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Unbiased estimation of sampling variance for Simpson’s diversity index
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Quantification of measurement uncertainty is crucial for robust scientific inference, yet accurate estimates
of this uncertainty remain elusive for ecological measures of diversity. Here, we address this longstanding
challenge by deriving a closed-form unbiased estimator for the sampling variance of Simpson’s diversity index.
In numerical tests the estimator consistently outperforms existing approaches, particularly for applications in
which species richness exceeds sample size. We apply the estimator to quantify biodiversity loss in marine
ecosystems and to demonstrate ligand-dependent contributions of T-cell-receptor chains to specificity, illustrating
its versatility across fields. The novel estimator provides researchers with a reliable method for comparing
diversity between samples, essential for quantifying biodiversity trends and making informed conservation
decisions.
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Living systems are characterized by immense diversity
across multiple scales from molecules to ecosystems [1–5].
Quantitatively understanding how this diversity is produced
and supports biological function has been a central question
in the physics of living systems: On the ecosystem scale,
statistical physics approaches have, for instance, identified
conditions under which diverse interacting species can be
stably maintained [1–3], while on the molecular and cellular
scale, probabilistic modeling has shed light on how antibody
and T-cell-receptor diversity in the adaptive immune system
are generated [4–7].

To compare predictions from ecological theory to ex-
perimentally measured diversities requires quantification of
measurement uncertainty; similarly comparing changes in
biodiversity in response to habitat loss or climate change
requires determining whether diversity differs more than
expected by sampling chance alone [8–11]. A number of
estimators have been proposed to quantify sampling variance
in diversity estimation [12–17]. However, none of the current
estimators are unbiased outside of asymptotically large sam-
ples, and numerical tests suggest that their finite sample bias
can be severe. This is a practically important limitation, as
overestimation of sampling uncertainty diminishes the ability
to detect true trends in biodiversity. Reversely, underestimat-
ing sampling variance can inflate the apparent significance of
observed changes in diversity, potentially leading to spurious
conclusions.

Here, we address this gap by deriving an unbiased estima-
tor of the sampling variance of Simpson’s index. We show the
superior performance of the estimator compared to previous
approaches on simulated and real data and apply it to estab-
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lish ligand-dependent differences in T-cell-receptor diversity.
Simpson’s index is used widely from ecology [12,18] and mi-
crobiology [14,19] to economics [20] as a measure of species
diversity. The index is defined as the probability of species
coincidence of a random pair of individuals,

pC =
S∑

i=1

p2
i , (1)

where pi is the frequency of species i in the population
i = 1, . . . , S and S is the number of distinct species.
This index can be converted into an effective number of
species D = 1/pC [18]. Importantly, the unbiased estimator
introduced here provides interval estimates for diversity
that do not depend systematically on sample size. It thus
addresses a recently highlighted gap in methods [10] to
compare diversity estimates between samples of different
sizes without rarefaction.

To illustrate the problem setting, we reanalyze data from
Albano et al. [11] (Fig. 1), who considered the following
question: Has climate change led to a biodiversity loss in the
Mediterranean Sea? Figure 1(a) shows the raw data, the num-
ber ni of counted molluscs belonging to species i in a patch on
the sea floor (top panel) and corresponding counts for empty
mollusc shells found at the same site in death assemblages
(bottom panel). A diversity index turns these species counts
into scalar measures of current and past biodiversity [points
in Fig. 1(b)]. However, less than 500 molluscs were counted
across 65 distinct species, so some sampling variability in
the diversity estimates is expected. The method we introduce
allows robust quantification of this sampling variance [error
bars in Fig. 1(b)]. Whereas the primary study assessed the
statistical significance of biodiversity loss by comparisons
across multiple independent sampling sites [11], adding confi-
dence intervals to the biodiversity estimates shows the strong
statistical support for biodiversity collapse that exists even at
the level of an individual site.
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(a) (b)

FIG. 1. Quantifying collapse of marine biodiversity in the East-
ern Mediterranean Sea. Illustration of the problem setting of
uncertainty quantification for finite sample diversity estimates.
(a) Distributions of sampled mollusc species currently alive (top
panel) and found in surficial dead assemblages (bottom panel).
(b) Simpson Diversity index with error bars calculated using the
proposed method [Eq. (4)]. Error bars show p̂C ±

√
V̂ar( p̂C ) and

demonstrate statistical significance of the difference in diversity.
Data: Noninvasive mollusc species found on rocky subtidal ground
at 12-m depth off the coast of Ashqelon [11].

