is shown that certain analytical functions describe the behavior of these quantities quite accurately, including the
finite-size limits. Our results demonstrate that even though the conservation of velocity has at best weak effects
on the dynamics of evolution in the thermodynamic limit, the finite-size behavior is strongly influenced by the
presence (or the absence) of it.
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I. INTRODUCTION

Active matter systems contain objects that can self-propel
by drawing energy from the surroundings [1–8]. Examples
of such inherently out-of-equilibrium systems cover a rather
wide range of length scales [2–4], in terms of the size of
the constituents as well as the space that they collectively
occupy. Interesting structures and dynamics that are observed
in these systems also span a large range of length as well as
time. These can be seen in small systems like a cytoskeletal
network [2,9] or a bacterial colony [10] as well as in systems
as big as a school of fish [11], a flock of birds [12], and a
human assembly [13]. Despite the fact that the constituents
of the systems are vastly different, one may expect existence
of universality of sorts similar to passive systems [3,4]. The
nonequilibrium phase transitions that these systems undergo
often involve a switch from a disordered state to a state hav-
ing a coherent motion of the constituents, with long-range
directional order, and consequent clustering. These frequently
bear characteristics similar to those observed in equilibrium
phase transitions associated with passive matter [3,4]. This is
despite the fact that instead of attaining a thermal equilibrium
these effectively driven systems approach a steady state in
late time [14–17]. Understanding the kinetics concerning such
approaches, which include growth and aging, as a transition
occurs from one state to the other, is of practical as well as
fundamental importance [3,4,18–21]. Before stating the spe-
cific objective and importance of the work, below we briefly
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describe the key concepts of evolutionary dynamics that are
established via the studies of passive matter systems.

At a given point in time, information about many aspects
of the structure of a system can be obtained by calculating the
two-point equal-time (t) correlation function [22],

C(r, t ) = 〈[ψ (�r1, t ) − 〈ψ (�r1, t )〉][ψ (�r2, t ) − 〈ψ (�r2, t )〉]〉,
(1)

where r = |�r1 − �r2|, �r1 and �r2 being two positions in space,
and ψ is a time dependent local order parameter that can,
e.g., be a concentration or a velocity direction, depending
upon the type of the transition. Here 〈· · · 〉 represents statistical
averaging. When the local concentration of particles is chosen
to be equal to ψ , C(r, t ) in Eq. (1) represents the correla-
tion in density variation as a function of r at a given time
(t). Often in an evolving system, following a quench, such
correlation increases with time, implying growth of particle-
rich and particle-poor domains, typically in a self-similar way
[22]. The latter means, with passing time, the average size of
domains, �(t ), that can be quantified from the decay of C(r, t ),
grows but the structure at any instant remains statistically
similar to that at an earlier time. Mathematically, this scaling
feature is expressed as [22]

C(r, t ) ≡ Ĉ

(
r

�(t )

)
. (2)

Here Ĉ is a function independent of time. The time-
dependence of � is typically a power law [22], viz.,

�(t ) ∼ tα, (3)

α being referred to as a growth exponent. On the other hand,
unlike the domain growth, which can be quantified via a
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single-time correlation function, the aging behavior of the sys-
tem [23], another crucial dynamic aspect, is typically studied
via the two-time autocorrelation function [23]:

Cag(t, tw ) = 〈[ψ (�r, t ) − 〈ψ (�r, t )〉][ψ (�r, tw ) − 〈ψ (�r, tw )〉]〉,
(4)

where tw (� t ), the age of the system, is referred to as the
waiting time. This function captures the correlation between
two configurations, separated in time by (t − tw ). A slower
decay of Cag(t, tw ) with increasing tw is characteristic of the
aging phenomena. While Cag(t, tw ) does not obey the time
translation invariance in a typical evolving system, its decay
may exhibit the dynamical scaling [18,23],

Cag ≡ Ĉag

(
�

�w

)
, (5)

�w being the characteristic length scale at t = tw. Often it is
found that Ĉag obeys a power-law behavior in the long time
limit [23]:

Ĉag ∼ (�/�w )−λ, (6)

λ being the aging exponent. The values of the exponents α

and λ usually have dependence on the transport as well as
morphological features [24,25].

