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Periodic orbits, pair nucleation, and unbinding of active nematic defects on cones

Farzan Vafa ,1,* David R. Nelson,2 and Amin Doostmohammadi 3

1Center of Mathematical Sciences and Applications, Harvard University, Cambridge, Massachusetts 02138, USA
2Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

3Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen 2100, Denmark

(Received 17 January 2024; accepted 6 May 2024; published 7 June 2024)

Geometric confinement and topological constraints present promising means of controlling active materi-
als. By combining analytical arguments derived from the Born-Oppenheimer approximation with numerical
simulations, we investigate the simultaneous impact of confinement together with curvature singularity by
characterizing the dynamics of an active nematic on a cone. Here, the Born-Oppenheimer approximation means
that textures can follow defect positions rapidly on the timescales of interest. Upon imposing strong anchoring
boundary conditions at the base of a cone, we find a rich phase diagram of multidefect dynamics, including
exotic periodic orbits of one or two +1/2 flank defects, depending on activity and nonquantized geometric
charge at the cone apex. By characterizing the transitions between these ordered dynamical states, we present
detailed understanding of (i) defect unbinding, (ii) defect absorption, and (iii) defect pair nucleation at the apex.
Numerical simulations confirm theoretical predictions of not only the nature of the circular orbits but also defect
unbinding from the apex.
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I. INTRODUCTION

Nematic (apolar) order is ubiquitous in biological sys-
tems, ranging from subcellular filaments [1–3], to bacterial
biofilms [4–6], and cell monolayers [7,8]. In two-dimensional
nematics, which emerge when head-tail symmetry arises upon
coarse-graining, the lowest energy defects are ±1/2 discli-
nations [9]. Notably, topological defects and their dynamics
are often used to characterize active nematics, which consist
of elongated units that consume energy to generate motion
[10–12]. Moreover, these defects can mediate various bio-
logical functions, including cell extrusion and apoptosis in
mammalian epithelia [13], neural mound formation [14], bac-
terial competition [15], and limb origination in simple animals
such as regenerating Hydra [16]. For recent reviews on the
significance of topological defects in biological systems, see
Refs. [12,17,18].

The ability to control active materials, with their intricate
interplay of topological defects, orientational order, flows,
and geometry, would provide exciting new possibilities to
transport matter, energy, and information far from equilibrium
[10,19,20]. The control method we consider in this paper
is confinement, which has been intensely studied in flat ge-
ometries such as channels [7,21–29], disks [23,29–35], and
annuli [21,22,29,34,36–39]. Curved geometries have attracted
less attention, with theoretical and experimental studies fo-
cusing on spherical [2,40,41], ellipsoidal [42,43], and toroidal
[44,45] geometries. For a generic surface, Turner and Vitelli
[46] showed that Gaussian curvature gives rise to an effective
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topological charge density, which interacts with quantized
topological defects.

However, these prototypical surfaces do not typically ex-
hibit both nontrivial Gaussian curvature and a boundary that
confines the nematic. The simplest geometry that embodies
both properties is the cone, which is not only bounded by the
base, but also flat everywhere except at the apex, where a delta
function Gaussian curvature singularity resides. Moreover, in
line with our previous work [47–49], since we can think of
complex geometry as being composed of cones, then we ex-
pect that a cone qualitatively captures well a region of positive
curvature. In the passive context, recent studies analytically
determined the ground state defect configurations for liquid
crystals on cones for free [47] and tangential [50] boundary
conditions imposed at the base. With tangential boundary
conditions, cone ground states for nematics can display two,
one, or zero +1/2 defects on the flanks with increasing cone
deficit angle [50]. Here, the cone deficit angle 2πχ is given
by the angular fraction χ of a flat disk removed to make a
particular cone.

In this paper, we present dynamically ordered states of
active topological defects on a cone. We extend our previous
work [48] on the dynamics of a single active nematic defect
near a curvature singularity to investigate the combined effect
of strong anchoring boundary conditions at the cone base and
apex curvature on the dynamic organization of active topo-
logical defects. By concentrating on regimes where activity
allows one or two defects to survive on the cone flanks, we
numerically uncover a rich phase diagram of periodic orbits
of one or two +1/2 flank defects on a cone, with transitions
between these states mediated by defect absorption, defect
unbinding, or defect pair nucleation at the apex. Zero defect
states on the cone flanks are also possible at high deficit
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FIG. 1. Schematic phase diagram of main results. The colored
curves guide the eye. At zero activity, the ground state consists of
two flank defects (zero deficit angle, corresponding to a flat disk),
one flank defect (deficit angle 2πχ between 0 and 2π/3, where the
green curve intersects the x axis), and zero flank defects (deficit angle
2πχ > 2π/3) [50]. A more quantitative summary of our conclusions
is represented in Fig. 5.

angles—see Fig. 1 for a summary of our main results, as a
function of the cone deficit angle and activity. Moreover, we
analytically explain many of the features of the phase diagram
in Fig. 1.

This paper is organized as follows. We begin in Sec. II
by briefly reviewing a minimal model of a general nematic
texture in the one Frank constant approximation on an arbi-
trarily curved surface. By working deep in the ordered limit
and utilizing isothermal coordinates (recently introduced in
the context of liquid crystals [50,51], including those with
a p-fold rotational symmetry), we construct and analyze in
Sec. III the quasistatic multidefect solution in the passive
setting on a curved surface. Our analysis reveals the presence
of metastable states. Isothermal coordinates are particularly
powerful for cones, with a delta function of Gaussian curva-
ture, which acts like an unquantized defect charge. Activity
enters in Sec. IV, where we review the Born-Oppenheimer
approximation, which assumes textures rapidly adapt to de-
fect motions, and its consequences, and also present details
for the full numerical simulations for nematics on cones. In
the following sections, we present our results in order of
increasing activity, summarized schematically in Fig. 1. We
begin by studying the dynamics of stable two +1/2 defect
orbits and their polarizations in Sec. V. In Sec. VI, we turn
to single-defect orbits and study the defect unbinding tran-
sition to two-defect stable orbits. Finally, in Sec. VII, we
show that defect pair nucleation followed by emission from
the cone apex is another mechanism for the 1 → 2 stable
defect orbit transition, and for sufficiently large deficit an-
gle, defect orbits cyclically transition between single- and
two-defect orbits. Throughout the paper, we quantitatively test
our theoretical predictions against full numerical simulations
of overdamped active nematics on a cone, finding excellent
agreement in the regime of low activity and for the location
of various defect unbinding transitions. We also point out
regimes where the physics is more challenging, such as the
more chaotic defect dynamics that arise in our simulations for

large activity (see Fig. 1). Finally, in Sec. VIII, we summa-
rize our main results and comment on potential experimental
realizations of our predicted dynamically ordered defect
structures, as well as on the relation to previous work and
extensions.

