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Colloidal model for nucleation and aggregation in one dimension: Accessing
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Through a one-dimensional colloidal model for epitaxial growth, we characterize the nucleation and aggrega-
tion processes occurring in a gap between adjacent islands. The timescales associated with deposition, diffusion,
aggregation, and nucleation inside the gap are studied in terms of the parameters defining the interaction between
colloidal particles. Numerical results from molecular-dynamics (MD) simulations are compared with analytical
models and good agreement is found between both data sets. The results for the timescales are used to calculate
the associated rates to generate kinetic Monte Carlo (KMC) simulations, which allow exploring larger systems
and longer timescales in comparison with MD simulations. The KMC simulations reproduce the global behavior
of the densities of islands and monomers as well as the gap length distribution between adjacent islands.
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I. INTRODUCTION

Epitaxy involves the growth of crystalline layers on a
substrate, allowing precise control over the arrangement
and properties of the deposited material. This process has
contributed significantly to modern technology as it is in-
dispensable in the fabrication of advanced electronic and
optoelectronic devices. In standard epitaxial growth, atoms
are deposited on a substrate at a controlled rate. After depo-
sition, these adatoms or monomers diffuse on the substrate
until they cluster with other monomers forming stable islands
or until they aggregate to preexisting ones. These two pro-
cesses are called nucleation and aggregation, respectively, and
these are of great interest since their characteristic parameters
ultimately determine the properties of the epitaxially grown
structures [1–3].

Despite the conceptual simplicity of the fundamental pro-
cesses involved in epitaxial growth, the theoretical models
proposed so far to describe them are not able to completely
predict various magnitudes of interest for controlling the layer
growth, for example, the critical size of islands, the time evo-
lution of the density of islands, the size distribution of islands,
and the distribution of the so-called capture zones [4–18].

The knowledge of many phenomena in condensed-matter
physics has been improved in recent decades due to us-
ing colloidal systems as models for mimicking their atomic
counterparts [19]. Due to the tunability of both the extent
and the intensity of the interactions between colloidal parti-
cles, these are convenient systems for studying fundamental
phenomena such as crystallization, gelation and vitrifica-
tion, and formation of crystal defects [20–22]. In particular,
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sedimentation of particles from a dilute colloidal suspension
on a flat or patterned surface is a common method to form
colloidal crystals [23–25]. These studies have led to the con-
clusion that the nature of colloidal epitaxy is, in many aspects,
similar to that found in atomic epitaxy. Closely related, the
drop-drying method is also of interest for the formation of
highly ordered monolayers; as the droplet evaporates, the sus-
pended colloidal particles are swept away and adsorbed at the
interface, where they diffuse and aggregate on the gas-liquid
surface of the droplet [26,27].

In addition to the possibility of tuning the interactions
between colloidal particles, the length and timescales involved
in colloidal systems allow the experimental observation of
nucleation and growth dynamics of self-assembled colloidal
monolayers with a resolution equivalent to the particle size
[28–30]. For instance, the mechanisms leading to the creation
of Ehrlich-Schwoebel barriers, which determine the interlayer
transport of monomers, were found to have a kinetic origin in
colloidal systems [28,29]. It was also demonstrated that the
surface energy landscape can help precisely control nucleation
and consequently the size and symmetry of the growing is-
lands [31]. These studies have also considered heteroepitaxy,
where, for example, parallel mechanisms between colloidal
and atomic systems were found for strain relief for lattice
misfit between the growing film and the substrate [32,33].

On the other hand, simulation-based studies of colloidal
systems have given results on the role of different physical
parameters, such as the effect of the stress field of the substrate
in the dynamics of island formation and the morphology of the
resulting islands [34]. Empirical interaction potentials have
also been considered to understand the dependence on the
colloidal size of the critical island size and the energy barriers
for both island relaxation and interlayer diffusion [35]. In
practice, the results obtained through simulations of colloidal
epitaxy can be experimentally replicated. Considering that
these observables are to some degree scalable between the
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FIG. 1. One free monomer (blue circle) inside a gap of length L
between two fixed islands (red circles). Both red and blue are A-type
particles, while the substrate is formed by B-type particles (black
circles).

molecular and atomic, mostly for submonolayer growth [36],
they provide a better understanding of the interactions and
processes related to island formation and monolayer growth.