In several passive matter systems such scaling properties
have been identified and the exponents have been estimated
to obtain information on universality in evolution dynamics.
Efforts, along that direction, have started in the case of active
matter systems [18,26]. In the theoretical literature, simple
models have been constructed to reproduce interesting exper-
imental observations in this subdomain. One such model is
referred to as the Vicsek model (VM) [14,27] that generates
interesting collective motion of the constituents, mimicking
real physical systems. Within the framework of this model, a
pointlike individual tries to orient its motional direction along
the average velocity of its neighbors lying within a certain
range. At low strengths of imposed noise and high number
densities, these individual particles form clusters. Transition
to such a state, starting from a homogeneous configuration,
resembles typical vapor-liquid transition in a passive situation
[28–30]. In recent times, variants of this model have been
introduced by incorporating more realistic features such as
the size and shape of an object [15,18,30–33]. These require
the addition of passive interactions, to prevent interparticle
overlap. For such a composite model, if the passive limit
exhibits a phase transition, one derives an advantage in terms
of quantifying the effects of the activity by drawing a compar-
ison with the former. It is then interesting to ask how, with
the variation of active and passive interactions, the scaling
properties with respect to structure, growth, and aging change
as a system evolves to a steady state.

It is important to note here that the above-discussed scal-
ing pictures are strictly true in the thermodynamically large
system size limit. Deviations are expected when the sizes
are finite [33–41]. Studies in such finite boxes should be of
particular interest in the case of active matter, given that the
Avogadro number of constituents, in this case, does not exist.
Keeping this in mind, below we provide a somewhat general
discussion on this topic.

In phase transitions and critical phenomena, characteristic
lengths, and various other quantities exhibit divergences. In
computer simulations of phase transitions with model sys-
tems, however, it is only possible to consider finite systems. In
such kind of studies, the divergences are rounded. An accurate
idea of the quantitative features of such a divergence can,
nevertheless, be obtained by extrapolating results from several
different (finite) system sizes to the limit of thermodynam-
ically large size. This is typically carried out elegantly via
the finite-size scaling analysis [34]. In addition to achieving
this objective, the scaling property itself is of fundamental
importance and serves many practical purposes. An idea about
the analytical form of the scaling function, alongside helping
with information in the thermodynamic limit, reveals how
rounding occurs due to the imposition of finiteness in size,
either when the state point is close to the criticality [34], in
static or dynamic critical phenomena, or the system is at late
times in the growth behavior concerning the kinetics of phase
transitions [38–41]. For passive matter systems, the topic is
well explored and exploited. In the active matter domain as
well, due to the inherent finiteness of the systems, even in
experimental situations, a key issue is to settle whether the
finite-size scaling property is satisfied. This has connection to
the broader context of universality in phase transitions. The
importance of the latter stems from the fact that the origins
of phase transitions in this subdomain are nontrivial, arising
primarily due to the dynamical rules. Naturally, this topic has
drawn attention of the active matter community. A few inter-
esting studies on this aspect, related to the steady state phase
behavior, can be found in Refs. [33,36,42,43]. There exists
interest in the corresponding kinetic part as well. However,
no previous work in kinetics, to our knowledge, considered
scaling collapse for the continuous time dependence, as we
have carried out in this work. Furthermore, for the aging
phenomena in active matter, we are not aware of any such
earlier effort. In addition to showing the existence of finite-
size scaling, like in the passive matter case, in both domain
growth and aging, we show that the scaling functions can be
analytically described. While providing accurate information
on the limiting case in the thermodynamically large system
size situation, this function describes how in a finite system
of any size growth and aging would occur until the saturation
due to size limit is arrived at. Knowledge of such a function
helps compare the size effects in phase transitions of different
types at a quantitative level. At a more practical level, the
information is useful in making decisions on sizes of systems
before carrying out the simulations.

For this purpose, we combine the VM [14] with a pas-
sive Lennard-Jones model [44], both independently providing
phase transitions in the appropriate limiting situations. We
demonstrate that finite-size scaling exists in both quantities.
We exploit this scaling to obtain results in the limits if the
sizes were thermodynamically large. The latter is also of
much fundamental academic importance. Furthermore, we
verify the effects of the global conservation of velocity, a key
field in active matter dynamics. Note that there exists such
a model variant in the literature of passive matter also, with
the global conservation of order parameter [45,46]. Another
crucial aspect of our study, as mentioned above, is related to
the description of the growth and aging via certain analytical
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functions combining both thermodynamic and finite-size limit
features.

The organization of the rest of the manuscript is as follows.
In Sec. II, the models and methods used in this work are de-
scribed. Section III contains the results and analyses. Finally,
Sec. IV summarizes the paper with a future outlook.