I. THE UNBIASED ESTIMATOR

In 1949 Simpson published a short letter in Nature that
proposed the index that now bears his name [12]. In the same
publication Simpson also showed that

p̂C =
∑S

i=1 ni(ni − 1)

N (N − 1)
(2)

provides an unbiased estimate of underlying population diver-
sity from a finite sample of size N . Here ni with

∑S
i ni = N is

the number of counts of the ith species in the sample, which
follows a multinomial distribution,

P(n1, . . . , nS ) = N!∏S
i=1 ni!

S∏
i=1

pni
i , (3)

under the commonly used assumption that each individ-
ual from the population is sampled with equal probability
[12,14,15].

Here we propose that the variance Var( p̂C ) of the point
estimate [Eq. (2)] can be calculated without bias using the
following closed-form estimator:

V̂ar( p̂C ) = a

1 − b
p̂T − b

1 − b
p̂C

2 + c

1 − b
p̂C, (4)

where

p̂T =
∑S

i=1 ni(ni − 1)(ni − 2)

N (N − 1)(N − 2)
(5)

and

a = 4(N − 2)

N (N − 1)
, b = 2(2N − 3)

N (N − 1)
, c = 2

N (N − 1)
. (6)

II. BACKGROUND AND DERIVATION

For the following derivation, it is instructive to recall
the insight leading to the unbiased point estimator given in
Eq. (8). To estimate pC from a sample, it is tempting to
simply replace the population frequencies pi in Eq. (1) with
the sampled frequencies fi = ni/N . However, one is well ad-
vised to resist this temptation as such plug-in estimators are
known to be severely biased in small samples [12,13,15,21].
Instead Eq. (2) should be used, which is the probability of
coincidence when drawing pairs of items from the sample
without replacement. This estimator of pC is unbiased, i.e.,
〈p̂C〉 = pC , where 〈.〉 is an average over repeated samples of
a fixed size. Evaluating the expectation requires calculating
the factorial moment 〈ni(ni − 1)〉, which can be calculated
most conveniently from the probability generating function
G(z1, . . . , zS ) = 〈∏i zni

i 〉. From the definition of G it follows
that ∂

∂z2
i
G(1, . . . , 1) = 〈ni(ni − 1)〉. For the multinomial dis-

tribution, G(z1, . . . , zS ) = (
∑

i pizi )N , and thus

〈ni(ni − 1)〉 = N (N − 1)p2
i , (7)

which can be plugged into Eq. (2) to complete the proof that
p̂C is unbiased.

We now turn to reviewing the state of the art for variance
estimation for Simpson’s index. We first recall the formula
for the sampling variance of the point estimator was again
already given by Simpson [12] (derived in Appendix A for
completeness),

Var( p̂C ) = apT − bp2
C + cpC . (8)

This estimator is a linear combination of the triplet coinci-
dence probability,

pT =
S∑

i=1

p3
i , (9)

the square of the coincidence probability p2
C and pC with

sample-size-dependent parameters a, b, and c given in Eq. (6).
Based on this formula, Grundmann et al. [14] proposed esti-
mating variance by plugging the empirical frequencies fi =
ni/N into an asymptotic expansion of Eq. (8) for N → ∞,

V̂arGrundmann( p̂C ) = 4

N

⎡
⎣ S∑

i=1

f 3
i −

(
S∑

i=1

f 2
i

)2
⎤
⎦. (10)

However, we will find that this plug-in estimator is substan-
tially biased for small N , similarly to plug-in estimators of
diversity indices themselves. We also find substantial biases
for the nonasymptotic plug-in estimator

V̂arplug-in = a
S∑

i=1

f 3
i − b

(
S∑

i=1

f 2
i

)2

+ c
S∑

i=1

f 2
i . (11)

In addition to these plug-in estimators, another popular
approach is due to Chao et al. [15]. This method is widely
used in the field due to its implementation in the R pack-
age INEXT [22]. Chao et al.’s method estimates variances by
bootstrapping from a population constructed from the sample
by coverage-reweighting observed species frequencies and by
augmenting the sample with an estimated number of rare
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(a) (b) (c)

