
PHYSICAL REVIEW E 109, 064414 (2024)

Phase separation provides a mechanism to drive phenotype switching
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Phenotypic switching plays a crucial role in cell fate determination across various organisms. Recent exper-
imental findings highlight the significance of protein compartmentalization via liquid-liquid phase separation
in influencing such decisions. However, the precise mechanism through which phase separation regulates
phenotypic switching remains elusive. To investigate this, we established a mathematical model that couples
a phase separation process and a gene expression process with feedback. We used the chemical master equation
theory and mean-field approximation to study the effects of phase separation on the gene expression products. We
found that phase separation can cause bistability and bimodality. Furthermore, phase separation can control the
bistable properties of the system, such as bifurcation points and bistable ranges. On the other hand, in stochastic
dynamics, the droplet phase exhibits double peaks within a more extensive phase separation threshold range than
the dilute phase, indicating the pivotal role of the droplet phase in cell fate decisions. These findings propose
an alternative mechanism that influences cell fate decisions through the phase separation process. As phase
separation is increasingly discovered in gene regulatory networks, related modeling research can help build
biomolecular systems with desired properties and offer insights into explaining cell fate decisions.

DOI: 10.1103/PhysRevE.109.064414

I. INTRODUCTION

Phenotypic switching, intricately linked with the bistabil-
ity and bimodality of gene expression levels, plays a pivotal
role in determining cell fate [1–3]. Bistability occurs in a
wide range of biological systems, and deterministic mod-
els are frequently employed to analyze system properties
in terms of regulatory mechanisms and dynamic parame-
ters [4–8]. However, random fluctuations in gene expression
are inevitable due to the randomness of chemical reactions
and the low number of genes and ribonucleic acids (RNAs)
in cells [9]. Then the patterns associated with bistability
appear as a bimodal probability distribution of gene expres-
sion levels (the distribution of gene products that have two
maxima). Bimodal distributions provide evidence for pheno-
typic switching [10], exemplified by phenomena such as the
human immunodeficiency virus (HIV) latent-vs-active deci-
sion and the development of genetic competence in Bacillus
subtilis [11,12], which are crucial for enhancing cell sur-
vival in fluctuating environments [13–15]. Therefore, it is
essential to elucidate the mechanism underlying phenotypic
transformation.

In recent years, the bistability and bimodality of gene
expression products have primarily been associated with the
dynamic control of transcriptional regulatory networks. The
most common mode of regulation is autoregulation [16–22].
Autoregulation is a direct regulation of gene expression by
corresponding gene products, controlling random fluctuations
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in protein concentration according to the state of the organ-
ism, thereby driving cell fate in a particular direction [17,23–
25]. Positive feedback loops frequently give rise to bistabil-
ity and bimodality by promoting further expression of the
same gene [4,26–31]. Transcription factors (TFs) with posi-
tive feedback are crucial for fate determination, such as TBX1
during heart development [32]; HNF1A and HNF4A during
pancreas development [33]; GATA2, RUNX1, and TCF4 dur-
ing hematopoiesis [34,35]; and POU3F2, RORB, SATB2, and
TBR1 during brain development [36,37].

On the other hand, cellular compartments can serve as
mechanisms to regulate gene expression, leading to multiple
stabilization of expression products [38–40]. Most compart-
ments in eukaryotic cells are membrane bound, although
there are exceptions. These membraneless compartments are
formed by liquid-liquid phase separation (LLPS). Increasing
evidence suggests that LLPS plays a crucial role in regulating
gene expression. LLPS is a physical mechanism that can ef-
fectively regulate cellular fluctuations by storing excess gene
expression products in the dense phase and releasing them
into the dilute phase when product levels decrease [41,42].
This has led to LLPS being recognized as a faster mechanism
of cellular regulation than transcriptional and translational
control, and the resulting biomolecular condensates provide
unique methods to control the biochemical environment of
cells [43,44]. In previous research, we have found that increas-
ing burst frequency can weaken the ability of phase separation
to reduce noise, while burst size has a nonmonotonic rela-
tionship with this ability [45]. However, the mechanism of
whether and how phase separation mediates complex phe-
notypic transformation remains unclear. This phenomenon
of biological phase separation has become a paradigm for
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FIG. 1. A framework for analysis of transcriptional regulation model with phase separation. (a) Proteins are separated by liquid-liquid
phase separation (LLPS) into a dilute phase and a droplet phase. The proteins in the droplet phase promote gene expression through positive
feedback. (b) Gene reaction network of conjugation system with the phase separation process and the autoregulatory positive feedback process.
The LLPS process is described dynamically by the random exchange of proteins between the dilute phase and the droplet phase.