II. MODEL AND METHODS

Our systems consist of spherical particles of mass m = 1.
A particle interacts with all other particles within a spherical
region, having radius rc, around it, via the passive pair poten-
tial [24,35],

V (r) = Ṽ (r) − Ṽ (rc) − (r − rc)

(
dṼ

dr

)
r=rc

. (7)

Here, r is the separation between two particles and Ṽ (r) is the
Lennard-Jones (LJ) potential [44],

Ṽ (r) = 4ε

[(σ

r

)12
−

(σ

r

)6
]
. (8)

In Eq. (8), σ is the interparticle diameter and ε is the inter-
action strength between a pair. We have chosen rc = 2.5σ .
The phase behavior of this passive system is well studied
in different dimensions d . For a vapor-liquid transition, the
critical values of temperature and density [35,47] in d = 3
are Tc � 0.94ε/kB and ρc � 0.32, kB being the Boltzmann
constant.

The self-propulsion rule, in our study, is very similar to the
VM. Here also, as in the VM, the velocity of the ith particle
is influenced by the average direction, �Di, of all the particles,
including the ith particle, within a spherical cutoff region. In
our model, this active interaction range is the same as rc. The
average direction �Di is calculated as [18]

�Di =

∑
j∈Rc

�v j∣∣∣∣ ∑
j∈Rc

�v j

∣∣∣∣
, (9)

where �v j is the velocity of the jth particle and the summation
is carried over all particles inside the sphere Rc of radius rc

around the ith particle. This direction �Di influences the veloc-
ity of the ith particle in such a way that its velocity magnitude
remains unchanged, as in the VM, only its direction of motion
changes. The corresponding update rule will be discussed
later.

Our MD simulations, in Canonical ensemble, have been
carried out in periodic cubic simulation boxes of linear sizes
Lσ . The temperature of the system has been controlled by
using a Langevin Thermostat. Thus, in absence of an active
interaction, the equation of motion for the i th particle has the
form [48]

m�̈ri = −�∇Vi − γ m�̇ri +
√

6mγ kBT �Ri(t ). (10)

In Eq. (10), the term −�∇Vi is the force on the ith particle due
to the passive interaction given in Eq. (7), γ is a damping
coefficient, and �Ri(t ) is a random noise, having components
drawn from a uniform distribution within the range [−1, 1]

such that

〈Riν (t )Rjμ(t ′)〉 = δi jδνμδ(t − t ′). (11)

Here i, j are the particle indices, ν, μ are indices that indicate
Cartesian directions, and t , t ′ are different times. The coef-
ficient of the noise vector �Ri is connected to the drag term
via the fluctuation-dissipation relation [49]. Equation (10)
is solved using the velocity Verlet algorithm [44,48] to ob-
tain the velocity �v pas

i (t + �t ), �t being the integration time
step, at time t + �t , from t . Following this, �v pas

i (t + �t ) is
updated further using �Di that incorporates the effects of self-
propulsion. This is described below.

As prescribed in Ref. [18], an active force, originating from
the neighbors, can be defined as

�fi = fa �Di. (12)

This acts as a push on the ith particle, by the neighbors,
along �Di, with magnitude fa, which we will refer to as the
strength. This force has the effect of changing the velocity by
��v (= �fi�t/m), over the time interval �t . Thus, the velocity
of the ith particle gets modified from �v pas

i (t + �t ), via a
vector addition of two linear velocities, to

�v ′
i (t + �t ) = �v pas

i (t + �t ) + ��v. (13)

The force, however, not only changes the direction but
also the magnitude of velocity, which may lead to a change
in the kinetic temperature, despite the thermostat. To keep the
latter constant, at an assigned value, the final velocity of the
ith particle at (t + �t ) is calculated as

�vi(t + �t ) =
∣∣�v pas

i (t + �t )
∣∣∣∣�v ′

i (t + �t )
∣∣ �v ′

i (t + �t ). (14)

Clearly, the imposition of Eq. (14) allows changes in the di-
rection only, as in the case of the Vicsek model. An additional
feature in the current model is that there is a passive limit that
also exhibits phase transition. For the case of the conserved
dynamics, after the step involving Eq. (14), to make the total
momentum zero, the average velocity of all the particles has
been subtracted from the velocity of each particle. In the
simulations of Ref. [18], �fi contained the influence of the
magnitude of average velocity of the neighbors as well. There,
for certain computational convenience the unit of time was
chosen to be t ′

0 =
√

mσ 2/48ε, whereas in this work the unit
is t0 =

√
mσ 2/ε. Furthermore, we have σ , ε, and ε/kB as

the units of length, energy, and temperature, respectively. For
the integration time step, we have used �t = 0.005t0. All the
results presented in this paper are produced with γ = 1. For
the active case we have set fa = 1.

