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Active nematic ratchet in asymmetric obstacle arrays
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We numerically investigate the effect of an asymmetric periodic obstacle array in a two-dimensional active
nematic. We find that activity in conjunction with the asymmetry leads to a ratchet effect or unidirectional flow
of the fluid along the asymmetry direction. The directional flow is still present even in the active turbulent
phase when the gap between obstacles is sufficiently small. We demonstrate that the dynamics of the topological
defects transition from flow mirroring to smectic-like as the gap between obstacles is made smaller, and explain
this transition in terms of the pinning of negative winding number defects between obstacles. This also leads to
a nonmonotonic ratchet effect magnitude as a function of obstacle size, so that there is an optimal obstacle size
for ratcheting at fixed activity.
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I. INTRODUCTION

Active nematics are anisotropic fluids that exhibit local
orientational order and generate macroscopic flows from mi-
croscopic forces [1,2]. In large, unconfined systems these
flows are typically chaotic, leading to a phase dubbed “active
turbulence” [3–6]. Additionally, orientational order in the ne-
matic allows the existence of topological defects, which may
spontaneously nucleate in the active turbulence phase and act
as sources for the flow [7–11]. In addition to the inherent
interest in chaotic flows and defect dynamics in active nematic
turbulence, much recent activity has focused on controlling
the flows for potential technological applications such as mi-
crofluidic devices and flow-based logic gates [12]. Proposed
flow control methods include modifying the boundary geom-
etry, employing spatially varying activity, applying external
fields, and altering substrate properties [13–20]. There has
also been experimental work on the interaction of active ne-
matics with fabricated obstacle arrays [21,22], where defect
pinning was observed.

A ratchet effect can be used to control flows in systems
coupled to an asymmetric substrate under external ac driving
or flashing of the substrate [23–26]. Ratchet effects have been
demonstrated for colloidal particles [27,28] and supercon-
ducting vortices [29,30], where ac driving results in a net
unidirectional flow of particles. In active matter systems cou-
pled to asymmetric substrates, ratchet effects can arise without
external driving due to the activity [31,32]. Particle-based
active matter ratchets have been studied for biological systems
such as swimming bacteria [33] as well as active colloids
[32,34]. An open question is whether ratchet effects also occur
for active nematics coupled to an asymmetric substrate, and if
so, how the fluid flow and topological defect dynamics would
be modified.

*cschim@lanl.gov

Here, we numerically study a two-dimensional active
nematic interacting with a periodic array of obstacles of
triangular shape, creating an array with a clearly defined
asymmetry axis. Topological defects, which are known to
generate flows [2,11], spontaneously appear in the system out
of geometrical necessity due to the shape of the obstacles. We
show that when the gap between the asymmetric obstacles
is sufficiently small, an active nematic ratchet effect occurs
in the form of unidirectional flow along the asymmetry axis,
something that does not occur for an array of symmetric
obstacles [35]. Ratcheting effects have been observed for ro-
tational flows in active nematics interacting with asymmetric
inclusions and boundaries [36,37], but, to our knowledge, this
is the first realization of a translational active nematic ratchet.
We demonstrate that the ratchet effect is robust across a wide
range of obstacle gap sizes and activity levels. By tuning the
gap size, a transition in the defect dynamics occurs, and the
flow speed is optimized at the transition point.

II. ACTIVE NEMATIC MODEL

We model a two-dimensional active nematic using a well-
established nematohydrodynamics model in terms of the
tensor order parameter Q = S[n ⊗ n − (1/2)I], where S is
the local degree of orientational order and the director, n,
gives the local orientation of the nematic [2,38]. The evolution
equation for Q is given by

∂Q
∂t

+ (v · ∇)Q − S = − 1

γ

δF

δQ
(1)

where v is the fluid velocity, γ is a rotational viscosity, F is
the free energy, and

S = (λE + �)
(
Q + 1

2 I
) + (

Q + 1
2 I

)
(λE − �)

− 2λ
(
Q + 1

2 I
)
(∇v : Q) (2)

is a generalized tensor advection [39]. In Eq. (2), E = (∇v +
∇vT )/2 is the strain rate tensor, � = (∇v − ∇vT )/2 is the
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rotation rate tensor, and λ is a dimensionless parameter that
depends on the geometry of the nematogen and characterizes
whether a liquid crystal is flow aligning or tumbling in shear
flow. The free energy is given by

F =
∫

(A|Q|2 + C|Q|4 + L|∇Q|2) dr, (3)

where A and C are phenomenological parameters and L is the
elastic constant.