FIG. 2. Benchmarking of variance estimators on simulated data. (a) Frequency-rank plot of species abundances. Probabilities of S = 1000
species were drawn from the steady-state Dirichlet distribution of a neutral model with immigration and stochastic drift (parameter α = 1).
(b) Bias and (c) variance as a function of sample size N . Expectation values were calculated over 1000 repeated draws at each sample size
from the population distribution. Bias and variance are expressed as fractions, i.e., divided by the true value or its square, respectively. The
shaded areas differentiate sampling regimes: blue N <

√
2S, orange

√
2S < N < S, and green N > S. The number of bootstrap samples for

Chao et al.’s method was set to 200 as recommended [15].

unseen species. Surprisingly, despite its widespread use, we
find that this estimator has the largest bias and variance of
tested methods.

Can we generalize the coincidence counting approach un-
derlying the unbiased point estimate to the problem of interval
estimation? To derive a better estimator for the variance of
Simpson’s index we exploit the linearity of Eq. (8) and de-
compose the problem into the unbiased estimation of each of
the three terms. For the first term, the analogy to p̂C suggests
to estimate the triplet probability using Eq. (5). To show that
this estimator is indeed unbiased requires calculating the third
factorial moment 〈ni(ni − 1)(ni − 2)〉. This factorial moment
can again be calculated by taking derivatives of the probability
generating function G of the multinomial distribution,

〈ni(ni − 1)(ni − 2)〉 = ∂3G(1, . . . , 1)

∂z3
i

(12)

= N (N − 1)(N − 2)p3
i , (13)

which can be plugged into the definition of p̂T to demonstrate
its absence of bias. For the second term, we re-express the
squared coincidence probability as

p2
C = 〈p̂C

2〉 − Var( p̂C ). (14)

where we have used the variance decomposition formula,
Var( p̂C ) = 〈p̂C

2〉 − 〈p̂C〉2, and the unbiasedness of Simpson’s
estimator, 〈p̂C〉 = pC . Plugging this expression into Eq. (8)
and solving for Var( p̂C ) yields

Var( p̂C ) = a

1 − b
pT − b

1 − b
〈p̂C

2〉 + c

1 − b
pC . (15)

Finally, the third term can be estimated using Eq. (2). Combin-
ing these results proves our central finding, the unbiasedness
of the estimator proposed in Eq. (4).

III. BENCHMARKING ON SIMULATED DATA

To compare the empirical performance of the different
estimators we turned to numerical experiments, applying es-
timators to samples from a range of ecologically relevant

species abundance distributions. We simulated drawing sam-
ples of different sizes N from the population ranging from
N = 10 to N = 10 000. Repeated sampling at a given sam-
ple size allows evaluation of how empirical estimates deviate
from the ground truth value, Var( p̂C ), computed using Eq. (8)
from the species abundances. Given an estimator x̂ of a pa-
rameter with true value x a natural measure of its quality is
the mean squared error,

MSE(x̂) = 〈(x̂ − x)2〉, (16)

which can be decomposed into a bias and variance term,

MSE(x̂) = Bias(x̂)2 + Var(x̂), (17)

where Bias(x̂) = 〈x̂ − x〉 and Var(x̂) = 〈(x̂ − 〈x̂〉)2〉. To make
values more readily interpretable we normalize Bias and
Variance by the true value x to the fractional values,
Bias/x and Var/x2. We display bias [Fig. 2(b)] and variance
[Fig. 2(c)] separately to investigate any potential trade-offs
between bias and variance [23].

In our first experiments, we drew relative species abun-
dances from Dirichlet distributions, ρ(pi ) ∝ pα−1

i . These
distributions arise in ecology as the steady state of neutral
birth, death, and immigration dynamics in a Wright-Fisher
diffusion limit [7,24]. We sampled a species abundance dis-
tribution of support S = 1000 by sampling pi uniformly from
the probability simplex, this is from a Dirichlet distribution
with α = 1 [Fig. 2(a)]. The numerical results demonstrate that
the proposed estimator is not only unbiased [Fig. 2(b)] but also
has lower variance than all other estimators [Fig. 2(c)]. We
also generated a more uniform and more peaked distribution
of species abundances, corresponding respectively to high or
low relative immigration rates, by using Dirichlet parameters
α = 4 [Fig. 5(a)] and α = 0.25 [Fig. 5(d)], respectively. We
find that the unbiased estimator consistently performs best
regardless of the choice of α [Figs. 5(b), 5(c), 5(e), and 5(f)].