Recently, a two-dimensional colloidal model was intro-
duced to explore the time evolution of both monomer and
island densities when a two-step protocol is used for epi-
taxial growth. Such a protocol has the major advantage that
nucleation and aggregation processes take place at different
timescales [37]. The main assumption of this model is that
the interactions between the colloidal particles are known
quantities; therefore, molecular-dynamics (MD) simulations
can be employed to follow the deposition of colloids on a
one-dimensional substrate due to the slow sedimentation from
a two-dimensional dilute suspension. By comparing the sim-
ulation results with analytical considerations based on rate
equations, it was concluded that the analysis of both monomer
and island densities, which are experimentally accessible, can
indeed help gain information about the system’s microscopic
dynamics as well as the validity range of the point-island
assumption.

It is important to note that a distinctive feature of a one-
dimensional substrate is that islands divide it into independent
segments called gaps (see Fig. 1). It turns out that the in-
formation gathered for nucleation and aggregation processes
occurring inside a single gap can be exploited to recover
the time evolution of the whole system in the submonolayer
regime [14,17,38–40]. More specifically, the capture kernels
associated with nucleation and aggregation in a gap are di-
rectly related to the time evolution of the densities of islands
and monomers. Furthermore, the knowledge of the nucleation
and aggregation rates, in conjunction with the appropriate
fragmentation equation, makes it possible to evaluate the gap
length distribution between adjacent islands. Experimental
and numerical methods can be employed to measure all of
these quantities, providing valuable insights to test the validity
of the proposed theoretical model.

In this work, molecular dynamics is employed to ana-
lyze deposition, nucleation, and aggregation events occurring
inside a single gap for a one-dimensional substrate. The sim-
ulations allow us to calculate the transition rates associated
with deposition, nucleation, aggregation, and diffusion as a
function of the interaction parameters between colloidal par-
ticles. To explore the evolution of the densities of islands and
monomers, the evaluated transition rates are used as input for
kinetic Monte Carlo (KMC) simulations. Both MD and KMC
results are compared with those from a fragmentation equa-
tion based on the description of aggregation and nucleation
inside a single gap. In particular, a comparison is made for the
gap length distribution between adjacent islands.

This paper is structured as follows. Section II describes the
single-gap model employed. In Sec. III the relevant timescales
are calculated both numerically and analytically for several
interaction parameters. The distribution of nucleation sites
is also discussed there. In Sec. IV we provide an analytical
expression for the distribution of the nucleation sites for gaps
having different lengths. The comparison between the results
of KMC simulations and those from MD is presented in
Sec. V. In Sec. VI we show how our results for a single gap
can be used to describe the gap length distribution. In Sec. VII
we draw some conclusions.

II. MODEL DESCRIPTION

Consider a single mobile colloidal particle (monomer) con-
fined inside the gap between two adjacent islands deposited on
a substrate, as depicted in Fig. 1. The islands are considered
immobile, stable, and formed by monomers of type A, while
immobile particles of type B form the substrate. All monomers
have diameter σ and mass m and are influenced by an external
constant sedimentation field �F . The absolute temperature of
the suspension above the substrate is T , and D0 denotes the
diffusion coefficient of a particle in the suspension. In the
following σ , m, kBT , and τMD are taken as length, mass,
energy, and time units, respectively, with τMD =

√
mσ 2/kBT

and kB the Boltzmann constant.
The particle-particle interaction is modeled by the Morse

potential

Vi j (r) =
{
Ai j (e−2α(r−σ ) − 2e−α(r−σ ) ), r � rcut

0, r > rcut,
(1)

where r is the center-to-center distance between two colloidal
particles. The parameters Ai j (i, j = A, B), α, and rcut deter-
mine the strength, range, and cutoff distance of the interaction
potential, respectively. While the selection of the potential
may seem arbitrary, it maintains two primary characteristics: a
hard-core interaction and a short-range attractive contribution.
These features are exemplified, for instance, by the Asakura-
Oosawa potential, which effectively describes the depletion
potential resulting from adding small polymers into the col-
loidal suspension [36,37].