Configurations with particles placed randomly inside the
simulation boxes, with number density ρ0 = 0.3, have been
considered as initial configurations which are quenched to
the temperature T = 0.5. We have studied systems with sizes
L = 50, 64, 80, and 100. A finite-size scaling (FSS) approach
has been incorporated for calculating α and λ. Note that, for
density ρ0 = 0.3, a system of size L = 100 contains N =
300 000 particles. For a comparative purpose, we have carried
out the FSS analysis for the passive limit of the model as well.
In this case, we have used L = 16, 32, and 50. For all the
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FIG. 1. Two-dimensional cross-sections of the evolution snap-
shots from a computer experiment with the considered model with
conserved velocity. The pictures were recorded following a quench
of a homogeneous configuration to T = 0.5, after setting fa at unity.
Here the linear dimension of the box is L = 100, containing N =
300 000 particles. The locations of the particles are marked.

system sizes, we averaged over a minimum of 50 independent
initial configurations to obtain the final quantitative results.
All the results presented here are for L = 100, except when
specific FSS analyses are carried out. As opposed to Ref. [18],
here the objective is to demonstrate and quantify the finite-size
scaling behavior, alongside obtaining accurate information on
the evolution for both conserved and nonconserved velocity
dynamics. It is important to note here that quantification of
finite-size behavior in active matter systems for the full time
range was not done previously, to the best of our knowledge.
Furthermore, for such systems this is the first FSS study for
the aging dynamics.

III. RESULTS

First we present the results for the conserved momentum
dynamics. In Fig. 1, the two-dimensional (2D) cross-sectional
views of snapshots at different times, starting from t = 0, i.e.,
the instant of quench, have been presented for a system of
size L = 100. As the system is quenched to T = 0.5, that falls
in the coexistence region of even the passive model, for the
chosen density, particle-rich and particle-poor domains form
and grow with time. Note that the used alignment activity is
known to broaden the coexistence region. Though these 2D
cross sections provide an impression that the domains are dis-
connected, from careful examination of the structure [50,51]
in d = 3, it appears that there exists interconnectedness. This
can be appreciated from Fig. 2. As in the case of 2D views,

FIG. 2. Surface plots of the 3D configurations at two different
times corresponding to the evolution process in Fig. 1. Snapshots are
prepared using the “van der Waals surface” tool in JMOL [50,51].

in Fig. 1, the domain growth is clear from these snapshots as
well.

For a quantitative understanding of the structural evolution,
we examine the behavior of C(r, t ) in Fig. 3, from different
times. For the calculation of C(r, t ), a continuum system at
a given time, t , has been mapped onto a simple cubic lat-
tice of lattice constant σ . For a lattice point, located at �r,
a local density ρ(�r, t ) has been calculated considering only
nearest neighbors, and a local order parameter ψ (�r, t ) has
been assigned to it in a way that ψ (�r, t ) = +1 if ρ(�r, t ) > ρ0,
−1 otherwise. Nearly exponential decay of C(r, t ), till the
decay of C(r, t ) to almost 90% of its maximum value, is
suggested by the plots, in a semilogarithmic scale, in the inset
of Fig. 3(a). Furthermore, a nice collapse of data is seen in
Fig. 3(b), where the r axis is scaled by the characteristic
lengths �(t ). Here, at a given t , �(t ) is equal to the distance
at which C(r, t ) falls off to a reference value Cref = 0.1. This
time-invariant nature of the structure, as implied by the pres-
ence of such scaling behavior, is consistent with a power-law
growth of �(t ) with the increase of t .

To capture the growth behavior quantitatively, �(t ) has
been plotted as a function of t , in Fig. 4(a), on a log-log scale.
Data for different system sizes show a very nice overlap ini-
tially. With the increase of time, results from smaller systems
keep departing because of finite-size effects. The dashed line

FIG. 3. (a) The two-point equal-time correlation functions, for
L = 100, are plotted against r, at different times, for the conserved
case. Data sets are normalized to set C(0, t ) = 1. The inset contains
the same data sets on a semilogarithmic scale. (b) Same as in the
main frame of (a) but here the distance is scaled by � at respective
times.
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FIG. 4. (a) Plots of �(t ), as a function of t , for the conserved case,
in a double-log scale, for several different system sizes. The dashed
line represents a power law with an exponent of 0.8. (b) A plot of the
instantaneous exponent, αi, for the L = 100 data in (a), as a function
of 1/�(t ). We performed a running averaging to obtain a smooth data
set. The arrowheaded dashed line is a linear guide to the eye towards
the limit � → ∞.

in Fig. 4(a) corresponds to a power law having an exponent
0.8. As the data sets have continuous curvature and results
suffer from finite-size effects, an accurate determination of
the exponent requires more careful analysis. In presence of
curvature, a better estimation of this exponent can be done
from the calculation of the instantaneous exponent, αi, which
is defined as [52,53]

αi = d ln �

d ln t
. (15)

A plot of αi, as a function of 1/�, is shown in Fig. 4(b). The
dashed line with an arrowhead here is an extrapolation of the
data set in the limit � → ∞, which indicates a value of α �
0.825. The downward bending of the data near small 1/�, i.e.,
large �(t ), is related to the finite-size effects.