Different sample-size regimes, which we analzye in detail
in the next section, predict the performance of the differ-
ent estimators. For sample sizes N > S (green shading) all
estimators have relatively low variance, but Chao et al.’s
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estimator and the full plug-in estimator are substantially bi-
ased unless N � S. All estimators are highly variable for
very small sample sizes N <

√
2S (blue shading), which

corresponds to the sample size at which the expected num-
ber of coincidences for a uniform distribution of S species
is one.

To test the generality of these findings beyond neutral
models, we repeated the numerical experiment with alterna-
tive species abundance distributions. In theoretical ecology,
chaotic competition in generalized Lotka-Volterra models
[3] and stochastic environmental fluctuations [25] have been
shown to lead to the emergence of heavy-tailed species abun-
dance distributions. Empirically, longstanding evidence shows
that species abundance distributions in many complex ecosys-
tems are well fit by lognormal [26] or power-law distributions
[27]. We thus tested our estimator on samples from species
abundance distributions following a lognormal form (Fig. 6)
and a power-law form (Fig. 7). The results again show that
other methods have substantial bias in small samples that is
removed by the proposed estimator.

IV. INSIGHTS INTO SAMPLE-SIZE SCALING

To gain intuition into how estimator performance depends
on N we consider limits of the variance formula [Eq. (8)]. For
large N , the variance is asymptotically equal to

Var( p̂c) = 4

N

⎡
⎣∑

i

p3
i −

(∑
i

p2
i

)2
⎤
⎦. (18)

This shows that in large samples the variance of the esti-
mator scales with the familiar 1/N scaling of an arithmetic
average. Note further that the expression in brackets can be
interpreted as the variance of species probabilities, Var(p) =
〈p2〉 − 〈p〉2 = pT − p2

C . When this variance is estimated by
plugging in empirical frequencies, there is an additional
sampling variance contribution, which explains why plug-in
estimators are positively biased.

Conversely, when the number of species S is increased at
fixed N the third term in Eq. (8) asymptotically dominates as
pT ∼ 1/S2 and p2

C ∼ 1/S2 while pC ∼ 1/S, and thus

Var( p̂c) = 2

N (N − 1)
pC . (19)

Interestingly, the variance scales as 1/N2 in this limit, which
explains the sharp rise in estimator variances as N ∼ √

2S.
As coincidences are rare, they occur roughly independently
across the N (N − 1)/2 possible pairs and the distribution of
the total number of coincidences nC is approximately Poisso-
nian [28] with mean 〈nC〉 = N (N − 1)pC/2. The variance of
a Poisson distribution equals its mean, and as p̂C = 2nc

N (N−1) ,

we have Var( p̂C ) = 4
N2(N−1)2 〈nC〉 = 2

N (N−1) pC . A Poisson ap-
proximation thus recovers Eq. (19), identifying counting noise
as the dominant source of variance in small samples.

The scaling analysis suggests that in terms of mean squared
error it might be preferable to only estimate the Poisson term
in the very smallest sample to reduce variance stemming from
the estimation of the first two terms in Eq. (8). Benchmarking

FIG. 3. Comparison of interval estimation on empirical data. The
dataset presented in Jongman et al. [30] contains the abundances of
30 plant species at 20 different sampling sites on the Dutch island of
Terschelling. Interval estimates for the biodiversity at each site were
obtained from the unbiased estimator (blue) and the Chao estimator
(orange) as p̂C ±

√
V̂armethod( p̂C ).

of the Poisson estimator,

V̂arPoisson( p̂c) = 2

N (N − 1)
p̂C, (20)

confirms this intuition: The Poisson estimator greatly reduces
variance in small samples at the expense of moderate negative
bias (Fig. 8). In practice, we propose using the maximum
value of the Poisson and unbiased estimator to increase ro-
bustness in the smallest samples. Future work might more
formally address the problem of combining the two estimators
to minimize overall mean squared error using the statistical
framework of shrinkage estimators [29].