II. MINIMAL MODEL IN ISOTHERMAL COORDINATES

We begin by briefly recalling the framework for describing
a nematic texture on a curved surface, following the presenta-
tions in Refs. [50,51]. This review will then be followed by a
description of the simulation methods. Throughout the paper
we discuss theoretical predictions together with the results of
full numerical simulations, testing our theoretical assumptions
at each step.

A. Metric and nematic tensor

In two dimensions, it is always possible to choose local
complex coordinates z and z̄, known as isothermal (or confor-
mal) coordinates, such that the square of the line element can
be written as

ds2 = gzz̄dzdz̄ + gz̄zdz̄dz = 2gzz̄|dz|2 = eϕ|dz|2, (1)

where eϕ is the conformal factor that describes position-
dependent isotropic stretching or compression, and gzz̄ =
eϕ/2 is the metric [52].

In isothermal coordinates, the nematic order parameter Q
has only two nonzero components: Q ≡ Qzz and Q̄ ≡ Qz̄z̄,
with Q = (Q̄)∗. For ease of notation, let ∇ ≡ ∇z and ∇̄ ≡ ∇z̄

denote the covariant derivatives with respect to z and z̄, re-
spectively. Covariant derivatives of Q then simplify

∇Q = ∂Q + 2(∂ϕ)Q, ∇̄Q = ∂̄Q, (2a)

∇̄Q̄ = ∂̄Q̄ + 2(∂̄ϕ)Q̄, ∇Q̄ = ∂Q̄, (2b)

where partial derivatives ∂ ≡ ∂/∂z and ∂̄ ≡ ∂/∂ z̄.

B. Conical geometry

In this paper, we focus on conical geometries. For a cone
with half angle β, the metric can be obtained from gzz̄ = eϕ/2
with

ϕ(z, z̄) = −χ ln zz̄, (3)

where χ = 1 − sin β. The deficit angle of the cone is 2πχ ,
where χ represents the fraction of a disk missing when one
unrolls the cone. This observation leads to another set of
useful complex coordinates z′, which correspond to unrolling
a cone to form a planar disk with a missing sector. The coor-
dinates z′ are related to z via the transformation

z̃ = z1−χ

1 − χ
, (4)

where χ = 0 represents a flat disk with no deficit angle. See
Ref. [50] for more details and Fig. 2 for a schematic of these
coordinate systems for a cone.
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FIG. 2. Schematic of coordinate systems for a cone: (a) Isother-
mal coordinates z = reiφ . (b) Physical coordinates z′ = r′eiφ′

,
corresponding to an unrolled cone with a missing sector, with angle
fraction χ . If 0 � φ � 2π , then φ′ ranges from 0 to (1 − χ )2π .
(c) A diagram of the cone in 3D with cone half angle β, where
sin β = 1 − χ .

C. Free energy

The Landau-de Gennes free energy F on a curved surface
can be written as

F =
∫

d2z
√

g[K|∇Q|2 + K ′|∇̄Q|2 + ε−2(1 − S0|Q|2)2],

(5)
where explicitly

|∇Q|2 = gzz̄∇Q∇̄Q̄, |∇̄Q|2 = gzz̄∇̄Q∇Q̄ (6)

|Q|2 = g2
zz̄QQ̄. (7)

Here K, K ′ > 0 are Frank elastic type terms [53,54], and in
regions of zero Gaussian curvature (such as any point on
a cone other than the apex), the two terms are equivalent
by integration by parts. The last polynomial term governs
the isotropic-nematic transition, with ε controlling the micro-
scopic coherence length and S0 sets the equilibrium magnitude
of the nematic order. We simplify by working in an approxi-
mation, which decouples the order parameter orientation from
space, and thus makes no distinction between bend and splay
deformations for p = 2 nematics. Without loss of generality
we rescale the order parameter magnitude by setting S0 = 4.
Note that the cubic term that arises in 3D nematics is absent
in two dimensions.

Deep in the ordered limit (ε � 1), the free energy simpli-
fies to [50]

F = J
∫

d2z|i∂α + ∂ϕ|2, (8)

where J = K + K ′ and we have used Q = e−ϕeiα , where both
ϕ and α can be functions of z and z̄, with ϕ(z, z̄) given by
Eq. (3) for a cone.

FIG. 3. Sketches of single-defect (a) and two-defect (b) nematic
textures showing the polarization angle φ.

D. Multidefect solution

The multidefect ansatz Q0, given by

Q0 = e2iψe−ϕ
∏

j

(
z − z j

|z − z j |
)2σ j

, (9)

corresponds to minimizing F [Eq. (8)], with fixed defect
positions z j of charges σ j (we also include appropriate image
charges to impose boundary conditions), and ψ is a constant
global phase that defines the overall orientation of the nematic
director [55] with respect to the base of the cone. Here the
defect charges {σ j} for p-fold symmetric textures are integer
multiples of 1/p, where we focus in this paper on nematics
with σ j = ±1/2. Note that near a defect, e.g. z ≈ z j , the order
parameter texture simplifies,

Q0 ≈
(

z − z j

|z − z j |
)2σ j

eiφ j e−ϕ, (10)

where the overall phase φ j defines the polarization of the
defect at z j [55],

eiφ j = e2iψ
∏
j 
=i

(
zi − z j

|zi − z j |
)2σ j

. (11)

Defects do not have independent polarizations—the polariza-
tions are uniquely determined by all of the defect positions
and charges, as well as by ψ . See Fig. 3 for the polarizations
associated with one- and two-defect textures. Note that for a
+1/2 defect, φ j is also the angle of the nematic director.