understanding the intracellular organization of eukaryotes and
bacteria [42,46–50].

Biologists have discovered that phase-separated assem-
blies of RNA polymerase II (RNA Pol II) and TFs could
provide a general biophysical basis for gene expression pro-
cesses. RNA-binding proteins, including TDP-43, FUS, and
hnRNP A1, form phase-separated condensate and bind to
the C-terminal domain (CTD) of RNA Pol II to participate
in transcriptional initiation [51]. TFs have a deoxyribonu-
cleic acid (DNA)-binding domain (DBD) with a specific
structure and a transactivation domain (TAD) with an amor-
phous structure, where the TAD can interact with Mediator to
form phase-separated condensates that activate gene expres-
sion [52,53]. The transcriptional coactivator Yes-associated
protein (YAP) condensates enriched the transcription-related
factors and subsequently induced the transcription process of
YAP-specific proliferation genes [54,55]. Furthermore, phase
separation can mediate the super-enhancer (SE) regulation of
transcription [56]. Experiments have demonstrated that tran-
scriptional coactivators BRD4 and MED1 form a condensate
at the SEs [57]. These pieces of evidence indicate that LLPS
is prevalent in the gene expression process.

Autoregulation and LLPS are important regulatory mech-
anisms in gene expression. However, the role of phase
separation in autoregulatory networks is unclear and is critical
to understanding cell fate decisions. In this paper, we explore
the role of the synergistic behavior of phase separation and
positive feedback during gene expression on biological fate
decisions. Firstly, we introduce the LLPS process to autoreg-
ulated gene expression using a stochastic switching model to
capture protein movement between dilute and droplet phases
[41]. Then we establish reaction rate equations and chemical
master equations (CMEs) for the system to explicitly capture
the effect of LLPS on the behavior of the system. Bistability
and bimodal properties of gene expression products can be
induced in the dilute phase and the droplet phase, and bistable
regions exist for the phase separation parameter. The dou-
ble peaks of the dilute phase and the droplet phase do not
appear simultaneously due to the stochastic dynamics. This
paper is organized as follows. Section II provides a detailed
description of the coupled model and obtains the rate equa-
tion in the deterministic case and the master equation in the
stochastic case. Section III examines the bifurcation behavior
of the deterministic system and the switching behavior of the

stochastic system in the steady state. Section IV concludes this
paper by discussing our results and their applicability.

II. MATERIALS AND METHODS

A. Biochemical reaction system with phase separation
and stochastic gene expression

We proposed a model to investigate the role of LLPS in au-
toregulation. The model comprises two processes: the LLPS
process of proteins and the stochastic gene expression process
with feedback (Fig. 1). The LLPS process results in the for-
mation of a dilute phase and a droplet phase, without affecting
the total number of proteins; however, proteins can shuttle be-
tween these two distinct phases. The gene expression process
autonomously regulates protein production, thereby altering
the number of proteins in the dilute phase.

First, we construct a phase separation model in a binary
mixture containing a solvent and a type of protein as solute to
characterize the LLPS process. This simplified binary setup
does not lose the essential property of reaction kinetics. We
consider an incompressible two-phase system with a total vol-
ume of Vtot and a total protein number of ntot . One is the dilute
phase (protein+) with volume V+ and protein number n+,
and the other is the condensed phase (protein−) with volume
V− and protein number n−. The incompressible system needs
to satisfy conditions V+ + V− = Vtot and n+ + n− = ntot. Be-
cause the condensed phase exhibits liquidlike properties, it
is also called a droplet. The droplet has a highly dynamic
internal structure that allows rapid and stochastic material
exchange with the dilute phase on short-time scales. The
exchange rates kin(n+, n−) and kout (n+, n−) depend on the
number of proteins in the two phases.