V. COMPARISONS ON EMPIRICAL DATA

To demonstrate the practical importance of unbiased
estimation we next compared estimators on empirical data. In
a textbook dataset on how vegetation patterns depend on the
management of dune meadows [30] we find that the unbiased
estimator produces consistently lower estimates of variance
than Chao et al.’s estimator (Fig. 3). In this dataset N varies
from 15 to 48, which is of the same order of magnitude as
the S = 30 species which are distinguished in this dataset.
The wider interval estimates of Chao et al.’s method are com-
patible with the previously demonstrated bias of this method
for N ∼ S. Overestimation of sampling variance decreases the
percentage of pairs of sites with nonoverlapping error bars
from 44% for the unbiased method to 29% for Chao et al.’s
method, demonstrating the potential gain in statistical power
using the proposed estimator.

We next compared estimator performance for the problem
of quantifying T-cell-receptor (TCR) diversity. Stochastic ge-
netic recombination creates hypervariable TCRs, which are
the molecular basis for how our adaptive immune system
responds to diverse pathogens [6] [Fig. 4(a)]. TCR diversity
can be quantified by considering receptors as “species” with
associated probabilities corresponding to the likelihood of
clonal lineages encoding the same receptor. The number S of
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(a) (b) (c) (d) (e) (f)

FIG. 4. Quantifying the diversity of ligand-specific T-cell receptors. (a) Schematic diagram of the interaction between TCRs and their
ligands and peptides bound to major histocompatibility complex (MHC). The αβTCR is a heterodimer composed of an α and β chain,
each containing variable loops that together determine TCR specificity to its ligand binding partners. The sequence of the variable loops are
determined during genetic recombination which involves the choice of gene segments, called V genes, and additional diversification within
the hypervariable complementary determining region 3. (b)–(f) Interval estimates for the diversity of pMHC-specific receptors were obtained
from the unbiased estimator (blue) and the Chao estimator (orange) for three viral epitopes. Diversity was assessed on the level of (b) the full
receptor, (c) the α chain, and (d) β chain, as well as (e) the Vα gene choice and (f) the Vβ gene choice. Diversities are shown as effective
number equivalents of Simpson’s index, D = 1/p̂C , with error bars calculated by error propagation

√
V̂ar( p̂C )/p̂C

2. Data: Dash et al. [34].
Ligand A: Influenza virus peptide M158. Ligand B: Epstein-Barr virus peptide BMLF1280. Ligand C: Human cytomegalovirus peptide pp65495.
The three peptides are presented by a common MHC, the human leukocyte antigen (HLA) A*02:01.

receptors that can be created by recombination is immense
with estimates as large as S ∼ 1039 for the TCRβ chain [31].
Therefore, this problem illustrates a practical use case for
diversity estimation methods in the N 
 S regime.

To test the variance estimators we constructed a metareper-
toire of 3 × 107 T-cell clonotypes by combining samples from
multiple healthy donors from a cohort study [32] and then split
this repertoire into nonoverlapping pools of different sizes.
The unbiased estimator outperforms all other estimators in
terms of bias [Fig. 9(b)] and variance [Fig. 9(c)]. (Chao et al.’s
estimator was excluded from this comparison due to its slow
computational speed at tested sample sizes.) Our results show
that using the unbiased estimator only >10 000 sequences are
needed to estimate Var( p̂C ) with a coefficient of variation 
1.
Such sampling depths are now readily obtainable via bulk [32]
or single-cell TCR sequencing [33], allowing this estimator
to be applied to quantify differences in TCR diversity across
individual samples.

VI. APPLICATION: HOW MANY T-CELL RECEPTORS
BIND TO A GIVEN LIGAND?

Having established the good empirical performance of
the unbiased estimator, we sought to exploit our statistical
advance to provide a quantitative answer to an important
open question in immunology (Fig. 4): How degenerate is
the mapping between antigen receptors and their ligands?
The diversity of antigen receptors binding to a ligand deter-
mines the breadth and polyclonality of the adaptive immune
response and quantification of this diversity is thus of central
interest in the field [34–36]. Recent experimental advances in
single-cell sequencing of T cells sorted for specificity to mul-
timerized ligands allow experimental probing of this diversity
[34,37,38]. By quantifying the diversity of ligand-specific
TCRs at multiple levels, we demonstrate the statistical sig-
nificance of ligand-dependent differences in the contribution

of the two chains of the heterodimeric receptor to binding
specificity.