The fluid velocity is generated from active stresses given
by inhomogeneities in the nematic, and is computed from the
Stokes equation:

η∇2v = ∇p + α∇ · Q, (4)

where η is the fluid viscosity, p is the fluid pressure, and α

is the strength of active forces, called the activity. We also
assume the fluid is incompressible and enforce the constraint
∇ · v = 0.

To put the equations in a dimensionless form, we scale
lengths by the nematic correlation length and times by the
nematic relaxation time:

r̃ = r
ξ
, t̃ = t

τ
, ξ =

√
εL

C
, τ = γ

Cξ 2
, (5)

where ε is a dimensionless parameter that controls the size of
defects. The free energy is scaled by Cξ 2 and Eq. (4) may be
multiplied by ξ/C to yield a dimensionless equation for the
velocity. This gives the dimensionless quantities

F̃ = F

Cξ 2
, Ã = A

C
, p̃ = pτ

η
, α̃ = ατ

η
. (6)

The nondimensionalization leaves α̃, the dimensionless activ-
ity, as the only parameter in Eq. (4).

The active nematic model considered here is associated
with three length scales that interact with the confining lengths
scales considered in this study. The nematic correlation length
ξ is the length over which nematic distortions occur and sets
the scale at which all other lengths are compared in this study.
The radius of defects ξd is set by the parameter ε and is fixed
in this work to be ξd ≈ ξ . Finally, the active length scale,
ξa = √

L/α is the length at which active forces perturb the
nematic. It is inversely related to defect density in the active
turbulent phase [40] and in dimensionless units it is given by
ξ̃a = √

1/εα̃. In the following sections, the tildes are omitted
for brevity and all quantities given will be in dimensionless
units.

III. COMPUTATIONAL METHOD

We numerically solve Eqs. (1) and (4) to simulate active
nematic behavior. To do this, we first write Q in a basis for
traceless, symmetric matrices,

Q =
(

q1 q2

q2 −q1

)
, (7)

and rewrite Eq. (1) in terms of q1 and q2. Eqs. (1) and (4)
are then written in weak form and the pressure is used as
a Lagrange multiplier to impose the incompressibility con-
dition, ∇ · v = 0. We use the MATLAB/C++ package TIGER

[41] to generate a mesh that consists of a square lattice of

FIG. 1. (a) Schematic of the computational domain with a peri-
odic array of triangular obstacles. (b) Time snapshot of the nematic
configuration. The color represents the scalar order parameter S
while the white lines represent the director n. (c) Time snapshot of
the vorticity and velocity. The color represents the vorticity while the
black lines represent the flow field.

concave triangular obstacles, shown in Fig. 1(a). The triangu-
lar obstacles are generated from the arcs of three circles in
contact with each other. The number of vertices in each mesh
ranges from 18 021 to 19 453 depending on the size of the
obstacles. The average distance between vertices is ∼0.5. The
MATLAB/C++ package FELICITY [42] is then used to generate
the finite element matrices from the weak form of Eqs. (1)
and (4) on the mesh. The time evolution of Q is solved using
a backward-Euler method with time step δt = 0.5.

The only model parameter we vary in this study is the
activity α. We fix A = −1/2 so the passive liquid crystal is
in the nematic phase with SN = √

1/2, where SN is the scalar
order parameter that minimizes the free energy. We fix ε = 4
which corresponds to a defect radius ξd ≈ 1 and λ = 1 which
corresponds to a flow aligning nematic with Leslie angle
θL ≈ 0.33 [43].