The colloids evolve according to Langevin dynamics in
such a way that the position of the ith colloid, �ri, changes
according to

m
d2�ri

dt2
= −ζ0

d�ri

dt
+ ν�η(t ) + �Fi(t ), (2)

where �Fi(t ) is the total force on the ith colloid due to the
external field and all the other colloidal particles [41]. The
solvent is taken into account implicitly through the parameters
ζ0 and ν, which give the intensity of the viscous and stochastic
forces [first and second terms of Eq. (2)], respectively. As
usual, the stochastic variable �η(t ) is defined according to

〈�η(t )〉η = 0, 〈�η(t )�η(t ′)〉η = Iδ(t − t ′), (3)

where 〈·〉η indicates the ensemble average, δ(t ) is the Dirac
delta function, I is the 2 × 2 identity matrix, and the intensity
of the random force, ν, is chosen to satisfy the fluctuation-
dissipation theorem.
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The deposition of colloids inside the gap proceeds as fol-
lows. A colloid is introduced in the simulation box at random
x, height yins = 1.02σ , and with a vertical velocity equal to
−F/mζ0, which corresponds to the monomer’s steady-state
velocity in the suspension. Inserting the colloid with these
initial conditions helps shorten the simulation time since these
implicitly assume that the monomers are deposited at a height
high enough to reach the substrate with a velocity equal to that
of the steady state. The sedimentation field ensures that the
colloid moves toward the substrate and is eventually incorpo-
rated into the gap. The substrate generates a periodic potential
with well-defined minima, each comprising a metastable site
for the deposited mobile monomer. After thermalization, the
free monomer moves on the substrate by hopping between
consecutive sites, with τ the average hopping time. There-
fore, the (lateral) diffusion constant of the monomer on the
substrate is given by D = σ 2/2τ .

For the numerical description of nucleation, configurations
involving only two free monomers within the gap are required,
so we proceed as follows. The average time elapsed between
the deposition of these two colloids is τdep. To improve the
computational efficiency of the MD simulation, we deposit
both colloids simultaneously. However, one of them was de-
posited at random x having a uniform distribution, while the
other one was deposited at random x following the distribution
of free colloids of the steady state [see Eq. (20)]. This way, it is
implicitly assumed that the first monomer has enough time to
reach the steady-state regime before the arrival of the second
one.

III. TIMESCALES

A. Diffusion constant

From Eq. (2), the Fokker-Planck equation associated with
the distribution P(x, y, t ) of finding a particle at position (x, y)
at time t is given by [41]

ζ0
∂P(x, y, t )

∂t
−

[
∂

∂x

(
∂V (x, y)

∂x
+ ν2

2ζ0

∂

∂x

)

+ ∂

∂y

(
∂V (x, y)

∂y
+ ν2

2ζ0

∂

∂y

)]
P(x, y, t ) = 0. (4)

Equation (4) is not separable due to the presence of the term
associated with the interaction potential V (x, y), preventing
one from finding an exact solution for P(x, y, t ) with the
Morse potential. However, for a suitable choice of the system
parameters, the free colloids will move on the substrate by
infrequent events. Therefore, the distribution probability of
finding a monomer close to a potential minimum, i.e., once
it has been adsorbed by the substrate, can be approximated by
the equilibrium distribution

P(x, y, t ) ≈ C exp[−βV (x, y)], (5)

where C is the normalization constant of the distribution.
Figure 2 shows the marginal probabilities

px(x) =
∫ rcut

0
dy P(x, y, t ) (6)

(a)

(b)

FIG. 2. Marginal distributions (a) px (x) and (b) py(y) given by
Eqs. (6) and (7). As expected, py(y) has a well-defined peak at y �
(
√

3/2)σ , while px (x) has its maximum at the midpoint between the
center of two consecutive colloids of the substrate.

and

py(y) =
∫ σ/2

−σ/2
dx P(x, y, t ), (7)

which were evaluated using MD simulations for the parame-
ters AAA = 8.8kBT , AAB = 8.0kBT , α = 25/σ , ζ0 = m/τMD,
F = kBT/σ , and rcut = 1.6σ . As shown in Ref. [37], this set
of parameters allows the stable growth of islands in the sub-
monolayer regime with a negligible detachment of monomers
from the substrate. However, in the case of eventual evapora-
tion, we impose a reflective boundary condition at y = rcut =
1.6σ , which corresponds to the interaction cutoff distance. In
Fig. 2, squares and lines correspond to MD and theoretical
results, respectively, the latter being obtained using Eqs. (1)
and (5)–(7); as can be seen there, the agreement between
numerical and analytical results is excellent.