Second, we use a birth-and-death model to describe the
gene expression process. The proteins generated by the birth-
and-death process are in the intranuclear dilute phase. This is
because proteins produced by translation return to the nucleus
in a dissociated form. The protein production rate is not a con-
stant [58] but a function of the number of protein molecules
in the droplet phase. With the accumulation of n+, kin(n+, n−)
and kout (n+, n−) will be altered [Fig. 1(a)]. We assume that
the protein can be degraded in both phases at a rate δ, and
τp = 1/δ can be used to characterize the time scale of gene
expression.
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Therefore, we introduce a stochastic model of the birth-
and-death process with phase separation and feedback, which
consists of the following five reactions [referring to Fig. 1(b)]:

DNA
λ̃(n− )−−−→ DNA + protein+,

protein+
kin (n+,n− )−−−−−−−−⇀↽−−−−−−−−

kout (n+,n− )
protein−,

protein+
δn+−−→ ∅,

protein−
δn−−−→ ∅,

(1)

where the protein synthesis occurs exclusively in the dilute
phase, primarily because this process takes place on ribo-
somes located in the cytoplasm of eukaryotic cells. Synthesis
depends on ribosomes having access to mRNA and amino
acids to facilitate translation [59]. However, the aggregation
of macromolecules within the droplet phase can restrict this
accessibility, potentially impairing the efficiency of protein
synthesis, while degradation of protein occurs in the dilute and
droplet phases. We assume that protein production is subject
to positive feedback from proteins in the droplet phase, the
empirical dependence of which is well captured by a mono-
tonically increasing form of a Hill-type function [60,61]:

λ̃(n−) = λ + ζnh
−

Kh + nh−
, (2)

where λ > 0 is the minimal or basal rate of protein generation,
ζ > 0 represents the feedback strength, the model degenerates
into a process without feedback when ζ = 0, h > 0 is the Hill
coefficient, and K > 0 is the dissociation coefficient.

Experimental studies indicate that transcriptional bursts,
which occur on a time scale of hours [62], contrast with
phase separation processes, typically occurring on shorter
time scales ranging from seconds to minutes [50,63–65]. The
dynamics of phase separation exhibit significantly faster ve-
locities than those of gene expression processes, so the model
is divided into two parts using a time scale separation method.
In Sec. II B, phase separation quickly reaches equilibrium on
short time scales, so the rapid dynamics of phase separation
are described by conditional probability distributions at fixed
protein levels [66,67]. On a longer time scale, protein levels
change with gene expression. Then phase separation quickly
reaches a new equilibrium. In Sec. II C, we consider the effect
of LLPS on protein distribution with feedback.

B. Stochastic dynamics of phase-separating system
with fixed protein numbers

In this section, we consider a sufficiently short time scale
during which there is no change in the amount of protein. At
this point, the system exhibits only rapid Brownian motion,
which allows it to quickly reach thermodynamic equilibrium.
To describe an LLPS model with a fixed number of pro-
teins, we define the effective volume fraction (concentration)
of protein as φ± = vn±/V±, where v is the volume of a
single molecule. Here, we consider the case of the droplet
phase that is completely filled with protein molecules, so that
the concentration of protein in the droplet phase is φ− ≡ 1.
When the volume fraction of the system exceeds a certain

threshold φ∗, it is expected to exhibit two distinct phases
at a macroscopic level. In this section, we start from the
macroscopic phase-separating systems at equilibrium, derive
the explicit expression of φ∗, then give the mesoscopic details
of the protein exchange between the two phases in reaction
Eq. (1).