We employ periodic boundary conditions on the outer
boundaries of the domain while the boundaries of the fixed
obstacles are given Dirichlet conditions such that S = SN ,
n = T, where T is the local tangent vector to the boundary
curve, and v = 0. The director n at the cusp of the obstacles
is modified so that it transitions continuously from one side
of the cusp to the other. This is occasionally required since
T at the cusps may jump discontinuously due to the finite
resolution of the mesh. After ensuring continuity of the di-
rector we do not observe any “artificial” defects at the cusps
of the obstacles which may arise due to discontinuities in the
director field. We initialize the system with a random director
field except at the fixed boundaries. We simulate in the range
of 1000 to 2000 time steps to allow each system to reach
a dynamical steady state, which is defined as a state where
the time average of measured quantities does not appreciably
change if taken over later times.
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FIG. 2. (a) Average number of topological defects 〈N〉 versus ac-
tivity α for simulations with d = 1, d = 6, and d = 10. (b) Average
flow speed 〈|v|〉 versus α for simulations with d = 1, d = 6, and
d = 10.

IV. ACTIVE NEMATIC RATCHET

A schematic of the computational domain with a periodic
array of concave triangular shaped obstacles is shown in
Fig. 1(a). To understand the effect of obstacle spacing, we fix
the distance between obstacle centers at a = 14 while we vary
the size of the obstacles so that the shortest gap between them,
d , changes. Due to the strong planar anchoring, the concave
triangles each carry a topological charge (winding number) of
−1/2. The total topological charge of the system must be 0
due to the periodic boundary conditions, so a defect of charge
+1/2 must nucleate in the bulk nematic for each obstacle.
We show in Fig. 1(b) a time snapshot of the scalar order
parameter S and director field n for a system with α = 1 and
d = 4, while Fig. 1(c) shows the corresponding time snapshot
of the velocity and vorticity field. We note that our choice of
boundary conditions on the obstacles, namely strong planar
anchoring and no-slip velocity, is not identical to the more
realistic conditions in the experiments; however, we do not
expect our results to qualitatively change if these conditions
are relaxed, as long as the anchoring is strong enough to
induce topological defects and there is some friction with the
obstacles, both of which occur in experiments [16,21].

At α = 0, there are no flows in the system and topological
defects are pinned to the obstacles. For α > 0, topological
defects unpin and move while additional defects continuously
nucleate and annihilate. For all obstacle gap sizes, we find
that the average number of defects in the system and the
average magnitude of the flow velocity increases linearly with
the activity, as shown in Fig. 2. We compute the number
of topological defects using the two-dimensional topological
defect density |D| [44,45]:

N =
∫

|εk�εμν∂kQμα∂�Qνα| dr (8)

where ε is the two-dimensional antisymmetric tensor and
summation on repeated indices is assumed. The average
number of defects, or defect density, and flow velocity are
traditional measures of active turbulence in active nematic
systems [8,16,46], indicating that the system shares properties
with active turbulence for α > 0. This differs significantly
from our recent study on active nematics in symmetric pe-
riodic arrays of obstacles, where multiple phase transitions
occurred when varying α [35].

Although the flow measurements in our system are con-
sistent with active turbulence, the detailed nature of the flow
differs from traditional active turbulent states, where the

FIG. 3. (a), (b), (c) Distribution of velocity directions p(θv )
for varied gap width d at activity α = 1. (a) d = 8, (b) d = 6,
(c) d = 4. (d), (e) Trajectories of 27 virtual particles over
the course of a simulation with (d) d = 8 and (e) d = 4
at α = 1. The dots on the right side indicate the starting positions
of the particles.