Using Eq. (4) and the periodicity of the potential energy
on the substrate, in Ref. [41] it is demonstrated that, in the
high-friction limit, the diffusion coefficient for a horizontal
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FIG. 3. Behavior of the distribution D(y)py(y) as a function of y.
The inset shows how D(y) increases with y until it equals the value of
the diffusion constant in the suspension. The D(y) is given by Eq. (8)
with system parameters taken from Ref. [37].

trajectory at a given y can be expressed as

D(y) = D0σ
2I−1

2 (y), (8)

where D0 is the diffusion coefficient in the suspension and
I2(y) corresponds to the Lifson-Jackson formula [42]

I2(y) =
∫ σ

0
dx eV (x,y)/kBT

∫ σ

0
dx e−V (x,y)/kBT . (9)

Equation (8) cannot be directly applied to our system because
free monomers do not move along a horizontal line due to
the fluctuations of the y coordinate. Additionally, the result
of the integral in Eq. (9) strongly depends on y, as shown
in the inset of Fig. 3. Note that in the region y > σ , D(y)
equals the diffusion constant at the suspension. However, we
can estimate the diffusion constant using Eq. (8) as follows.
Due to the finite size of the colloids, the transitions between
metastable states only occur for y � σ . As shown in Fig. 2 for
py(y), the probability of finding the particle in this region is
quite small. Consequently, the distribution D(y)py(y) decays
rapidly as y becomes greater than σ , as can be seen in Fig. 3.
Then the effective (lateral) diffusion coefficient D can be
estimated as

D = D(σ )py(σ ). (10)

Figure 4 displays the results for the diffusion coefficient
D obtained by numerically evaluating Eqs. (8) and (10) at
y = σ for different values of AAB. The theoretical results
are compared to those from MD simulations estimated from
the long-time behavior of the mean-square displacement. The
diffusion constant D = D(σ )py(σ ) strongly depends on AAB

as it decreases two orders of magnitude as AAB increases from
7.0kBT to 9.0kBT . The inset shows that our approximation
reproduces the exponential decay of D as a function of AAB

but overestimates the decay rate. As mentioned in Ref. [37],
taking AAB = 8.0kBT guarantees the mobility of the free col-
loids on the substrate but makes unlikely their detachment
from the substrate.

FIG. 4. Diffusion coefficient for different values of the interac-
tion parameter AAB. The results are evaluated from Eq. (10) and
molecular-dynamics simulations.

B. Deposition rate

The deposition rate due to the slow sedimentation of col-
loids from the suspension on the substrate can be calculated as
follows. Let ρ be the density of colloids in the suspension. For
y > 1.6σ the colloids do not interact with the substrate, and
for small densities ρ, the interaction between mobile colloids
can be ignored. Under these conditions, V (x, y) � 0 and in
Eq. (4) can be analytically solved. The probability of finding
a colloid between y and y + dy in the steady state is given by

P(y, t ) = ζ0J

F
(1 − e−2ζ0Fy/ν2

), (11)

where J is the probability current for a single colloid. The
deposition rate F (number of particles deposited per unit
length per time) is given by

F = 2ρF 2Ly

ν2(e−2ζ0FLy/ν2 − 1) + 2ζ0FLy
, (12)

with Ly the height of the suspension. For kBT 	 FLy, Eq. (12)
reduces to the simple linear form F = ρF/ζ0. The average
time between consecutive depositions in a gap of length L is
given by τdep = (FL)−1. Figures 5 and 6 show the behavior
of τdep and F as a function of F , respectively. In both cases,
good agreement is found between MD results and those from
the analytical model. As expected, the linear approximation
for the deposition rate gives good results for large values of
F .

C. Aggregation time

The traversal time τtr is defined as the average time after
deposition required for a monomer to reach one of the gap
edges, while the residence time τres measures the survival time
of a monomer before it aggregates to one of the islands of the
gap. Both quantities can be estimated using a simple random-
walk model for a colloid confined inside a gap. Let pn(t ) be
the probability of finding a single monomer at time t in the
nth site of the gap, which can be calculated from the master
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FIG. 5. Deposition time as a function of F evaluated from MD
simulations and from the analytical result [Eq. (12)].

equation

d pn(t )

dt
= 1

2τ
[pn+1(t ) + pn−1(t ) − 2pn(t )], (13)

where τ = σ/2D is the average hopping time. The boundary
conditions are p0(t ) = εp1(t ) and pN+1(t ) = εpN (t ), where
N is the number of lattice sites (potential minima in the gap)
and L = Nσ . The parameter 0 � ε � 1 characterizes the in-
teraction between the islands and free colloids. For ε = 0 the
islands behave as perfect traps, i.e., once a monomer reaches
the interaction range of an island, it is instantly captured
by the island. Then τres = τtr since aggregation takes place
instantaneously. On the other hand, for ε = 1 we have perfect
reflecting boundary conditions and aggregation is impossible
in this case.