The equilibrium thermodynamics of the binary mixture
system is described by minimizing the total free energy sub-
ject to the conservation of the number of protein molecules
and their molecular volumes. We assume that the proteins
in the dilute phase and droplet phase are homogeneous;
then the interface energy is negligible. For simplicity, we
ignore the interaction between other molecules, meaning that
the free energy density is only related to entropy. Thus,
the free energy densities of the dilute and droplet phases
are f (φ+) = kBT (φ+ ln φ+ − φ+)/v and f (φ−) = −ϑ/v, re-
spectively [41], where T is the temperature, kB denotes the
Boltzmann constant, and ϑ is the relative chemical potential.
Hence, the total free energy can be written as

F (φ+, φ−) = V− f (φ−) + V+ f (φ+)

= −V−
ϑ

v
+ V+

kBT

v
(φ+ ln φ+ − φ+). (3)

Equivalently, the free energy can be expressed in
terms of the number of proteins as F (n+, n−) = −ϑn− +
kBT n+{ln[n+/(Vtot/v − n−)]−1}.

By minimizing the total free energy of two coexisting
phases with respect to constraints of constant volume and
protein number, the threshold volume fraction for phase sepa-
ration will be obtained. Given the total volume V+ + V− = Vtot

and mass conservation condition φ+V+ + φ−V− = φtotVtot, the
equilibrium state requires minimizing the total free energy
F (φ+, φ−) [68]. Therefore, the following Lagrange function
is constructed to satisfy these conditions:

L = − V−
ϑ

v
+ V+

kBT

v
(φ+ ln φ+ − φ+)

− μ[V+φ+ + V− − Vtotφtot] + π [V+ + V− − Vtot],

where μ and π are Lagrange multipliers. This results in the
following equations:

∂L

∂V+
= kBT

v
(φ+ ln φ+ − φ+) − μφ+ + π = 0,

∂L

∂V−
= −ϑ

v
− μ + π = 0,

∂L

∂φ+
= V+

kBT

v
ln φ+ − μV+ = 0,

∂L

∂μ
= V+φ+ + V− − Vtotφtot = 0,

∂L

∂π
= V+ + V− − Vtot = 0.

From the first three equations, we can obtain the critical
threshold of protein concentration for the coexistence of the
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two phases as

φ∗ = −W

[
−exp

(
− ϑ

kBT

)]
, (4)

where W is the Lambert W function, the inverse function
for any complex number [69], and φ∗ is the concentration
of the dilute phase at which the system reaches equilibrium.
Once ϑ is given, the corresponding φ∗ can be calculated.
The remaining two equations are used to determine the actual
volume when the dilute and droplet phases coexist, and these
two equations enforce the conditions that the total molecular
volume of the solute and solvent remain constant [70]. When
the macroscopic threshold is exceeded, the protein switching
reaction between the dilute and droplet phases dominates, and
two distinct phases are macroscopically observed.

Under the condition that the number of proteins is fixed
[consider only the switching of proteins between the dilute
and droplet phases, corresponding to the two reactions in the
second line of Eq. (1)], the steady-state probability of the
dilute phase protein number n+ in thermodynamic equilibrium
obeys the Boltzmann-Gibbs distribution [71,72]:

PBG(N+ = n+|Ntot = ntot) = 1

Zntot

exp

[
−F (n+, n−)

kBT

]
, (5)

where Zntot = ∑ntot
n+=0 exp[−F (n+, n−)/kBT ] is the partition

function. At the equilibrium state, the rates kin(n+, n−) and
kout (n+, n−) satisfy the detailed-balance condition:

kout (n+, n−)PBG(N+ = n+|Ntot = ntot)

= kin(n+ + 1, n− − 1)PBG(N+ = n+ + 1|Ntot = ntot);

then the relationship between kin(n+, n−) and kout (n+, n−) is
described by the free energy as

kout (n+, n−) = kin(n+ + 1, n− − 1)

× exp

[
F (n+, n−) − F (n+ + 1, n− − 1)

kBT

]
,

(6)

and we assume that the rate kin(n+, n−) is diffusion limited
[41]:

kin(n+, n−) = 6Dn+
(Vtot − vn−)2/3 , (7)

where D is the diffusion constant of the protein in the sys-
tem, defined as D = V 2/3

tot /6τD, and τD is the average time of
protein diffusion and can be used to measure the timescale of
phase separation [41,73,74]. Hence, we can get kout (n+, n−)
through Eqs. (6) and (7). Here, ω = τD/τp is a scaling param-
eter that can be used to represent the difference between the
time scales of phase separation and gene expression. Based on
experimental observations, there is ω < 1 [50,62–65,75].