We now explicitly consider the case of two defects. From
the structure of the polarization [Eq. (11)], it is easy to see that
polarizations of neighboring defects are antiparallel [55,56].
For example, for the case of a pair of +1/2 defects and
ψ = π/4, the defect polarizations are then perpendicular to
the line connecting the two defects and point in opposite
directions. See Fig. 3 for sketches of nematic textures for
a single +1/2 defect and a pair of +1/2 defects that show
the polarizations. We will return to this observation about
the polarization when we consider the dynamics in Sec. IV,
and then use full numerical simulations in Secs. V–VII to
determine when the assumption of antiparallel polarizations
is valid and when it breaks down.
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E. Computation of the free energy

To compute the free energy, we must incorporate the
boundary conditions. From here onwards, we consider the
case of a nematic (p = 2) on a cone with strong anchoring
boundary conditions at the base of radius R, by which we
mean that the angle of the nematic director relative to the
boundary is fixed [57]. To implement this boundary condition,
for every defect j of charge σ j = ±1/2 at z j , we have a
corresponding image defect of charge σ j at z̃ j = R2/z j . Using
a Gauss’ law argument in two dimensions, one can show that
the sum of the defect charges on the cone is 1 [50]. Upon
recalling for a cone that ϕ = −χ ln zz̄, computing the free
energy [Eq. (8)] using the multidefect solution Q0 [Eq. (9)]
results in Ref. [50],

F = −2πJ

{∑
m<n

σmσn

[
ln

|zm − zn|2
R2

+ ln

∣∣∣∣1 − zmzn

R2

∣∣∣∣
2
]

+
∑

j

σ 2
j ln

(
1− |z j |2

R2

)
− χ

∑
j

(
σ j −

σ 2
j

2

)
ln

|z j |2
R2

}
,

(12)

where J plays the role of an elastic parameter in the one
Frank constant approximation. The first term (the double sum)
represents the elastic interaction between distinct defect pairs
(including image charges). The second term is a position-
dependent self-energy which would need to be added to any
microscopic defect core energy Ec. Note that this position-
dependent self-energy would vanish for a disk in the limit
R → ∞ for fixed |z j |. The final term represents a Coulombic
interaction between a topological defect and the geometry
[46], specialized to the cone. The cone apex behaves as it
develops an effective charge of −χ , and that in interactions
with the cone, the effective charge of the defect is modified
from σ j to σ j − σ 2

j /2. Explicitly, for two defects, Eq. (12)
becomes

F = −2πJ

{
σ1σ2

[
ln

|z1 − z2|2
R2

+ ln

∣∣∣∣1 − z1z2

R2

∣∣∣∣
2
]

+
2∑

j=1

σ 2
j ln

(
1 − |z j |2

R2

)
− χ

2∑
j=1

(
σ j − σ 2

j

2

)
ln

|z j |2
R2

⎫⎬
⎭,

(13)

where for nematics we will typically set σ j = ±1/2.

F. Forces

Having computed the free energy, we can now compute
from Eq. (12) the z̄ component of the force on defect i, i.e.,
F z̄

i = − ∂F
∂zi

, which is given by

F z̄
i = −2πJ

⎧⎨
⎩σi

∑
j 
=i

σ j

[
1

zi − z j
+ 1

zi − z̃ j

]
+ σ 2

i

1

zi − z̃i

−χ

(
σi − σ 2

i

2

)
1

zi

}

= −2πJ

⎧⎨
⎩σi

∑
j 
=i

σ j
1

zi − z j
+ σi

∑
j

σ j
1

zi − z̃ j

− χ

(
σi − σ 2

i

2

)
1

zi

∑
j 
=i

⎫⎬
⎭, (14)

where we remind the reader that z̃ j gives the position of a like-
signed image charge, z̃ j = R2/z j . All three terms represent
Coulomb forces: the first term, the forces from other defects
on the cone flanks; the second term, the forces due to all of
the image charges; the third term, a force due to the apex.
Explicitly, for two defects, the force on defect 1 from all these
sources is

F z̄
1 = −2πJ

[
σ1σ2

1

z1 − z2
+ σ 2

1
1

z1 − z̃1
+ σ1σ2

1

z1 − z̃2

−χ

(
σ1 − σ 2

1

2

)
1

z1

]
. (15)

III. STATIONARY SOLUTIONS IN PASSIVE
CASE ON A CONE

A. Stability for two defects

We know that for a passive nematic texture on a cone
with 0 < χ < 2/3, there exists a stable solution where one
+1/2 defect is at the apex and the other is on the flanks [50].
However, for the case of nematic texture on a disk (χ = 0),
a stable solution is two antipodal +1/2 defects [30,50], in
agreement with experiments of fibroblasts on disks [30]. Thus
it is clear that starting from this solution, for sufficiently small
χ , by continuity there should exist a locally stable solution
of two antipodal +1/2 defects, even though it may not be
a global energetic minimum. We now explicitly show this
by considering the 4×4 Hessian Hi j = ∂

∂xi

∂
∂x j

F of Eq. (12),
where i, j = 1, . . . , 4 and z1 = x1 + ix2 and z2 = x3 + ix4. By
evaluating the eigenvalues of Hi j at the antipodal extremum,
specifically at z1 = xc, z2 = −xc, where xc = ( 1−3χ

5−3χ
)1/4R for

a pair of +1/2 defects, we find that xc is a local minimum

for 0 < χ < 1 − 1
3

√
5 − 1√

2
= 0.31. We thus learn that on a

cone, there are two locally stable stationary solutions for small
enough χ : one solution has one +1/2 defect at the apex with
another +1/2 defect on the flanks, while the second solution
has two +1/2 defects on the flanks. The global minimum of
F is obtained for the former. See Fig. 4 for a plot of the
potential [Eq. (12)] for a pair of +1/2 defects that graph-
ically demonstrates that the two flanks defect configuration
is a local but not global minimum. Although more gener-
ally, two antipodal flank defects can be written as z1 = eiφxc,
z2 = ei(φ+π )xc = −eiφxc, rotational invariance insures that the
energy is independent of φ. Note that when χ is nonzero, a
flank distance xc in isothermal coordinates because a physical
distance x′

c = x1−χ
c /(1 − χ ), measured from the apex of the

cone [see Eq. (4)].

IV. DYNAMICAL EQUATION

The minimal model presented thus far describes statics
of passive nematic defects on curved geometries. We now
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FIG. 4. Plot of potential [Eq. (13)] for χ = 0.15 for a pair of
+1/2 defects, where one defect is at xc = −0.59R and the other is
at an arbitrary (antipodal) flank position x. The local minimum is
at x = xc, but it’s not the global minimum as x → 0. Cones below
the x axis indicate the solutions at the extrema, where the colored
dots indicate the two +1/2 defects. Here |xc| ≈ 0.59R is the position
found in Ref. [50] for the ground state with a single defect on the
flank for χ = 0.15.

introduce a simple overdamped model for the dynamics of
the defects, explicitly accounting for the effect of active stress
generation by the nematogens.