From pn(t ), the survival probability Ps(t ), defined as the
probability of finding the monomer inside the gap at time t ,

FIG. 6. Deposition rate as a function of F . As predicted, the
deposition rate increases linearly for large values of F .

can be evaluated as

Ps(t ) =
N∑

n=1

pn(t ). (14)

Then the probability for a monomer to be captured in the
time interval [t, t + 
t] determines the residence probability
distribution Pres(t ) as

Pres(t )
t = −Ps(t + 
t ) + Ps(t ), (15)

which in the limit 
t → 0 takes the form

Pres(t ) = −dPs(t )

dt
. (16)

The residence time τres is the average time a monomer spends
inside the gap before being captured by an island. Therefore,
using Eq. (16), τres can be calculated from

τres =
∫ ∞

0
dt tPres(t )

=
∫ ∞

0
dt Ps(t )

=
N∑

n=1

ρn, (17)

where the density at site n, ρn, is defined as

ρn =
∫ ∞

0
dt pn(t ), (18)

where the integration domain was extended up to infinity as
pn(t ) is a rapidly decreasing function of t for the parameters
used.

Using the definition given by Eq. (18) in Eq. (13), it is
found that ρn satisfies the recurrence relation

−2τ pn(0) = ρn+1 + ρn−1 − 2ρn, (19)

with boundary conditions ρ0 = ερ1 and ρN+1 = ερN . The
linear nonhomogeneous recurrence relation given by Eq. (19)
can be solved using standard procedures [43]. The solution
can be written as ρn = ∑2

j=0 c jn j , where the coefficients c j

are calculated by replacing the proposed solution in Eq. (19)
and using the boundary conditions mentioned above. The
explicit form of ρn is given by

ρn = τ

N

(
εN

1 − ε
+ (N + 1)n − n2

)
. (20)

From Eqs. (17) and (20), the residence time is

τres = τ

(
εN

1 − ε
+ (N + 1)(N + 2)

6

)
. (21)

Figure 7 shows the behavior of the parameter ε for different
values of AAB, which was calculated using Eq. (20) and the
MD results for ρn. Large values of AAB ensure that islands
behave like perfect traps, i.e., AAB → ∞ and ε → 0. For
small values of the interaction parameter, the detachment of
colloids from the islands is very likely and the density of free
colloids inside the gap turns out to be homogeneous, as shown
in the inset of Fig. 7. For the three values of AAB considered,
Eq. (20) gives an excellent description of the normalized
density.
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FIG. 7. Molecular-dynamics results for the parameter ε as a
function of the interaction strength AAB. The inset shows the nor-
malized density ρn/

∑
n ρn for three different values of AAB. Symbols

correspond to MD results and lines to Eq. (20).

However, for large values of AAB the diffusion coefficient
D becomes comparable to the deposition rate F . This is not
a desired situation since it leads to an evolution in which
nucleation and aggregation occur simultaneously, decreasing
the chance of controlling the formed structure. To avoid this
issue, from now on we take AAB = 8.0kBT and set the den-
sity in the suspension in such a way that F � 2 × 10−6,
which gives R = D/F ≈ 1.6 × 103. Despite ε being finite
for this interaction strength, taking ε = 0 in Eqs. (20) and
(21) gives an excellent approximation for evaluating both ρn

and τres. Figure 8 shows the density for gaps with different
lengths (N = 10, 20, 30, 40, and 50). The numerical evidence
suggests that the islands can be considered perfect traps for
the employed parameters and then the system is limited by
diffusion. Similarly, the behavior of τres as a function of N
with ε = 0 is shown in Fig. 9. The agreement with Eq. (21) is
excellent, especially for large gaps where τres ≈ τN2/6.

FIG. 8. Density ρn for five different gap lengths. Symbols corre-
spond to MD results and lines to analytical results from Eq. (20) with
ε = 0.