The dataset we consider consists of the sequences of 415
αβTCRs specific to three ligands [34], which are important
viral epitopes (see Fig. 4 caption). We label them A, B, and
C in the text for conciseness. Each experiment involved sort-
ing T cells from multiple individuals, but for simplicity we
determined overall TCR diversity regardless of donor origin,
a limitation which can be relaxed as dataset sizes increase.
Using our method we determined the diversity of the full
receptor [Fig. 4(b)] and its parts [Figs. 4(c)–4(f)] along with
their associated sampling uncertainy. We find that the effec-
tive diversity of TCRs binding each ligand is on the order
of 1000 receptors [Fig. 4(b)] albeit with a large associated
sampling uncertainty. Interestingly, when zooming in on the
diversity of the component parts of the heterodimeric receptor,
we find strong statistical support for hypothesized differences
[34,38] in α- and β-chain diversity among ligand-specific
receptors [Figs. 4(c)–4(f)]. For instance, TCRs specific to
ligand A have significantly more diverse α chains than β

chains, while the reverse is true for ligand B. The diversity
of V gene segments found in specific TCRs also varies signif-
icantly between ligands and is largest among TCRs specific to
ligand C.

The unbiased interval estimates (blue) are equivalent
to Chao et al.’s estimates (orange) for V-gene diversity
[Figs. 4(e) and 4(f)], but are substantially tighter for the di-
versity estimates on the full receptor level [Fig. 4(b)] and
receptor chain level [Figs. 4(c) and 4(d)], again highlighting
the upward bias of alternative estimators. Importantly, the
quantification of TCR diversity at different levels leads to
hypotheses about the structural basis of recognition for each
ligand. For example, TCRs specific to ligand C are expected to
make fewer contacts on average between the V-gene encoded
CDR1 and CDR2 loops and the ligand. Similarly, diversity
restriction among the two chains in ligands A and B might be
reflective of how many contacts each chain is making with

064411-5



ANDREAS TIFFEAU-MAYER PHYSICAL REVIEW E 109, 064411 (2024)

(a) (b) (c)

(d) (e) (f)

FIG. 5. Performance of variance estimators for species abundances drawn from a Dirichlet distribution with other choices of the parameter
α. Top panels: α = 4.0. Bottom panels: α = 0.25.

the ligand. These hypotheses will soon become testable as
more structures of TCRs in complex with their cognate lig-
ands are solved [35,39].

VII. CONCLUSION AND DISCUSSION

This work introduced a method to estimate the sample vari-
ance of Simpson’s diversity index without bias for arbitrary
species abundance distributions. This unbiased estimator does
not seem to be widely known despite its superior statistical
properties compared to existing methods. Additionally the
unbiased estimator has a closed-form analytical expression
and is thus fast to calculate even for large samples, in contrast
to bootstrapping approaches.

As the estimator is unbiased it has the practically important
property of producing estimates that do not vary systemat-
ically with sample size. This is an important advantage for
practical applications in which sample sizes vary between
ecological communities. Such variation has become an in-
creasingly important concern in ecology, as the field has
moved to apply techniques developed for field studies with
well-controlled sampling effort to the assessment of micro-
biome [8,10] or immune repertoire [16,36,40] diversity from
high-throughput sequencing experiments. By using the unbi-
ased estimator introduced here ecologists can avoid the loss of
information inherent in the common practice of subsampling
larger samples down to the smallest sample size, known as rar-
efaction. Our method thus fills a previously identified gap in

the ecological literature to overcome the need for rarefaction
by bias-corrected interval estimators [10].

An extension of our work could revisit methods for interval
estimation for other diversity metrics such as Shannon en-
tropy. For these metrics past work has focused on reducing
bias in the point estimates themselves given the absence of
an unbiased estimator [13,21]. Our work might be gener-
alized to address the variance estimation problem for these
bias-corrected estimators for other diversity metrics. Another
direction for future work is to compare the performance of the
estimators on samples with overdispersion [41], which goes
beyond the multinomial sampling assumption that underlies
all tested estimators.

We note that the negative logarithm of Simpson’s in-
dex, − log pC , is the Renyi entropy (of order 2) [9,42].
The Renyi entropy in turn lower-bounds the Shannon
entropy −∑

i pi log pi, a relation that has been exploited
to estimate entropy rates of dynamical systems [13,43] and
neural spike trains [44]. Thus we expect that our estima-
tor will also be of use outside of ecology in the many
other areas that use the concept of entropy. Interestingly,
the estimator we have introduced can determine sampling
variances even when the total number of species S exceeds
the sample size N . This shows that the surprising ability to
infer entropies way before the distribution is fully sampled,
known in statistical physics as Ma’s square-root regime of
entropy estimation [13,43,45] and in probability theory as the
birthday paradox [46,47], generalizes from point to interval
estimation.
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(a) (b) (c)

FIG. 6. Performance of variance estimators for lognormally distributed species abundances with log pi ∝ N (0, σ ) with σ = 1.