We assume that the motion of the nematic order parameter
is controlled by the balance of relaxational dynamics and
advection of the tensorial order parameter by a velocity flow
field v, according to

γ Dt Q = − 1√
g

gzz̄gzz̄ δF
δQ̄

, (16)

where

Dt Q = ∂t Q + (v∇ + v̄∇̄)Q − (∇v − ∇̄v̄)Q (17)

is the generalized advective time derivative of Q, accounting
for both regular advection by the flow and reorientation re-
sponse to flow gradients [48,58] and

− 1√
g

gzz̄gzz̄ δF
δQ̄

= gzz̄(K∇∇̄ + K ′∇̄∇)Q + 2ε−2S0(1 − S0|Q|2)Q

= Jgzz̄(∂∂̄Q + 2∂ϕ∂̄Q) + 2ε−2S0(1 − S0|Q|2)Q (18)

is the molecular field, which tries to minimize the energy in
the absence of active forces. In the second line is the explicit
expression for the case of a conical geometry.

Upon assuming that the flow is generated by active stresses
and working in the overdamped limit [59–62], the balance of
the active force and the frictional damping leads to

μv = ζQ∇Q, (19)

where μ is a friction coefficient and ζQ is the scalar activity
that characterizes the strength of the active stress. We can thus
write

v = ζQ

μ
∇Q = ζ∇Q = ζ (∂ϕ + i∂α)Q,

where ζ = ζQ/μ and we have used Eq. (2a) and Q(z, z̄) =
e−ϕeiα .

A. Born-Oppenheimer approximation

Since the multidefect ansatz is a stationary solution in
the passive setting, then we expect that for small activ-
ity, the multidefect ansatz is still a good solution, provided
that the defects are allowed to move, but slowly. Explicitly,
we now assume

Q0 = e2iψe−ϕ
∏

j

(
z − z j (t )

|z − z j (t )|
)2σ j

, (20)

so that the nematic texture rapidly readjusts itself in response
to the slow motion of the defects. This is known as the
Born-Oppenheimer approximation when studying the quan-
tum mechanics of light-weight electrons bonding atoms with
much heavier nuclei [63].

B. Forces and polarization for a pair of +1/2 defects

We now consider the implications of the Born-
Oppenheimer approximation for the two-defect arrangement
on a cone that is the prime focus in this paper. Within the
Born-Oppenheimer approximation, the Coulombic forces on
a pair of defects [Eq. (15) derived in Sec. II] are still correct,
and the motile force on a +1/2 defect j is given by [55]

F M = e2iψ π

4

1

a
ζ . (21)

Thus, a +1/2 defect travels at constant speed along its axis eiψ

(with opposite sign for the other defect, since for two defects,
eiφ j = ±eiψ ). The motile force F M has magnitude π

4
ζ

a and
makes an angle ψ relative to the line connecting the defect
to the apex (the radial line). Specifically, we can decompose
F M into radial F M

r and tangential F M
θ components as

F M
r = π

4

ζ

a
cos 2ψ, (22a)

F M
θ = π

4

ζ

a
sin 2ψ. (22b)

Explicitly, for an active +1/2 defect labeled 1 in the pres-
ence of another +1/2 defect labeled 2, the force on defect 1
is

F z̄
1 = −πJγ −1

2

[
1

z1 − z2
+ 1

z1 − z̃1
+ 1

z1 − z̃2
− 3

2
χ

1

z1

]

+ eiψ π

4

ζ

a
. (23)

In addition to the forces on defects, the Born-Oppenheimer
approximation implies for a pair of neighboring defects that

(1) the polarizations are antiparallel [55,56], and
(2) the polarization relative to the line connecting the two

defects does not change in time,
even as the defects move [64]. Inspired by these the-

oretical considerations, we now assess the validity of the
Born-Oppenheimer approximation by directing comparing
theoretical predictions with full numerical simulations.
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FIG. 5. Phase diagram of main results with data from simulations
included. The colored dashed curves, based on the data, guide the
eye. The solid red curve is given by Eq. (30) with c′ = 0.9. We
have not explored the regime above the wavy horizontal line, which
exhibits more chaotic dynamics.

C. Simulation details

We check our theory with numerical simulations of the full
active nematic texture on a cone, according to Eqs. (16)–(18).
Without loss of generality, since a cone has zero Gaussian
curvature everywhere except at the apex, we set K ′ = 0 in
the simulations. We impose strong anchoring boundary con-
ditions at the base, i.e., the nematic director is at a fixed
angle relative to the boundary. Explicitly, we impose at the
boundary of the cone base of radius R in the isothermal coor-
dinate of Fig. 2(a), i.e., at z = Reiφ where φ is the azimuthal
coordinate):

Q = e2iψe−ϕ+iφ. (24)

Here, ψ specifies the nematogen orientation at the boundary.
We shall often do simulations with ψ = π/4, which leads
to especially interesting dynamics. In our simulations, we
solve Eqs. (16)–(18) numerically using the method of lines
[65], where the temporal evolution is performed through a
predictor-corrector scheme [66] and spatial derivatives are
evaluated using five-point stencil central differences. The
phase diagram of our main results, which will be the central
focus of the remainder of our paper, can be seen in Fig. 5.

V. STABLE TWO-DEFECT ORBITS FOR 0 � χ < 0.31

We start with small activity on a disk and then extend to
a cone by incrementally increasing the deficit angle 2πχ . We
analyze two different setups in order: (1) two flank defects and
then (2) one defect at the apex and the other on the flanks.

A. Two-defect orbits on a disk (χ = 0)

As discussed previously in Sec. III, we know for a passive
nematic on a disk that there is a stable two flank defect con-
figuration [30,50,67,68]. Thus, it is reasonable to expect that
for small activity there should still be a stable two flank defect
configuration, where now the defects can possibly move. We
now show that there are indeed stable circular orbits on a disk.

FIG. 6. Sketch of forces for a pair of +1/2 defects on a disk
(χ−0). The net Coulomb repulsion FC is in red, the motile force
F M , decomposed into its radial F M

r and tangential F M
θ components,

is in blue, and the defects follow the green arrows to form a circle.