C. Stochastic dynamics of phase-separating system
with gene expression process

There is stochasticity in gene expression or cell-to-cell
variation when only a single copy of the target gene and a
few proteins are involved. The stochastic evolution of the gene
expression process is usually described by a CME [24,76–83].
We established the CME of the reaction network Eq. (1). Let
P(n+, n−; t ) be the joint probability distribution function of
the system in the state where there are n+ proteins in the dilute
phase and n− proteins in the droplet phase at time t . The CME
describes the time evolution of probability:

∂

∂t
P(n+, n−; t ) = kin(n+ + 1, n− − 1)P(n+ + 1, n− − 1; t ) − kout (n+, n−)P(n+, n−; t )

+ kout (n+ − 1, n− + 1)P(n+ − 1, n− + 1; t ) − kin(n+, n−)P(n+, n−; t )

+ λ̃(n−)P(n+ − 1, n−; t ) − λ̃(n−)P(n+, n−; t )

+ δ[(n+ + 1)P(n+ + 1, n−; t ) − n+P(n+, n−; t )] + δ[(n− + 1)P(n+, n− + 1; t ) − n−P(n+, n−; t )], (8)

where the first two rows on the right-hand side describe the dynamics of phase separation, while the other terms correspond to
the production and degradation of gene expression products.

The reaction rate equations can be used to analyze the macroscopic behavior of the corresponding system before we further
perform stochastic analysis. Specifically, the rate equation corresponding to the constructed-above reaction network is

d〈n+〉
dt

= λ + ζ 〈n−〉h

Kh + 〈n−〉h
+ kout (〈n+〉, 〈n−〉) − kin(〈n+〉, 〈n−〉) − δ〈n+〉,

d〈n−〉
dt

= kin(〈n+〉, 〈n−〉) − kout (〈n+〉, 〈n−〉) − δ〈n−〉. (9)

To investigate the regulatory role of phase separation pro-
cesses in gene expression networks, we consider a system
without phase separation compared with the model above, i.e.,
a conventional birth-and-death process with feedback. This
stochastic model is described by the following two chemical

reactions:

DNA
λ̃(ntot )−−−→ DNA + Ntot,

Ntot
δ−→ ∅. (10)
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FIG. 2. Phase separation can induce bistable protein expression. (a)–(c) Effect of phase separation on the bifurcation behavior of K at
λ = 240 and K = 310. (d)–(f) The role of phase separation in the bifurcation behavior of the feedback strength ζ at λ = 240 and ζ = 420.
(g)–(i) The effect of the phase separation on the bifurcation behavior of λ at ζ = 420 and K = 310. (a), (d), and (h) The number of proteins
at the stable point in a birth and death process with feedback. (b), (e), and (h) The bifurcation behavior of the phase separation system. The
main graph shows the number of proteins in the dilute phase, and the subgraph shows the droplet phase of the corresponding system with the
threshold volume fraction φ∗ = 10−3. Purple areas indicate the parameter range of bistability (b); otherwise, it is monostable (m). (c), (f), and
(i) The bifurcated parameter point (cyan lines) and the bistable region (purple lines) in the dilute phase as a function of the threshold volume
fraction. The left side of the gray dotted line in (f) is monostable. The other parameter values are set as τp = 1 and ω = 0.1.