The limitation due to finite size of systems we exploit
to an advantage, to estimate α via the FSS analysis below.
Finiteness respects the growth of domains up to only a finite
value, say �max. After the quench, during the growth process, a
system takes a certain time, t0, to enter the self-similar growth
regime. Taking this latter fact into account, Eq. (3) can be
modified as [41]

�(t ) = �0 + A(t − t0)α, (16)

where �0 = �(t0). The late time effect can be incorporated by
writing

�(t ) − �0 = Y (y)(�max − �0), (17)

where Y (y) is a scaling function independent of system size,
depending only on the dimensionless scaling variable [41]

y = (�max − �0)

(t − t0)

1/α

. (18)

This implies, if Y (y) is plotted as a function of y, with correct
choices of �0, t0, and α, data from different system sizes
should exhibit a collapse. Furthermore, in the limit y → ∞,
i.e., at early time, it is expected to exhibit the power-law
behavior Y (y) ∼ y−α so that Eq. (16) is obeyed. On the other
hand, Y (y) should approach a constant as y → 0.

FIG. 5. (a) Plot of the scaling function, Y (y), as a function of y,
in a double-log scale, for the conserved case. To obtain the collapse,
we have used data from several system sizes, as mentioned in the
figure. This was achieved for t0 = 0.75, �0 = 1.44, and α = 0.88.
The dashed line represents a power law decay of Y (y), for large y,
with an exponent 0.88. The solid line is a fit of the combined data
set to the function in Eq. (19). (b) Plots of Eq. (20), along with the
growth data sets, t0 onwards, for different L. We have thinned out the
data for the visibility of analytical lines.

In Fig. 5(a), Y (y) has been plotted as a function of y,
on a log-log scale, for the choices �0 = 1.44, t0 = 0.75, and
α = 0.88, for all the considered system sizes. There is a nice
collapse of the data sets. As shown in the figure by a dashed
line, Y (y) obeys a power-law with an exponent α = 0.88 for
large values of y. There is a crossover to another near constant
form as y decreases. A function to describe data on either side
of the crossover was obtained recently in a study of disease
spread [54]. In fact, the construction was motivated by the
finite-size scaling behavior in the context of phase transition
and applicability to the latter was demonstrated more recently
in a simple case [55]. This has the form

Y (y) = Y0

(
b + yθ

α

)−α/θ

, (19)

where Y0, b and θ are positive constants. From Eq. (19), it
follows that for y → ∞, Y (y) ∼ y−α , as expected from the
formulation of the scaling described above. With the above
mentioned choice of α, viz., 0.88, we have obtained a very
good fit to the collapsed data sets, presented in Fig. 5(a). The
function has been shown there with a solid line. The derivation
or the construction of Eq. (19) used the above mentioned
expectations for the limiting behaviors of Y , mentioned in
the preceding paragraph. For this purpose, an instantaneous
exponent γi = d ln Y/d ln y was defined. This quantity will
have a value −α for y → ∞ and 0 as y → 0. The transition
or crossover from one value to the other can occur following
various functional forms. A power-law form, ∼y−θ , was used
to arrive at Eq. (19), by writing −γ −1

i = α−1 + by−θ . Return-
ing to the results in Fig. 5(a), the best fit values of the other
three parameters are Y0 � 0.53, b � 0.01, and θ � 6.50. Here
note that θ determines the sharpness of the crossover and can
be treated as a parameter determining universality classes for
finite-size effects. Combining Eqs. (17), (18), and (19), one
can write

�(t ) = �0 + Y0(�max − �0)

[
b + (�max − �0)θ/α

α(t − t0)θ

]−α/θ

. (20)
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FIG. 6. Plots of Cag(t, tw ), the autocorrelation function, vs
(t − tw ), for different ages (tw) of the systems with L = 100 and
conserved velocity. Corresponding �w values are provided inside the
parentheses.