We simulate an active nematic on a disk and we consider
three cases: ψ = 0, π/8, π/4. In all three cases, in the simu-
lations the distance of the defect to the center was constant.
We now argue that this behavior follows from the Born-
Oppenheimer approximation for both disks and cones.

If at the boundary the phase is ψ = 0, then since the motile
force is radial, and the Coulomb force is always radial, activity
simply shifts the equilibrium position, and hence we would
still have static solution in this case. If, however, the phase
is ψ = π/4, since the motile force is perpendicular to the
radial line, (and remains perpendicular as the defect moves
as explained in the previous section), the distance from the
apex does not change, and the defect moves in a circular orbit
(see Fig. 7). For a more generic phase ψ , the radial distance
readjusts so that the net Coulomb force (including any con-
tribution from the cone apex) balances the radial component
of the motile force; the remaining tangential component of
the motile force causes the flank defects to undergo circular
motion. Note that the sense of rotation (clockwise in Fig. 7) is
determined by the initial polarizations.

Explicitly, we now solve for the distance r by setting the
radial component of the net force given in Eq. (23) to zero.
Since for a disk χ = 0, we find from Eq. (23) that

πJγ −1

2

[
1

2r
+ 1

R2/r + r
− 1

R2/r − r

]
= π

4

ζ

a
cos 2ψ. (25)

Note the contributions from the image defects to the force
inside the square brackets. See Fig. 6 for a sketch. We thus
conclude that generically defects will have circular orbits with
constant speed due to vanishing net radial force and nonzero
azimuthal component of the motile force. We want to empha-
size that there is no centripetal force, since the net radial force
vanishes.

For ψ = 0, as expected, there was no orbital motion, since
the motility has no tangential component. For ψ = π/8, π/4,
defects formed circular orbits (see Fig. 7 for representative
snapshots of stable circular orbits of two defects on a disk for
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FIG. 7. Representative sequential snapshots of simulations on a disk for ζ/(Jγ −1) = 0.01 and ψ = π/4. In all of the plots, the colored
dots denote the +1/2 defects which follow the corresponding colored trajectories, and the red arrows denote the polarizations of the +1/2
defects. The activity parameter chosen here leads to motion in the direction of the red polarization arrows.

ψ = π/4). For all three values of ψ , the radial components
of the defects, with defect core size a = 0.9, were as expected
from Eq. (25). Moreover, upon inserting the mobility matrix
from Ref. [55] into the dynamical equations,

Mii żi = −πJγ −1

2

[
1

2r
+ 1

R2/r + r
− 1

R2/r − r

]

+ π

4

ζ

a
cos 2ψ, (26)

we can estimate the speed of the defects, where the mobility
Mii is a complicated function of the defect positions and the
disk size R,

Mii = π

2
σ 2

i

{
ln

(
R2 − r2

i

a2

)
− R2 − 2r2

i

R2 − r2
i

+ R4
[
r2

i

(
3r2

i − 2R2
) − 2

(
R2 − r2

i

)2
ln

(
1 − r2

i
R2

)]
2r6

i

(
r2

i − R2
)

}
.

(27)

The theoretical prediction for the speed following from
Eqs. (26) and (27) was confirmed by the simulations to within
about 4%, which is surprisingly good agreement given that
we know that the Born-Oppenheimer ansatz of Eq. (9) is not
exact. Assuming for simplicity the mobility is independent
of the defect position, we find theoretically that the ratio of
speeds for ψ = π/4 and ψ = π/8 is

√
2 ≈ 1.4, which is

close to the numerical value of 2.8/1.9 ≈ 1.5. In Table I,
we provide a quantitative comparison between the numerical
results and theoretical predictions by including the mobility,

showing good agreement and verifying the validity of our
Born-Oppenheimer approximation for the parameter values
used in our disk simulations.

B. Two metastable defect orbits on cone with 0 < χ < 0.31

Having verified the dynamics against full simulations on a
disk, we now begin with extending our analyses to the cone,
incrementally increasing the deficit angle 2πχ upwards from
zero. For ζ = 0 (i.e., with no activity) and χ < 0.31, we know
that there is a locally stable two flank defect configuration,
even though the true ground state has a single flank defect with
the other defect at the apex. For small deficit angles, similar
to the case of a disk, it is reasonable to expect that for small
activity there should still be a locally stable two flank defect
configuration, where the defects can possibly move. We now
show that for small activity there are stable circular orbits on a
cone for χ < 0.31, with a radius that depends on the activity.

We solve for the orbital radius r by again setting the radial
component of the net force given in Eq. (23) to zero, leading
to

πJγ −1

2

[
−3

2

χ

1 − χ

1

r
+ 1

2r
+ 1

R2/r + r
− 1

R2/r − r

]

= π

4

ζ

a
cos 2ψ. (28)

See Fig. 8 for a sketch of the forces acting on the flank
defects. As before, since the radial component of the motile
force, if any, balances the net Coulomb force, and the tangen-
tial component of the motile force is constant, then defects

TABLE I. Table of defect distances from the cone apex in isothermal coordinates and speeds for ζ/(Jγ −1) = 0.01 and ψ = 0, π/8, π/4
for both theoretical prediction and simulation result on a disk. Here the short distance cutoff a = 0.9.

Phase ψ Theoretical distance Numerical distance Theoretical speed (ζ/a) Numerical speed (ζ/a)

0 0.76R 0.76R 0 0
π/8 0.75R 0.75R 1.9×10−4 1.9×10−4

π/4 0.68R 0.68R 2.7×10−4 2.8×10−4

064606-7



VAFA, NELSON, AND DOOSTMOHAMMADI PHYSICAL REVIEW E 109, 064606 (2024)

FIG. 8. Sketch of forces for a pair of +1/2 defects on a cone.
Black dots denote +1/2 defects and purple star denotes apex. Net
Coulomb repulsion FC is in red, the motile force F M , decomposed
into its radial F M

r and tangential F M
θ components, is in blue, and the

defects follow the green arrows.

will typically have circular orbits with constant speed, with
a χ -dependent radius. The behavior is thus qualitatively in-
dependent of χ . See Table II for comparison of theory to
simulations for nearly flat cones with χ = 1/10, ζ

Jγ −1 = 0.01,
and ψ = 0, π/8, π/4.

VI. SINGLE-DEFECT ORBITS AND DEFECT
UNBINDING ON A CONE

As shown in Sec. III and Ref. [50] for a passive nematic
texture on a cone, the global minimum of the configuration
is a single +1/2 defect on the cone flank. This ground state
provides a natural starting point to investigate basic features
of an isolated +1/2 defect on a flank and its active dynamics.