Unlike Eq. (2), the proteins are not partitioned, so the
feedback is thought to be driven by the total protein copy
number ntot:

λ̃(ntot ) = λ + ζnh
tot

Kh + nh
tot

. (11)

Similarly, considering the stochastic fluctuations of pro-
teins in Eq. (10), we obtain CME:

∂P(ntot; t )

∂t
= λ̃(ntot − 1)P(ntot − 1; t ) − λ̃(ntot )P(ntot; t )

+ δ[(ntot + 1)P(ntot + 1; t ) − ntotP(ntot; t )],

(12)

where P(ntot; t ) is the probability distribution of the total num-
ber of proteins ntot at t . The following reaction rate equation
can describe the deterministic macroscopic dynamic proper-
ties of the system without phase separation:

d〈ntot〉
dt

= λ + ζ 〈ntot〉h

Kh + 〈ntot〉h
− δ〈ntot〉. (13)

The rate equations Eqs. (9) and (13) do not include the
inherent fluctuation of the birth-death process. Note that,
if kin(n+, n−) = kout (n+, n−) = 0, the system described by
Eq. (1) degenerates into the birth-death process with feedback
Eq. (10).

III. RESULTS

A. Phase separation can induce bistability

We numerically investigate the impact of phase separation
on the macroscopic behavior of gene expression products.
Numerical results for the steady state of Eqs. (9) and (13) are
shown in Figs. 2–6.

The bifurcation diagram illustrates that the system has
bistable properties under different conditions. To investigate
the effect of phase separation on the dynamic properties of
the system, we analyze the bifurcation behavior of feed-
back parameters, including the dissociation coefficient K ,
the basal generation rate λ, and the feedback strength ζ , in
the conventional and phase-separated birth-and-death mod-
els, respectively. The bifurcation diagrams demonstrate the
coexistence range of two states and the transition between
the two stable states in the entire system, dilute phase, and
droplet phase. The mean steady-state protein levels in the
dilute and droplet phases change similarly to conventional
birth-and-death processes with positive feedback. However,
phase separation can induce bistability in the parameter range
where the gene expression product is monostable in the con-
ventional birth-and-death process with feedback [Figs. 2(a)
and 2(b), 2(d) and 2(e), and 3(a) and 3(d)]. The bistability of
the droplet phase is consistent with the dilute phase, while the
two stable states in the droplet phase have a large gap [insets in
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FIG. 3. Heatmaps of the number of stable points on the feedback parameter plane. The number of stable points is given as a binary function
of K−ζ at λ = 240 (left), λ−ζ at K = 310 (middle), and K−λ at ζ = 420 (right). (a)–(c) Bifurcating behavior of the conventional birth and
death process with positive feedback. (d)–(f) The number of stable points for the system with phase separation. The dark and light regions
correspond to bistable and monostable, respectively. The other parameter value is set as τp = 1 and ω = 0.1.

Figs. 2(b), 2(e), and 2(h)]. This result suggests that the droplet
phase plays a significant role in phenotype switching.

We investigate the specific impact of phase separation on
the bistability of feedback parameters. Figures 2(c) and 2(f)
demonstrate that phase separation can control the bistable
characteristics of the system, including the bifurcation point
(ζ ∗ and K∗) and bistable range (ζ and K). As the threshold
volume fraction φ∗ increases, ζ and K expand, which is
significant for ζ . This suggests that LLPS is closely related
to feedback strength. However, it is observed that φ∗ does
not affect the bistable range of λ [Fig. 2(i)]. Figure 4 shows

heatmaps for the number of steady states in the parameter
space K−ζ at different φ∗. An increase in φ∗ causes the
bistable region to shift and expand. The bistability region
extends, meaning more parameter cases can form bistability.

The threshold volume fraction φ∗ describes the level of
difficulty at which phase separation occurs. We found that the
number of proteins in the dilute and droplet phases produced
a bistable behavior with respect to φ∗ [Figs. 5(a) and 5(b)].
The number of proteins in the dilute phase increases with
increasing threshold, and the opposite is true for droplets. In
the bistable region, the two stable states are large droplets with
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steady state. The other parameter values are set as τp = 1, ω = 0.1, λ = 240, K = 310, and ζ = 420.

more protein in the dilute phase and small droplets with less
protein in the dilute phase. Figures 5(c)–5(e) show the dilute-
nullcline and the droplet-nullcline at different φ∗, where the
number of crossings defines the number of fixed points within
the deterministic system. There is only one stable steady state
when φ∗ is smaller [Fig. 5(c)] or larger [Fig. 5(e)]. Three
fixed points appear in the bistable region, of which two stable
fixed points are separated by an unstable one [Fig. 5(d)]. This
demonstrates that the phase separation regulation is capable
of bistability in the dilute and droplet phases with consistent
kinetics. When φ∗ > 2.4 × 10−3, the system Eq. (1) has no
fixed point and degenerates to Eq. (10).