FIG. 9. Behavior of τres as a function of N . Symbols correspond
to MD results and the line to Eq. (21). The inaccuracy induced by
taking ε = 0 becomes negligible for large gaps (N > 20).

IV. SPATIAL DESCRIPTION OF NUCLEATION

For small densities of colloidal particles in the suspension,
the deposition rate of monomers satisfies F 	 D. Therefore,
τres 	 τdep = FL for a gap of length L and the probability
of simultaneously finding more than one colloid inside a gap
is small. In this limit, the probability of finding i monomers
in the gap at the moment of the (i + 1)th deposition, qi+1, is
given by [44]

qi+1 = 1

i!

(
τres

τdep

)i

= 1

i!

[
L2

12R

(
L + 6εσ

1 − ε

)]i

. (22)

As expected, qi+1 strongly depends on ε, L, and R. For
the parameters used in the simulations τdep � τres ≈ τtr and
qi+1 ≈ (L3/12R)i/i!. In epitaxial growth, the critical size is
the maximum size of an unstable island. In our MD simula-
tions we set AAA = 8.8kBT , which makes dimers stable, i.e.,
clusters of two monomers can be considered as immobile and
stable islands.

On the other hand, given that τres 	 τdep, if two monomers
coincide in the gap, whenever the second monomer arrives, it
is very likely that the first one has already reached the steady
state. This situation is equivalent to having a gap where both
monomers are deposited simultaneously at random sites; the
first one is deposited at site n with uniform probability 1/N
and the second with a probability given by ρn/

∑
n ρn. The

time evolution of two free colloids is given by the master
equation

d pm,n(t )

dt
= 1

4τ
[pm+1,n(t ) + pm−1,n(t ) + pm,n+1(t )

+ pm,n−1(t ) − 4pm,n], (23)

where p0,n(t ) = pN+1,n(t ) = pm,0(t ) = pm,N+1(t ) = 0 and
pn,n = 0. In the following, we assume that nucleation occurs
once the colloids are separated by a distance smaller than the
interaction range, which is a reasonable assumption as the set
AAB makes detachment negligible. The solution of Eq. (23)
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can be found using the auxiliary initial condition [45–47]

p̃m,n(0) =
⎧⎨
⎩

−pn,m(0) for m > n
0 for m = n
pm,n(0) for m < n,

(24)

where the symmetrized pm,n(0) can be written as

pm,n(0) = ρn + ρm

2L
∑

n ρn
. (25)

In this way, the probability of having two colloids in sites m
and n in the gap has the form

pm,n(t ) =
N∑

k, j=1

Bk, je
ck j t/4τ Xm,n, (26)

where

Xm,n = sin

(
πkm

N + 1

)
sin

(
π jn

N + 1

)
. (27)

The constants ck j and Bk j are given by

ck j = 2

[
cos

(
πk

N + 1

)
+ cos

(
π j

N + 1

)
− 2

]
(28)

and

Bk j =
(

2

N + 1

)2 ∑
m<n

p̃m,n(0)Xm,n, (29)

respectively. The probability that nucleation occurs at site n,
P (n), is given by

P (n) = 1

4τ

∫ ∞

0
dt[pn+1,n(t ) + pn−1,n(t )

+ pn,n+1(t ) + pn,n−1(t )]. (30)

Using Eqs. (26)–(30), the probability of nucleation can be
written as

P (n) = 1

2

N∑
k, j=1

Bk j (Xn,n+1 + Xn,n−1)

1 − 1
2

[
cos

(
kπ

N+1

) + cos
( jπ

N+1

)] . (31)

Note that we do not consider the direct deposition of one
colloid on top of another at t = 0. Numerical evidence from
KMC simulations has shown that an excellent mean-field ap-
proximation for Eq. (31) is given by the Walton relation, i.e.,
it is assumed that P (n) is proportional to the squared density
[14,38,48]

PMF(n) ≈ 30n2(N − n + 1)2

(N + 1)5
. (32)

This distribution can be scaled using the transformation λ =
n/N and p(λ) = NP (λ) so that Eq. (32) can be rewritten as

pMF(λ) ≈ 30λ2(1 − λ)2. (33)