flow directions are distributed randomly. We find that the
flows through our asymmetric obstacle arrays are distributed
anisotropically, as illustrated in Figs. 3(a)–3(c), where we
plot the distribution of fluid flow directions p(θv ) in systems
with α = 1. When the obstacle gap is large, as shown in
Fig. 3(a) for d = 8, the flow directions match the threefold
symmetry directions of the obstacle surfaces, suggesting that
the obstacles are merely locally modulating the flow. As d
decreases, however, p(θv ) becomes strongly peaked along
θv = π , as shown in Figs. 3(b) and 3(c) for d = 6 and d = 4,
respectively. This indicates the emergence of a directional or
rectified flow in the absence of an external drive. To visualize
the rectification of the flow, in Figs. 3(d) and 3(e) we plot
the trajectories of 27 virtual tracer particles that are initially
placed near the right outer boundary of the domain and are
advected by the flow over the course of a simulation. In
Fig. 3(d), for the wide gap case of d = 8 where strong rec-
tification is not present, the tracer particles generally remain
close to their starting points and have no coordinated motion.
In contrast, for d = 4 in Fig. 3(e), the tracer particles tend to
travel towards the left side of the domain, as indicated by the
appearance of a gradient in the density of the trajectories and
regions of aligned flow.

To further quantify the unidirectional flow we measure the
space and time averaged x component of the flow velocity
〈vx〉. Figure 4(a) shows 〈vx〉 versus activity α for a range
of d values. When d � 8, 〈vx〉 ∼ 0 for all α, indicating that
there is no net flow in the x direction. For d � 7, we find
that the magnitude of 〈vx〉 increases linearly with increasing
α. Since the sign of 〈vx〉 is negative, this indicates that there
is a net flow to the left that becomes greater as the activity
increases. That 〈vx〉 increases with α even into the large α

regime is a surprising result, as active turbulence typically
dominates and destroys order in this regime. Indeed, this is
the case for symmetric obstacle arrays [35]. Flows tend to
move in the negative x direction in this system because they
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FIG. 4. (a) Average x velocity of the flow field 〈vx〉 vs activity α

for d = 1, 2, 4, 5, 6, 7, 8, and 10. (b) 〈vx〉 vs d for representative α

values of α = 0.5, 1, 1.5, and 2. (c) Heat map of 〈vx〉 plotted as a
function of α vs d .

are easily able to flow from the large gap ends to the small
gap ends, but cannot easily move in the other direction as
they get trapped against the wide back surface of the trian-
gular obstacles, similar to ratchets observed in self-propelled
particle active matter systems [32]. This effect is visualized
by the trajectories of virtual tracer particles in Fig. 3(e) where
the particles occasionally get stuck in vortices but do not move
from the left side of obstacles to the right.

Interestingly, we find the magnitude of 〈vx〉 varies non-
monotonically with d at fixed α, as illustrated in Fig. 4(b).
To identify the overall greatest magnitude of the average flow,
we plot a heat map of 〈vx〉 as a function of α versus d in
Fig. 4(c), and find that the maximum ratchet effect occurs for
the largest simulated value of α, α = 2, at d = 5. As shown in
Fig. 2, while the overall flow speed increases with activity,
it decreases with decreasing gap size. This is expected as
the obstacles are larger for smaller gap sizes, and the no-slip
condition on the obstacles yields smaller flow speed overall.
We also expect, however, that the ratchet effect is enhanced
for smaller gap size, as the spatial region in which flows
may reverse is smaller. To further investigate this, we plot
|〈vx/|v|〉|, which gives the average ratio of coherent flow in
the x direction to total flow speed, versus d in Fig. 5 for
α ∈ {0.5, 1, 1.5, 2}. As the plot indicates, the maximum ratio
of x-direction flow to total flow speed occurs at small gap
sizes (d = 2) when α � 1. This indicates that the ratchet
effect does indeed increase for smaller gap sizes. However, for
larger activities, α > 1, we find that the maximum ratio shifts
to moderate gap size, d = 5, indicating a second potential
mechanism for flow speed modulation. We show in the next
section that this mechanism is related to the topological defect
dynamics in the system, which dominate at large α when
defect density is large.