B. Phase separation can induce bimodal distribution

In the previous section, we analyzed the macroscopic
behavior of phase separation in deterministic systems. In
this section, we will focus on the effects of phase separa-
tion on stochastic system dynamics. The CME provides the
most complete information about the probabilistic behav-
ior of biochemical reaction networks. However, solving the
master Eqs. (12) and (8) is a difficult task due to the non-
linear terms arising from the propensity functions kin(n+, n−)
and kout (n+, n−) involving the phase separation process.

We obtain the results by simulation using the Gillespie
algorithm [78].

We observe from the time series that the gene expression
process with positive feedback has no obvious transition be-
havior, and only noise-induced fluctuations exist in Fig. 6(a).
However, two switching states are clearly visible in the dilute
and droplet phases [Fig. 6(b)]. Figure 6(c) corresponds to the
probability of stationary total protein distributions in Fig. 6(a),
which is a unimodal distribution. We find that the stationary
joint distribution of proteins for the dilute and droplet phases
is bimodal in Fig. 6(d), which means that the system is capable
of generating peaks with different probabilities for multivari-
ate. One corresponds to small droplets with low total protein
and the other to large droplets with high total protein. The
marginal distributions in the dilute and droplet phases showed
a bimodal distribution. In addition, the time evolution series in
Fig. 6(c) shows a bimodal distribution of the sum of proteins
in the dilute and droplet phases. Therefore, we conclude that
phase separation is a mechanism inducing bimodality. If both
dilute and droplet phases exhibit bimodality, the bimodality of
the latter is more pronounced than that of the former, showing
obvious high and low expression levels. Bimodal distributions
are commonly associated with cell fate differentiation and
determination, the basis of organism development and mis-
development.
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C. Differences in bimodality between dilute and droplet phases

Next, we further quantify the bimodality by the distance
between double peak points of the probability and the proba-
bility difference between these peak points.

Like the deterministic system, the protein numbers in the
dilute and droplet phases show a bimodal region for the
threshold volume fraction φ∗ [Figs. 7(a) and 7(b)]. The bi-
modal region in the dilute phase is much narrower than in
the droplet phase. The bimodality of the dilute and droplet
phases is inconsistent due to stochastic dynamics. Further,
the distribution can appear in five modes as φ∗ increases.
Figure 7(c) shows the evolutionary process of peak numbers
and peak probabilities with φ∗, and experiments have shown
that, under certain conditions, proteins can form droplets of
different sizes [84,85]. In the droplet phase, the peak far away
from the origin goes under with amplifying φ∗, while the
peak close to the origin begins to grow, and a bimodal then
occurs. When the heights of the two peaks are roughly equal
in the droplet phase, the protein distribution in the dilute phase
exhibits a bimodal pattern. As φ∗ continues to grow, the bi-
modal distribution in the dilute and droplet phases disappears
sequentially. The results indicate that a droplet plays a signif-
icant role in regulating the relative switching of phenotypes.
In addition, the doublet peaks show a high dependence on the
feedback parameters (Fig. 8).

IV. CONCLUSIONS

Bistability and even multistability play an essential role
in cell differentiation. The development of an organism can
be viewed as a sequence of transitions between different cell
fates. Authors of previous studies have suggested that protein

bistability and bimodality are associated with cell fate de-
cisions and differentiation, a mechanism that contributes to
the phenotypic diversity for cellular adaptation and growth
in fluctuating environments [86]. LLPS is widely present in
gene expression, but authors of previous studies of phenotypic
switching have not considered its role in positive feedback.
Therefore, effective models are needed to study the impact
of LLPS on gene expression products with positive feedback.
Here, we propose a multiscale model that couples the LLPS
and gene expression processes to capture the distribution of
proteins induced by phase separation in autoregulation dy-
namics. The LLPS process has a relatively fast time scale,
while the gene expression process has a relatively slow time
scale.