A. Single-defect orbits

We start with the single flank defect ground state solution
obtained in Ref. [50], which is valid for χ < 2/3. We now add
small activity.

As usual, we solve for the distance r of the isolated flank
defect from the apex in isothermal coordinates by setting the
radial component of the net force given in Eq. (23) to zero,

TABLE II. Table of defect distances from the cone apex in
isothermal coordinates for χ =1/10 and ζ/(Jγ −1)=0.01 for ψ =0,

π/8, π/4 for both theoretical prediction and simulation results. Here
a = 0.9.

Phase ψ Theoretical distance Numerical distance

0 0.70R 0.70R
π/8 0.68R 0.69R
π/4 0.62R 0.63R

FIG. 9. Sketch of forces for a pair of +1/2 defects on a cone,
where one defect is at the apex and the other is on the flanks. Black
dots denote +1/2 defects and purple star denotes the apex, which
has an effective negative topological charge that interacts with the
orbiting defect. Net Coulomb repulsion FC is in red, the motile force
F M , decomposed into its radial F M

r and tangential F M
θ components,

is in blue, and the flank defect follows the green arrows.

leading to

πJγ −1

2

[
−3

2

χ

1 − χ

1

r
+ 1

r
− 1

R2/r − r

]
= π

4

ζ

a
cos 2ψ.

(29)

See Fig. 9 for a sketch of the forces acting on a single
flank defect. Similar to the two-defect case, the defect will
circularly orbit the apex at constant speed, which is not driven
by a centripetal force, since the net radial force vanishes.

For comparison of the Born-Oppenheimer dynamical the-
ory to numerics, see Table III for χ = 1/10, ζ

Jγ −1 = 0.01,

and ψ = π/8, π/4, and Table IV for χ = 1/3, ζ

Jγ −1 = 0.25,
and ψ = 0, π/4. These tables suggest that for small χ and
ζ , the multidefect ansatz is good, but becomes worse as χ

and ζ increase for nonzero ψ . We observed in the simulations
that the polarizations of the defects rotated to point outwards,
consistent with the observation that the numerical distance
is larger than the prediction in Table IV. This discrepancy
suggests that the global phase ψ becomes space-dependent
as χ and ζ increase, which is not captured in our ansatz.

TABLE III. Table of defect distances from the cone apex in
isothermal coordinates for χ = 0.1 and ζ/(Jγ −1) = 0.01 for ψ =
π/8, π/4 for both theoretical prediction and simulation result on a
cone. Here a = 0.9.

Phase ψ Theoretical distance Numerical distance

π/8 0.72R 0.73R
π/4 0.71R 0.69R
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TABLE IV. Table of distances for χ = 1/3 and ζ/(Jγ −1) = 0.25
for ψ = 0, π/4 for both theoretical prediction and simulation result
on a cone. Here a = 0.9.

Phase ψ Theoretical distance Numerical distance

0 0.88R 0.87R
π/4 0.58R 0.78R

B. 1 → 2 defect transition via defect unbinding

Numerical simulations allow us to explore a larger phase
space of stronger activities. Upon initializing with the zero
activity ground state, for a small activity, we observed one
defect at the apex and a single-defect orbit on the cone flank,
and for sufficiently large activity, the +1/2 defect at the apex
experiences a stronger motile force, which can be sufficient
to allow the defect to escape the Coulombic attraction to the
apex due to the deficit angle, i.e., due to a nonzero χ . As
the defect unbinds from the apex, the defects on the flanks
can experience circular motion equidistant from the apex as
before (see Fig. 10 for key snapshots depicting the unbinding
mechanism for ψ = π/4.)

We estimate the critical value for the activity ζc by equat-
ing the motile force with the Coulomb force at the apex in
physical coordinates [48]:

3c
χ

1 − χ

Jγ −1

a
= ζc

a
⇒ ζc = c′Jγ −1 χ

1 − χ
, (30)

where c′ = 3c. We introduced an adjustable factor of c in the
LHS to model the defect core size ∼a, and from simulations
learn that c′ = 3c ≈ 0.9. Comparison of this analytically cal-
culated critical activity threshold for defect unbinding with the
results of full numerical simulations shows good agreement,
with a single adjustable parameter (see Fig. 11). As such, we
argue that for any experimental realization of an overdamped
active nematic layer on a cone, using Eq. (30), and knowing
the material constants of the nematic texture, i.e., the Frank
elasticity J and orientational diffusion constant γ , the critical
activity for the unbinding of nematic topological defects can
be found for any conical geometry with deficit angle 2πχ .

VII. LARGE DEFICIT ANGLE AND ACTIVITY

A. Stable two-defect configurations for χ > 0.31

For χ > 0.31 and sufficiently small activity, we expect
there to be no stable two flank defect configuration. Indeed,
the ground state for ζ = 0 contains only 1 flank defect for 0 <

χ < 2/3 and 0 flank defects for 2/3 < χ < 1 [50]. Hence,
if we start with two flank defects, then we expect that the
dynamics will lead to 1 flank defect, with the other defect
absorbed by the apex. Consistent with our analysis of defect
absorption by the apex in Ref. [48], our simulations do indeed
reveal see defect absorption in this regime.

However, from simulations we learn that sufficiently large
activity can in fact stabilize the two-defect orbit for χ = 1/3,
even though the ground state for ζ = 0 has only a single defect

FIG. 10. Key snapshots of simulations showing how a defect unbinds from the apex in the presence of activity. Top row: plots are in
isothermal coordinates on a cone with χ = 0.33 and ζ/(Jγ −1) = 0.5 and ψ = π/4. (a) Initially a single defect is orbiting. (b) The +1/2
defect begins unbinding from the apex. (c) The +1/2 defect has successfully unbound (escaped) from the apex. (d) Representative snapshot
of stable circular two-defect orbit. The bottom row shows a perspective view of the cone itself. The dashed green line shows that a trajectory
initially lies on the far side of the cone. In all of the plots, the colored dots denote the +1/2 defects which follow the corresponding colored
trajectories, the red arrows the polarizations of the +1/2 defects, and the pink cross at the origin denotes the apex. Bottom row: corresponding
plots on a 3D cone.
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FIG. 11. Plot of data from simulations for when defect unbinding
occurs. Red curve corresponds to the analytical prediction [Eq. (30)
with a fitting parameter c′ = 0.9]. The bottom three images are
perspective views of a disk and two cones at the corresponding values
of χ .

on the flank. See Table V for our simulation results for χ =
1/3, ζ

Jγ −1 = .5, and ψ = 0, π/4. For ψ = 0, π/4, we do not
have an argument for the stable two-defect orbit observed in
our simulations. One possible explanation for the case of ψ =
π/4 is that the observed defect polarizations rotate to point
outwards, counteracting the attraction to the cone due to the
deficit angle. These results are another indication that as χ

and ζ increase, the multidefect ansatz becomes worse. As with
the case of single-defect orbit on a cone with χ = 1/3, the
simulations reveal that for ψ = π/4 the polarizations of the
defects rotated to point outwards. The global phase ψ may in
fact become space-dependent as χ and ζ increase, which is
not captured in our ansatz.