By calculating �max for different L, as the mean values at the
saturations of �(t ), the function in Eq. (20) has been plotted
for several L with continuous lines in Fig. 5(b). For each L,
this function nicely passes through the corresponding data set,
i.e., Eq. (20) is appropriately describing the growth behavior
of all the finite systems.

Next, we focus on the aging properties. In Fig. 6, we plot
Cag(t, tw ) with the variation of the shifted time (t − tw ), for
different tw values. Here, to capture the correlation between
two systems conveniently, one at tw and another at t , the
configuration at an instant has been simply mapped onto a
simple cubic lattice of lattice constant σ , without any coarse
graining, unlike for the calculation of C. For a given tw, the
correlation between the two systems decreases with increas-
ing t , as expected. Furthermore, as the system ages, i.e., tw
increases, the relaxation becomes slower. Such an absence
of time-translation invariance is also expected for evolving
systems. But there typically exists a scaling, as described
previously, which can be seen if Cag(t, tw ) is plotted vs �/�w.
This is demonstrated in Fig. 7(a). A good quality collapse

FIG. 7. Double-log plots of Cag(t, tw ) as a function of �/�w for
the conserved case: (a) for fixed system size and different tw , as in
Fig. 6, and (b) for different system sizes for a single tw . The dashed
lines represent power-law falls.

FIG. 8. Plots of 1/yag vs Yag in double-log scales, using data sets
of Fig. 7: (a) for a fixed system size, with different tw values, and
(b) for different system sizes, with tw = 5. The dashed lines are
power-laws with an exponent −1/3.1. The solid lines are fits of the
combined data sets to the function in Eq. (23).

of data sets for different tw can be appreciated; deviation in
the tail part of each data set has its origin in the finite size
of a system. In a log-log scale, the finite-size unaffected data
appear to have a power-law decay, as noted in Eq. (6). The
dashed line in Fig. 7(a) indicates that the decay exponent λ

has a value � 3.1. Figure 7(b) is similar to Fig. 7(a), but
here Cag(t, tw = 5) has been plotted as a function of �/�w, for
different L. Here too, data sets for all the system sizes ap-
pear to collapse onto a master curve, λ remaining unchanged,
of course. Similar (finite-size) features in the two parts, (a)
and (b), have the following reason. When the system size is
kept fixed, for increasing tw, a system has lesser opportunity
to grow. Next, we extend our investigation to the study of
finite-size scaling in aging, the presence of which is demon-
strated in a few passive situations [38–40].

A dimensionless scaling variable, in this case, can be taken
as yag = �max/� [38–40]. Then, in the limit yag → 0, i.e., � →
∞, data from systems with finite L will deviate from their
thermodynamic limit behavior. A scaling function, Yag(yag),
that remains invariant for any system size, can be written as

Yag(yag) = Cag(t, tw )

(
�max

�w

)λ

. (21)

Note that here we have discarded a correction term that was
included in Refs. [38–40]. This is because of the linear appear-
ance of the plots on a log-log scale from the very beginning.
Such a construction should allow one to obtain overlap of data
from different L for a fixed value of tw, as well as for different
tw, for a fixed L. As Cag follows the scaling property noted
in Eq. (6), when �  �w, in the limit L(or �max) → ∞, i.e.,
yag → ∞, Yag should follow the power law Yag ∼ yλ

ag, i.e.,

1

yag
∼ Y −1/λ

ag . (22)

Using the data sets in Fig. 7(a), 1/yag has been plotted as a
function of Yag, for different choices of tw, in Fig. 8(a), in a
log-log scale. A nice data collapse is observed for the choice
of λ = 3.1. In Fig. 8(b), the same has been done with the
data sets in Fig. 7(b). A good data collapse has been obtained
again for λ = 3.1. As shown by the dashed lines, Eq. (22)
is correctly describing the scaling in the limit yag → ∞ with
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FIG. 9. Plots of Eq. (24) (see the continuous lines) along with the
Cag(t, tw ) data for (a) different tw , with L = 100, and (b) different L,
with tw = 5. These results are for conserved velocity.

an exponent = −1/3.1. For other values of tw also, the same
exercises have been carried out (the results are not presented
here). In all cases, the same value of λ is seen to be a good
choice.

The collapsed data in Fig. 8 appear to have a very similar
look as those for the case of FSS in length scale [see Fig. 5(a)].
Thus, one should look for a fit to the form

1

yag
= A0

(
B + Y φ

ag

q

)−q/φ

(23)

that corresponds to the considerations of γ ′
i =

d ln(1/yag)/d ln Yag and −γ ′
i
−1 = λ + BY −φ

ag , analogous to the
case of domain growth [see discussion below Eq. (19)]. The
best fits, in both cases, are obtained for the choice q = 1/3.1,
which we take as the value of 1/λ. Other parameters are
A0 � 0.99, B � 1.04, and φ � 2.79 for the case of Fig. 8(a),
and A0 � 0.96, B � 0.81, and φ � 3.21 for the case of
Fig. 8(b).