First, we employ thermodynamic theories to determine a
threshold value that reveals two distinct phases at a macro-
scopic level. Next, we describe the evolutionary dynamics
of proteins between the dilute and droplet phases through
stochastic exchange events and determine the trend function
for phase separation at thermodynamic equilibrium. The range
of bistability in feedback strength and dissociation coefficient
expands with an increase in the phase separation threshold
volume fraction, when the basic generation rate stays con-
stant. This observation implies that phase separation could
serve as a potential mechanism for regulating hysteresis loops
[87]. Future studies will further investigate the effect of phase
separation on hysteresis. Finally, phase separation can induce
bimodal distributions in stochastic systems. This double peak
is revealed in three aspects: the joint distribution, the marginal
distribution, and the distribution of the sum of proteins in
the dilution and droplet phases. Stochastic dynamics causes
the double peaks in the dilute and droplet phases to be asyn-
chronous. When the droplet phase produces two peaks with
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equivalent levels, it can result in double peaks in the dilute
phase. This discovery provides insights into explaining the
phenomenon of the droplet phase buffering the dilute phase.

Theoretical models describing critical phenomena have
been studied [88]. In our analysis, we considered two factors:
the total volume and the total number of proteins, with the
total volume remaining constant throughout. In Sec. II B, a
constant protein number is maintained due to the rapid phase
separation compared with gene expression, which classifies
the system as model B. In Sec. II A, the gene expression
process results in a change in the total number of proteins,
which is the interaction between the nonconserved field (pro-
tein number) and the conserved field (volume), so the system
is model C. In addition, when the cell cycle is considered,
both the total number of proteins and the total volume can
change, which can be classified as model A. If more complex
conditions are considered, it may correspond to other models.

We employed the Hill function to model autoregulation,
noting its limitations, particularly its potential inaccuracies
in scenarios where basal production rates are low and gene-
protein binding rates are significantly faster than unbinding
rates [89]. Future researchers should explore the role of phase
separation within a broader range of autoregulatory models to
enhance our understanding comprehensively.

The modeling method used in this paper is universal. Our
research can be extended to more complex biochemical pro-
cesses, such as the two-state model describing transcriptional
bursting [45,90]. Promoter leakage can also be considered,
as leakage rates are strongly correlated with bistability [91].
Furthermore, the model in this paper is based on the Markov
hypothesis, which states that the stochastic dynamics of the
reactants are only affected by the current state of the system.
Authors of more studies in recent years have shown that non-
Markovian models of biochemical dynamics can effectively
simulate many intermediate biochemical processes [60,92].
Therefore, we attempt to analyze the impact of LLPS on the
kinetic properties of gene expression models with arbitrary
waiting time distributions.

In addition, the cellular interior is highly crowded with
numerous protein species, which presents the problem of mul-
ticomponent phase separation with the need to account for
the different interactions between species [70,93]. In recent
years, remarkable results have been achieved in studying the
phase behavior of multicomponent systems. Physically driven
methods can simulate systems with more than a single com-
ponent, while theoretical methods can simulate the factors of
multivalent and cooperative interactions that lead to phase
separation. On the other hand, the inherent complexity of
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biological systems is often described by high-dimensional
dynamical models. The dimension reduction approach of
landscape offers an effective research tool to investigate the
underlying structural characteristics of the dynamical sys-
tems [94]. Adding phase separation to these models can
provide insights into the regulation of gene expression, such
as analyzing how phase separation affects the tristability or
intermediate states of the system. However, it is generally
recognized that the most critical milestone at the interface of
computational science and molecular biology is the applica-
tion of deep learning of evolutionary information [95,96], and
we hope to solve the modeling problem of multiphase systems
through machine-learning methods. In general, future work
will be needed to elucidate better how the environment within
crowded cells modulates phenotypic properties.

Finally, our research can serve as a foundation for research
in fields such as synthetic biology. Our results show that phase
separation can effectively regulate the diversity of biological

phenotypes and provide guidance for biologists to design
synthetic circuits to explore how phase separation regulates
bistability and phenotypes.
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