There are previous studies that have shown that breaking
rotational symmetry in a circular or annular domain or along
a circular inclusion may induce unidirectional azimuthal flows
[36,37]. Further, it has been shown in channel geometries for

FIG. 5. Average ratio of coherent x-direction flow to total flow
speed |〈vx/|v|〉| versus obstacle gap size d for representative α values
of α = 0.5, 1, 1.5, and 2.

small values of the activity that unidirectional flows may occur
[4]; however, the flow direction is a spontaneously broken
symmetry, and may be in either direction along the channel.
Additionally, at higher activities, the emergence of either vor-
tex lattices or active turbulence destroy the unidirectional flow
[4,47]. For the triangular obstacles studied here, the direction
of the active nematic ratchet flow is set by the asymmetry of
the obstacle. To our knowledge, this is the first observation
of translational active nematic ratcheting behavior. Further,
below a critical gap size, the ratchet effect is robust to activity
level and obstacle gap size, indicating that it would not be
necessary to extensively tune the system parameters to obtain
ratcheting motion for microfluidic applications.

V. DEFECT DYNAMICS

To better understand the maximal ratchet behavior at high
activities, we investigate the topological defect dynamics for
varying obstacle size and find that there is a transition in defect
behavior. We first measure the distribution of defect velocity
directions by measuring the topological current [45,48]

Ji = εikεμν∂t Qμα∂kQνα, (9)

which is proportional to topological defect velocities at the
location of defects. For large d , the plot of the distribution
p(θ+) of the velocities of +1/2 winding defects in Fig. 6(a)
for d = 8 and α = 1.5 indicates that the +1/2 winding de-
fects move in the same direction as the flow [compare to
Fig. 3(a)]. At the same time, Fig. 6(d) indicates that the −1/2
winding defect velocity distribution, p(θ−), is much more
isotropic. As the gap size decreases, the ratchet effect emerges
and the net flow velocity is primarily along the −x direction,
but for d = 5 the +1/2 defect velocities break the up-down
symmetry of the domain, as shown by the plot of p(θ+) in
Fig. 6(b). In this intermediate regime, the −1/2 defects also
break up-down symmetry and tend to move in the direction
opposite to the primary flow direction of the +1/2 defects,
as illustrated by the plot of p(θ−) in Fig. 6(e). We note that
if we perform additional simulations with differing random
initial conditions we still find the symmetry breaking along
the y-direction to varying degrees, and approximately half
of the realizations break the symmetry in the ±y direction,
indicating a spontaneously broken symmetry that depends on
the first few defect nucleations. In the limit of small d , shown
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FIG. 6. Defect velocity direction distributions (a)–(c) p(θ+) for
+1/2 defects and (d)–(f) p(θ−) for −1/2 defects at α = 1.5 for (a),
(d) d = 8, (b), (e) d = 5, and (c), (f) d = 2.

in the plots of p(θ+) and p(θ−) in Figs. 6(c) and 6(f) at d = 2,
the +1/2 defects tend to move either up or down with equal
frequency, restoring the up-down symmetry of the domain,
while the −1/2 defects primarily move to the left, in the
direction of the ratcheting flow. We note that in this regime
the +1/2 defects tend to move transverse to the fluid flow
direction.

To better understand the defect dynamics, in Figs. 7(a)–
7(c) we construct defect density plots N/Nmax as a function
of position relative to the obstacle for the +1/2 defects at
different values of d , and show the corresponding N/Nmax

plots for the −1/2 defects in Figs. 7(d)–7(f). Here, we first ac-
cumulate N , the local defect density around each obstacle, on
a grid surrounding the obstacle during the entire simulation.
We then sum this quantity over all obstacles and normalize
it by the maximum value Nmax on the grid. For d = 8 in
Figs. 7(a) and 7(d), both the positive and negative defects
are distributed throughout the interobstacle region, with peak
values of N/Nmax appearing close to the obstacle for the +1/2
defects. Thus, for large gap sizes, defects of both signs are
freely moving in the domain, but the +1/2 defects can be-
come briefly pinned by the obstacles. We note that the defect
densities we measure for large gap sizes (small obstacles) are
similar to those measured in a system with similarly shaped
obstacles [21]. The densities are also similar to those mea-
sured in Ref. [49] for the pair distribution function around