Combining Eqs. (21) and (23), as in the case of domain
growth, one can write a system-size dependent functional
form of Cag(t, tw ) as

Cag(t, tw ) =
[{(

x

A0X

)−λφ

− B

}
1

λ

(
�w

�max

)λφ
]1/φ

, (24)

where x = �/�w and X = �max/�w. In Eq. (24), we have
replaced yag by �max/�. Incorporating the values of the param-
eters A0, B, and φ, as obtained from the fitting exercise, the
function in Eq. (24) has been compared with the simulation
data for each of the cases presented in Fig. 7. See Fig. 9.
The function appears to describe the simulation data sets quite
well, once again.

Next, we compare some of the above results with the case
of nonconserved momentum dynamics. Scalings of C(r, t )
and Cag(t, tw ) have similar behavior as in the case of con-
served momentum dynamics. Thus, we present directly the
nontrivial finite-size scaling plots via which we extract the

FIG. 10. (a) A double-log plot of Y (y) vs y, for domain length
�(t ), showing overlap of data for different L, with nonconserved
momentum. This can be compared with Fig. 5(a). The continuous
line here is a fit of the collapsed data to Eq. (19) and the dashed line
is a power-law corresponding to α = 0.88. (b) A plot of 1/yag vs Yag,
in a double-log scale, for different L, with tw = 5, as in Fig. 8(b). The
dashed line is a power law representing λ = 3.2 and the solid line is
a fit of the collapsed data to Eq. (23). For both (a) and (b), in the
scaling functions in Eqs. (19) and (23), instead of �max we have used
�dev, which is the length at which the deviation from the power-law
behavior of �(t ) starts. The behavior of �dev is also linear with the
system size, as in the case of �max.

exponents α and λ. Figure 10(a) is similar to Fig. 5(a), where
we show the scaling plots, using data from different system
sizes, for the domain length, in a log-log scale. The functional
form in Eq. (19) fits well to the data sets and the value
of the exponent α � 0.88 matches nicely with the case of
conserved momentum dynamics. The numbers for the other
fitting parameters are Y0 � 0.56, b � 0.06, and θ � 2.25. Fur-
thermore, in Fig. 10(b) we present the results for finite-size
scaling of Cag(t, tw ), using data from different system sizes for
tw = 5. This can be compared with Fig. 8 (b). Here also the
data sets are in good agreement with the functional form in
Eq. (23), for the exponent λ � 3.2, which is within about 3%
from the value obtained for the conserved case. The values
of the other fitting parameters are the following: A0 � 1.18,
B � 0.37, and φ � 1.33. From these analyses, we conclude
that the dynamics is only weakly dependent on whether the
momentum is conserved or not. Finally, in Figs. 11(a) and

FIG. 11. (a) Plots of �(t ) as a function of t , in a double-log
scale, for different L, in the case of nonconserved momentum. The
continuous lines here correspond to Eq. (20). (b) Plots of Cag(t, tw )
vs �/�w , from different L, for tw = 5, along with the functional form
(solid lines) given in Eq. (24). These plots can be compared with
Figs. 5(b) and 9(b).
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FIG. 12. (a) Plots of �(t ) vs t , for the pure passive case, in a
double-log scale, for different system sizes. The dashed line repre-
sents a power law with an exponent of 1/3. (b) Plot of the scaling
function, Y (y), as a function of y, in a double-log scale, using data
from different system sizes. This presented collapse was achieved
for t0 = �0 = 0 and α = 0.33. The dashed line represents a power
law decay of Y (y), for large y, with an exponent 0.33. The solid line
is a fit of the combined data set to the function in Eq. (19).

11(b) we show the comparisons of simulation data with the
analytical forms for different systems sizes. Agreements ap-
pear to be very satisfactory again. While the thermodynamic
limit exponents appear almost same for the conserved and
the nonconserved cases, from the appearances of the plots
as well as the best fit values of the parameters θ and φ, it
is evident that the crossover from the thermodynamic limit
to the finite-size behavior is sharper in the conserved case.
From the plots of domain growth, oscillatory behavior in the
finite-size limit is clear. This is related to density fluctuations
within domains with time in the steady-state situations, a sort
of domain breathing. This gets reflected in the aging case also.
When the simulation data are plotted with lines, this feature
becomes clear. Even though the above-mentioned fluctuation
in the domain size appears to grow larger with the increase
of system size, it does not truly diverge. Thus, when calcu-
lated after averaging over simulation runs with an adequately
large number of initial configurations, it is expected that the
oscillations will disappear for all L.