B. Apex-mediated defect nucleation and emission

Increasing both the activity ζ and the cone deficit angle
2πχ reveals an intriguing mechanism for a 2 → 1 defect
transition. For sufficiently large χ and activity, a ±1/2
defect pair is first nucleated at the apex, and then the −1/2
defect leaves the apex and annihilates one of the two +1/2
flank defects, leaving behind one +1/2 defect at the apex and
the other +1/2 defect on the flanks. See Fig. 5 for phase di-
agram from simulations, and Fig. 12 depicting key snapshots
of this mechanism for ψ = π/4.

The idea is that to unbind, two conditions need to be met:

TABLE V. Table of defect distances from the cone apex in
isothermal coordinates for χ = 1/3 and ζ/(Jγ −1) = .5 for ψ =
0, π/4, as determined by simulations on a cone. Here a = 0.9. We
do not have a theoretical prediction here since activity is large.

Phase ψ Numerical distance

0 0.93R
π/4 0.86R

(1) nucleation: the defect pair needs to be created, fol-
lowed by

(2) emission: a −1/2 defect needs to be able to leave the
apex.

For condition 1, even though we do not know how to
quantify when this occurs, we would expect that the larger
the activity, and the larger the curvature at the apex, i.e., the
greater the χ . However, condition 2 is easier to quantify, and
yields a lower bound on χ for the unbinding to occur, as
we now explain. Suppose a ±1/2 defect pair nucleates at the
apex, where the defects are separated by the smallest distance
a such that the defects are discernible. Then in order for the
−1/2 defect to unbind from the +1/2 defect at the apex,
the net force on the −1/2 defect should be repulsive. Since
from Eq. (15) the net force F on the σ = −1/2 defect on the
positive real axis is

F = 2πJ
[−χ

(
σ − 1

2σ 2) − σ 2]/a

= 2πJ
[
−χ

(
− 1

2 − 1
2

(− 1
2

)2
)

− 1
4

]
/a, (31)

the critical χ = χc is obtained by setting F = 0, leading to
χc = 2/5, where for χ > χc the force F > 0 and is repulsive.
This prediction is consistent with the dashed pink curve in
Fig. 5, i.e., that there is no defect nucleation for χ < 0.4.
However, our simulations (Fig. 5) indicate that χc also de-
pends on the activity. Indeed, we see that for sufficiently large
activity, i.e., when one expects condition 1 to be met, then the
numerical value of χc obtained from simulations is approxi-
mately 0.4. For lower activity, however, to create a defect pair,
we would expect that a larger χ is needed, which is indeed
consistent with what we see in our simulations, as indicated
by the dashed pink curve which slants to the right in Fig. 5.

C. Stable cyclic apex-mediated defect pair nucleation,
emission, and unbinding

Finally, our simulations reveal that further increase in ac-
tivity and deficit angle results in exotic cyclic defect pair
nucleation, emission, and unbinding, which may be chaotic in
time. See Fig. 13 for key snapshots depicting this remarkable
behavior for ψ = π/4. Some qualitative insights into this
behavior follow: previously, we have seen that for sufficiently
large deficit angle 2πχ , defect nucleation and emission can
occur, causing a transition from a two-defect orbit to a stable
one defect orbit, i.e., a 2 → 1 defect transition. However, we
have also seen that for sufficiently large activity ζ , a single-
defect orbit can become a stable circular two-defect orbit by
defect unbinding from the apex, i.e., a 1 → 2 defect transition.
It thus seems plausible that for sufficiently large χ and ζ ,
both of these transitions could happen successively. A more
complete phase diagram as a function of activity and cone
deficit angle based on our simulation results is provided in
Fig. 5, where we summarize the main dynamical states and
transitions between them explained in this paper.

VIII. DISCUSSION

In this work, we have investigated the dynamics of a com-
pressible, overdamped active nematic on disks and cones,
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FIG. 12. Key snapshots of simulations depicting the mechanism of defect nucleation at the apex followed by a −1/2 defect targeting and
annihilating an orbiting +1/2 defect. Top row: plots are in isothermal coordinates on a cone with χ = 0.6 and ζ/(Jγ −1) = 1.25 and ψ = π/4.
(a) Initially two +1/2 defects are orbiting. (b) a neutral defect pair is nucleated at the apex. (c) the −1/2 defect is emitted from the apex and
targets one of the orbiting +1/2 defects (d) the −1/2 defect has successfully annihilated one of the orbiting +1/2 defects, and the other
orbiting +1/2 defect continues to orbit. In all of the plots, the colored dots denote the +1/2 defects, the orange triangle denotes the −1/2
defect, defects follow the corresponding colored trajectories, the red arrows the polarizations of the +1/2 defects, and the pink cross at the
origin denotes the apex. Bottom row: corresponding plots on a 3D cone, where dashed lines indicate defect trajectories on the far side of the
cone.

with a focus on the role of boundary conditions. By imposing
strong anchoring boundary conditions at the base of a disk or
a cone, we have uncovered a rich phase diagram of circular
orbits of one or two +1/2 flank defects, with transitions
between these ordered dynamical states mediated by defect
absorption, defect unbinding, and defect pair nucleation at the
apex. Strong anchoring boundary conditions with the director
at a 45◦ angle to the cone base are particularly interesting.
Moreover, the Born-Oppenheimer approximation (nematic
textures instantaneously follow defect positions) allows us to
make analytical predictions about the dynamics of active ne-
matic defects on curved geometries. Many of these predictions
were indeed corroborated by our full numerical simulations.
For example, balancing the Coulomb forces (including those
from image charges) with the motile active force led to stable
circular orbits in the regime of low activity and deficit angle,
at locations predicted by the theory. And at higher activity,
the prediction for the critical activity for defect unbinding
from the apex agreed with theory. Going beyond what can
be derived from a simple Born-Oppenheimer approximation,
the full numerical simulations revealed that curvature, acting

as a lightning rod with activity serving as the catalyst, can
induce the nucleation of neutral defect pairs, with the emission
of mobile −1/2 defects, despite their local 3-fold symmetry.
This finding provides a route and possible explanation for
defect pair nucleation in more general curved active systems.