FIG. 7. Distribution of defects around obstacles. The distribution
around each obstacle in a simulation is computed and then all are
added together to form the plots. (a)–(c) Distribution of +1/2 defects
and (d)–(f) distribution of −1/2 defects for simulations with (a), (d)
d = 8, (b), (e) d = 5, (c), (f) d = 2 and α = 1.5.

defects in active turbulence, and we expect the densities to
match as the obstacles are smaller. For d = 5 in Figs. 7(b)
and 7(e), N/Nmax for the +1/2 defects breaks the up-down
symmetry of the obstacle and is largest along a line in inter-
stitial space connecting the left and right sides of the obstacle,
indicating that the defects are flowing horizontally. Further,
there are no longer strong peaks in N/Nmax near the obstacle,
indicating that the +1/2 defects no longer become pinned.
At the same time, the distribution of negative defects becomes
highly concentrated in the region between the upper and lower
sides of the obstacles, indicating defect localization in this
area. At d = 2 in Figs. 6(c) and 7(f), N/Nmax for positive
defects mirrors the symmetry of the obstacles but drops nearly
to zero partway across the region connecting the left and
right sides of the obstacles, indicating that +1/2 defects are
no longer flowing horizontally. Meanwhile, the −1/2 defects
become even more strongly localized in the region between
obstacles.

We find that at large gap sizes, the motion of the defects
tends to mirror the flow of the system, but that the defects
may become pinned for a period of time, reducing their flow
speed. As the gap size decreases, the likelihood of pinning
diminishes and the defects can move more freely. At a crit-
ical gap size of d = 5, the negative defects become strongly
localized in the vertical gap between obstacles. At first this
allows the positive defects to travel more efficiently in the
−x direction by skirting the negative defects, but as the gap
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size diminishes further, the positive defects begin to annihilate
with the negative defects and the x-direction flow is lost.
Instead, the +1/2 defects begin to travel transverse to the flow
in lanes along the y direction, forming a smectic-like defect
state. In the Supplemental Material, Movies 1–3, we show the
nematic configuration and flow velocities for simulations in
these three regimes [50].

Since we find maximal −x direction flow at d = 5 for
all values of α, the maximum does not result from a com-
mensuration effect between d and the active length scale
ξa ∝ 1/

√
α. Instead, the commensuration occurs between d

and the characteristic size of topological defects ξd , which we
hold fixed in this study. It appears when d reaches a length for
which −1/2 defects become localized between the obstacles,
enhancing the overall flow. In particular, this has the effect
of further enhancing the active nematic flow ratchet behavior
for d = 5 while diminishing the flows for other gap sizes at
high activities when the defect density is large and the defect
dynamics dominate the active flows.

VI. CONCLUSION

We showed numerically that a periodic array of asym-
metric obstacles can produce translational ratchet flows in
an active nematic. As the gap distance between obsta-
cles decreases, the flow velocity directions become peaked
along the asymmetry direction, but the average flow velocity

varies nonmonotonically. The obstacle asymmetry induces a
translational active nematic ratchet that has not been described
previously. The ratcheting effect is robust over a large range
of obstacle gap sizes and activity levels. We also observed
a transition in defect dynamics that is correlated with the
flow speed non-monotonicity. Positive winding defects follow
the fluid flow for large gap sizes, while for small gap sizes,
pinned negative defects inhibit the movement of positive de-
fects along the flow and cause the positive defects to travel
transverse to the flow.

This work opens a variety of future directions for steering
or patterning active nematic flows and defect structures using
ratchet geometries. Such effects have potential microfluidic
applications, including logic gate design [12] or the creation
of complex patterns [51]. It would be interesting to explore
other asymmetric obstacle geometries or lattice arrangements.
Different obstacle geometries may produce distinct topologi-
cal defect arrangements, while different lattices may generate
novel flow patterns.
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