For completeness, we compare the results obtained in the
active case with the corresponding passive model ( fa = 0).
The data for growth of domains and the corresponding FSS
analysis are presented in parts (a) and (b), respectively, of
Fig. 12. A power-law behavior, with α = 1/3, as shown by
the dashed line in (a), indicates a slower growth than the active
case. This is expected because of Lifshitz-Slyozov mechanism
[56] of growth, in absence of hydrodynamics. In the Y vs
y plot nice collapse of data from different system sizes is
observed. The best collapse is obtained for t0 = �0 = 0, which
conveys that, in this case, the scaling is achieved very early.
The best value of α appears to be 0.33. The solid line in
the plot is a fit of the combined dataset to Eq. (19), with
the best fitting parameters Y0 � 1.5, b � 75.6, θ � 3.42, and
α � 0.328.

IV. CONCLUSION

We study the kinetics of evolution in active matter systems
using a model where the activity rule is Vicsek-like [14].

The (overlap preventing) inter-particle passive interaction is
introduced via a variant [24,35] of the standard Lennard-Jones
potential [44]. The density of particles within the systems is
taken to be close to the (vapor-liquid) critical value corre-
sponding to the pure passive limit of the model.

The dynamics of the active systems, as they approach the
steady states, has similarities with passive systems [57,58] at
the qualitative level, including the finite-size scaling (FSS)
behavior. However, the addition of the active alignment inter-
action brings quantitative changes in all aspects of evolution.
During the relaxation of the systems, we observe scaling of the
two-point equal-time correlation function, C(r, t ), implying
the satisfaction of self-similarity of the structures at different
times. We have calculated the domain length, �(t ), from the
above scaling property and estimated the growth exponent,
α, from the FSS analysis of �(t ) considering different system
sizes. We also obtain a system-size dependent functional form
of �(t ), using a recently constructed FSS function. The value
of α has been found to be � 0.88, which is higher than that
in the passive case without hydrodynamics [18,56,59]. In the
active case, the presence of alignment interaction could give
rise to an advection-like effect, accelerating cluster growth.
The aging exponent, λ, calculated from the autocorrelation
function, Cag(t, tw ), has a value � 3, smaller than, though
close to, a value for nonhydrodynamic passive case [39]. This
is consistent with the fact of stronger aging for faster growth.
In this case also, we observed very good FSS behavior, anal-
ysis via which allowed us the estimation of the corresponding
exponent accurately. The system-size dependent functional
form of Cag(t, tw ) is obtained here as well. We also find that
the values of the exponents α and λ do not depend strongly on
whether the dynamics preserves the total momentum. How-
ever, the effects of conservation are present in the finite-size
effects.

It is important to make a few remarks on the finite-size
behavior here. From Figs. 5(a) and 10(a) it is clear that, at
large y, Y exhibits a power-law behavior, with exponent α. As
y → 0, Y , on the other hand, tends to a constant value. The
departure from one limit to the other may happen in different
fashions. The construction of Eq. (19) was done [54] by con-
sidering a power-law form of the deviation, characterized by
an exponent θ . High quality fit of the simulation data sets with
the thus obtained form of Y verifies the accuracy of the con-
sideration. The same scenario applies for the aging behavior.
Such scaling consideration has general applicability, beyond
the systems of present work, as appears from the discussion
provided on the construction. It is observed to describe finite-
size behavior in kinetics in Ising systems [55]. We believe
that this will describe both critical and coarsening phenomena
in other systems. It may not, however, be expected that for
all models and physical situations a power-law form for the
crossover between two limits will apply. It will be interesting
to obtain Y by considering exponential and logarithmic forms
for the above mentioned crossover. Then, in a broader sense,
universalities in finite-size behavior can be classified based
on the applicability of one or the other such function. Such
universal features can be readily verified by studying other
simple but nontrivial models and situations of current interest
[37,60,61].
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The function in Eq. (19) has even more general applica-
bility. Its usefulness has been demonstrated in the context of
spread of infectious disease and growth concerning related
fatality [54,55]. In the domain of earthquakes, an analogous
function has been used recently to quantify certain scaling
pictures; see Eq. (116) of Ref. [62]. The latter appears to
be a special case of Eq. (19). We believe that the scaling
picture in Ref. [62] can be better described by the function we
used here.
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