Figure 10 shows the scaled distribution of the nucleation
sites for gaps having different lengths (N = 20, 40, and 60).
Both P (n) and PMF (n) provide an adequate description of
the simulation results. These results also support the approx-
imation ε = 0, since P (n) should be flatter and P (0) > 0
otherwise. The main differences between the analytical and
numerical results are due to the assumption that a nucleation

FIG. 10. Probability distribution for nucleation taking place at
site n. Symbols correspond to MD simulation results, black lines to
theoretical results from Eq. (31), and the red line to the mean-field
approximation given by Eq. (33). The inset shows that the nucleation
rate inside the gap (g � 0.47) is found to be independent of the gap
length.

occurs when a colloid hops on top of the other used in the
former, while in the simulations a nucleation occurs when the
centers of two colloids are closer than the interaction cutoff
distance, which leads to a more pronounced distribution peak.
The initial condition given by Eq. (24) is formally fulfilled
in the limit R → ∞, which cannot be easily achieved for
colloids; as mentioned previously, in this work R ≈ 1.6 × 103

is far from the desired limit.
The nucleation rate inside the gap, ω, indicates the number

of nucleation events per time unit. Let g be the conditional
probability for a nucleation inside a gap given that two
monomers are inside the gap at the time of the second de-
position. Consequently, ω can be written as

ω = gq2FL, (34)

where q2 is given by Eq. (22) and g can be evaluated from
P (n) according to

g =
N∑

n=1

P (n). (35)

The numerical evaluation of Eq. (35) using the result of
Eq. (31) leads to g ≈ 0.47 regardless of the gap length, as
shown in the inset of Fig. 10. This is a consequence of the
chosen interaction parameters, which make dimers stable. For
a different set of interaction parameters, the critical nucleus
size can be larger than i = 1 and g would depend on L [17].

V. KMC SIMULATION FROM MD RESULTS

Two typical quantities used in epitaxial growth to describe
the time evolution of the growing monolayer are the monomer
(N1) and island (N ) densities. Starting from the results de-
scribed in the preceding section, we implement kinetic Monte
Carlo simulations for monolayer growth using the same in-
teraction parameters and the ratio R = D/F � 1.6 × 103. In
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FIG. 11. Evolution of monomer N1 and island N densities as
a function of the coverage θ = Ft . Symbols correspond to MD
simulations and lines to the KMC results.

these simulations, we consider a one-dimensional lattice (sub-
strate) with N = 1000 sites on which colloids are deposited
at random. On average, 2RN1 random moves are made by
the free colloids on the lattice between two consecutive de-
positions. In this way, the hopping time is guaranteed to be
τ = σ 2/2D and the time between consecutive depositions is
(FL)−1. Note that the interaction parameters determine not
only the diffusion coefficient of the colloids on the substrate
but also the critical nucleus size i. For the set of parameters
used in the MD simulations, once two colloids are in con-
secutive lattice sites they form a stable island. Therefore, we
implement the extended island model in the KMC simula-
tions, i.e., if a free colloid moves onto a site that is adjacent
to one already occupied by another colloid, then either an
aggregation or a nucleation event is considered to occur.

VI. FROM LOCAL TO GLOBAL BEHAVIOR

Evolution of densities

Figure 11 shows the evolution of N and N1 as a function of
the coverage θ = Ft , where t is the physical time and θ is the
total density of deposited particles. As can be seen there, the
agreement between the two simulation methods is excellent.
A major advantage of the KMC over the MD simulations is
that the KMC simulation allows one to simulate much larger
systems and longer timescales with less computational effort.

Another quantity that is also useful for studying epitaxial
growth is the gap length distribution for gaps of length l
between neighboring islands. This distribution provides in-
formation about the effective interaction between islands as
well as about the capture zone distribution [14,38,39]. The
gap length distribution can be recovered using a fragmentation
model which uses as input the results of Sec. III. Following
Ref. [38], we define the scaled gap length distribution pg(x),
which satisfy the fragmentation equation

x
d pg(x)

dx
+ 2pg(x) = −Qg(x) + 2Qx(x), (36)

FIG. 12. Gap length distribution for adjacent islands for a cov-
erage θ = 0.25. Symbols and the solid line correspond to MD and
KMC results, respectively. Dashed and dotted lines are obtained
from the solution of the fragmentation model given by Eq. (36) with
different values of γ .

with Qg(x) the probability density of nucleation inside a gap
with scaled length x = L/〈L〉 and Qx(x) the probability that,
given a gap with length y, nucleation occurs at a position x
inside the gap [39], i.e.,