It is natural to ask how our results for defect absorption
and emission at the cone apex depend on the sharpness of the
lighting-rod-like tip structures studied here. Because of the
topological nature of the geometrical frustration associated
with the cone, which reveals itself in parallel transport of
order parameters even far away from the apex, we expect that
cones with truncated tips would behave in a similar fashion,
provided the radius of the truncated tip is small compared
to the overall cone size and, furthermore, provided we keep
the same boundary conditions at the base and impose free
boundary conditions along the rim of the truncated tip. Free
boundary conditions at the rim allow easy creation and de-
struction of defects onto the cone flanks via image defects.
Similar expectations for defected ground states with tangential
boundary conditions in the absence of activity were tested in
Ref. [50].
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FIG. 13. Key snapshots of simulations depicting cyclic 2 → 1 → 2 . . . defect transition mechanism. Top row: plots are in isothermal
coordinates on a cone with χ = 0.6 and ζ/(Jγ −1) = 2 and ψ = π/4. (a) Initially two +1/2 defects are orbiting. (b) a neutral defect pair is
nucleated at the apex and then the −1/2 defect is emitted from the apex and targets one of the orbiting +1/2 defects (c) the −1/2 defect
has successfully annihilated one of the orbiting +1/2 defects, and the other orbiting +1/2 defect continues to orbit. (d) the +1/2 defect has
successfully unbound (escaped) from the apex. In all of the plots, the colored dots denote the +1/2 defects, the orange triangle the −1/2
defect, defects follow the corresponding colored trajectories, the red arrows the polarizations of the +1/2 defects, and the pink cross at the
origin denotes the apex. Bottom row: corresponding plots on a 3D cone, where dashed lines indicate defect trajectories on the far side of the
cone.

We now comment on the relation of our work to other
interesting investigations [23,29,32], which considered the
related model of an incompressible nematic on a disk or an
annulus. Although there is no geometric charge at the center,
as occurs at the apex for cones with χ > 0, Ref. [32] via sim-
ulations found that for sufficiently large activity, a two-defect
orbit with tangential boundary conditions can become stable
via defect pair nucleation at the origin followed by defect
emission of the −1/2 defect which then annihilates one of
the original orbiting +1/2 defects, similar to the mechanism
discussed in Sec. VII B. Experiments on a disk in Ref. [23]
show that 2 → 1 → 2 . . . transitions occur via defect pair
nucleation at the boundary followed by annihilation and then
again defect pair nucleation, etc, similar to our mechanism
in Sec. VII C, with the intriguing difference that defect pair
nucleation occurs at the boundary vs the apex for our case. Fi-
nally, Ref. [29] numerically found a phase diagram in the case
of a disk and annulus, which when restricted to the regime
where the inner radius of the annulus is small compared to the
outer radius, agrees with our phase diagram (Fig. 5) for small
deficit angle: for small activity, circular orbits are allowed,
and for large activity, the dynamics is chaotic. The results of

this specific annulus geometry is not surprising since it is akin
to a truncated cone, with free boundary conditions imposed
at the truncation [50]. An inverted truncated cone is like a
banked racetrack, and it would be interesting to study active
nematic dynamics on such a structure as a function of apex
ratio, with an unquantized Gaussian curvature residing inside
the truncation.

In the future, it would be worth studying the dynam-
ics of active matter coating a hyperbolic cone. Preliminary
investigations of ground states have revealed that even in the
passive setting, extra neutral defect pairs leading to additional
+1/2 flank defects are nucleated at the apex, depending on the
deficit angle [69]. It would also be worth exploring further the
regime of large activity, where we expect active turbulence, in-
teracting with a delta function of Gaussian curvature, leading
to an active analog of the Debye-Hückel screening problem of
electrolytes in two dimensions.

Finally, it is worth noting the possible experimental setups
that could test our theoretical and computational predictions.
It has already been demonstrated that by using a rotat-
ing cuvette containing a yield-stress fluid, one can form
toroidal droplets on which mixtures of microtubule-kinesin
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motor mixtures are stabilized and nucleate active nematic
topological defects [45]. Extending this elegant experimen-
tal technique to stabilize active nematic microtubule-motor
protein mixtures on conical droplets might be challenging,
but could be an ideal test case for exploring active defect
dynamics in a controlled manner. By tuning the sharpness
of the cone in yield-stress droplets of various shapes, and
the activity through varying ATP concentration, one could
probe the phase diagram presented in Fig. 1. Similarly, the
possibility of forming cell monolayers on corrugated surfaces
has been demonstrated using polyacrylamide hydrogels fabri-
cation by UV photocrosslinking [70]. This technique can be
easily adapted to achieve cell monolayers on conical surfaces
of varying sharpness. We expect especially complex dynamics
when χ moves closer to 1 and the activity becomes large.
One could then probe dynamics of elongated, weakly adhe-
sive mesenchymal cells such as mouse fibroblast to explore
the rich phase diagram studied here. Indeed, such cell layers
were already instrumental to probe defect locations in con-
fined disks [30]. Confining defects to the cone, together with
our theoretical and computational predictions, could result in
one of the first quantitative assessments of topological defect
unbinding in active matter with a controlled environment. In
addition to subcellular filaments and cell layers, important
examples of living liquid crystals, embedding active bacteria
in pre-patterned liquid crystal textures [71] could be a fertile

ground for testing active nematic defects on cones as exam-
ples of nontrivial curvature singularities. Indeed, such living
liquid crystals have been shown to exhibit active nematic
defects [72], and the possibility of forming passive liquid
crystals on conical geometries has been demonstrated [73]. As
such, living liquid crystals on a cone could provide another
controlled means for obtaining dynamically ordered defect
structures and studying details of defect emission, nucleation,
and unbinding in active matter, as explored in this paper.
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