Qx(x) =
∫ ∞

x
dy

1

y
pg(y)P (x/y). (37)

In particular, Qg(x) can be written as

Qg(x) ∝ ωpg(x), (38)

where ω is the nucleation rate inside a gap with scaled length
x. Evaluating Eq. (34) for the parameters considered, it is
found that ω � 0.04F2L4/D and consequently

Qg(x) = x4

μ4
pg(x), (39)

with μ4 the fourth moment of pg(x).
The resulting integro-differential equation for pg(x) given

by Eqs. (36), (37), and (39) cannot be analytically solved.
However, it can be solved numerically as shown in Ref. [39].
For large values of x, pg(x) ∝ x−2 exp(−xγ /γμγ ), with γ

the exponent of L in the nucleation rate ω and therefore its
behavior is completely determined by Qg(x). Furthermore, in
the limit x 	 1 we have p(λ) ∼ λ2, which in turn implies
pg(x) ∼ x2 and Qx(x) ∼ x2. Figure 12 displays the behavior
of pg(x) evaluated for coverage θ = 0.25. As expected, the
KMC results coincide with those from MD simulations, es-
pecially for large values of x. However, the fragmentation
model [Eqs. (36) and (39)] fails to describe the simulation
results for pg(x) at large x. This discrepancy can be understood
considering that Eq. (36) implicitly assumes that the system
has reached a quasisteady state, in which nucleation and ag-
gregation balance each other; this assumption is reasonable
for R → ∞. In this limit pg(x) reaches a scaling regime,
but for the set of parameters used in our simulations, R is
not large enough to meet this requirement. Additionally, the
fragmentation approach assumes that the colloidal density of
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the gaps reaches the long-time behavior, which is true for
small gaps but not necessarily for large gaps if R is not large
enough. The statistical behavior of the system for large values
of x is dominated by the breakup of the largest gaps, and
under the steady-state assumption, Eq. (39) predicts γ = 4.
However, for small values of R, we can expect a smaller
γ . The numerical evidence suggests that this issue can be
overcome by proposing

Qg(x) ∝ xγ pg(x), (40)

with γ = 2. For this empirical value, the fragmentation ap-
proach gives excellent results for describing pg(x) when
compared to simulations, as can be seen in Fig. 12.

VII. CONCLUSION

Utilizing established analytical and numerical tools for
investigating the colloid dynamics within a single gap, rele-
vant timescales related to nucleation and aggregation can be
accurately estimated from the interaction parameters between
particles. This allows one to gain valuable insights into the
time evolution of monomer and island densities by examining
the local behavior of monomers within a gap, which in
turn contributes to understanding the global behavior of the
epitaxial monolayer growth. Furthermore, the results for the
timescales can be used as input for a fragmentation model
[Eq. (36)] to calculate the gap length distribution pg(x) and
consequently the capture zone distribution and the effective
interaction between islands [14,39]. For pg(x), our results
suggest an exponent γ = 2, i.e., pg(x) ∼ x−2 exp(−x2), which
differs from the analytical result of γ = 4. This is not an

unexpected result because the exponent γ determines the right
tail of the gap length distribution; in other words, it determines
the behavior for large gaps. However, for small values of R the
steady-state assumption used for the nucleation description
does not apply to large gaps. Additionally, the simultaneous
presence of more than two monomers inside a gap is not
negligible for large gaps, which is one of the assumptions
used to formulate Eq. (22). In our case, the deposition rate is
not small enough (R ≈ 1.6 × 103) and therefore nucleation in
large gaps can occur before the monomer density reaches the
steady-state regime. In principle, R can be arbitrarily large,
implying a very long time between depositions and therefore
deposition times that in practice cannot be achieved by MD
simulations due the long associated simulation times. Con-
sequently, for colloidal epitaxial growth, the typical values
of R are much smaller than those found for molecular beam
epitaxy. It is possible to extrapolate the procedure discussed in
this paper to higher dimensions. However, for d > 1 space is
not divided into gaps, and it is necessary to consider the con-
cept of a capture zone (CZ) and the fragmentation equation is
written to describe the effect of a single nucleation in the CZ
distribution. Finally, we highlight that linking the interaction
parameters between colloids with the relevant timescales of
the system allows more control of the size and form of the
structure formed, which is one of the main goals in epitaxial
growth.
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