Application of our estimator experimentally identified
ligand-specific T-cell receptors, showed that their effective
diversity is on the order of ∼1000 receptors, and demon-
strated ligand-dependent restriction of TCR chain diversity.
The effective number of receptors is very small compared to
the multiple trillions of αβ receptors that can be produced
by recombination, demonstrating the stringent selection of
antigen-specific TCRs in these experiments [36]. Knowing
how many TCRs on average bind a given ligand is important
in experimental design for TCR screens as it can help guide
the breadth and depth of sampling strategies. Quantification
of variability in the effective number of TCRs binding to
different ligands using the method introduced in this paper
could yield insights into the mechanistic basis of immun-
odominance hierarchies and help quantify how much the
effective diversity of specific TCRs depends on cutoffs on
TCR avidity imposed by different experimental assays, prior
exposure, or age [35,38,48]. Estimates of the diversity of
different features of the TCR relative to null expectations
can furthermore bound which features are most informative
about receptor specificity [49]. Taken together, quantification
of ligand-specific TCR diversity might help explain varia-
tion in performance of machine learning models for different
ligands [50,51].

We hope that by improving both the trustworthiness and
practicality of interval estimates for biodiversity measure-
ments our work will lead to a wider adoption of sampling
uncertainty quantification in ecological research. To aid

adoption of the method we have made a reference im-
plementation of the estimator available as an open source
PYTHON package [52]. We are particularly hopeful that our
method for interval estimation of diversity will enable focus-
ing of sampling efforts for monitoring biodiversity loss in our
changing world.
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APPENDIX A: DERIVATION OF THE VARIANCE
EXPRESSION

To derive the variance of Simpson’s estimator we need
to calculate various (cross-)moments of the multinomial dis-
tribution. Taking derivatives of the probability generating
function demonstrates that the factorial moments are equal to

〈 S∏
i

n(ai )
i

〉
= N (

∑S
i ai )

S∏
i

pai
i , (A1)

where x(n) = x(x − 1) . . . (x − n + 1) denotes the falling fac-
torial. To calculate the raw moments of the distribution we

(a) (b) (c)

FIG. 7. Performance of variance estimators for Zipf-distributed species abundances with pi ∼ 1/i.
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(a) (b) (c)

FIG. 8. Comparison of the Poisson and unbiased estimators. (a) Frequency-rank plot as in Fig. 2. (b) Bias and (c) variance as a function of
sample size N for the unbiased estimator [Eq. (4)] and the Poisson estimator [Eq. (20)]. While the Poisson estimator is substantially negatively
biased in large samples, it has only modest bias in small samples and variance lower than that of the unbiased estimator.

make use of the moment generating function,

M(t1, . . . , tS ) = G(et1 , . . . , etS ) = 〈e
∑S

i tini〉, (A2)

which for the multinomial distribution is equal to

M(t1, . . . , tS ) =
(

S∑
i

pie
ti

)N

. (A3)

Calculating the partial derivatives of the moment generating
function at t1 = · · · = tS = 0, we obtain

〈ni〉 = N pi, (A4)〈
n2

i

〉 = N (2) p2
i + N pi, (A5)〈

n3
i

〉 = N (3) p3
i + 3N (2) p2

i + N pi, (A6)〈
n4

i

〉 = N (4) p4
i + 6N (3) p3

i + 7N (2) p2
i + N pi. (A7)

The variance of p̂c can be expressed as

Var( p̂C ) = 〈[∑i ni(ni − 1)]2〉
[N (N − 1)]2

− p2
C . (A8)

The key calculation concerns the numerator of the first term,
which is equal to∑

i

〈(
n(2)

i

)2〉 + ∑
i

∑
j �=i

〈
n(2)

i n(2)
j

〉
. (A9)

Expanding the first term and evaluating the second average
using Eq. (A1) yields∑

i

(〈
n4

i

〉 − 2
〈
n3

i

〉 + 〈
n2

i

〉) +
∑

i

∑
j �=i

N (4) p2
i p2

j . (A10)

Using the expression for the moments Eqs. (A5)–(A7), and
noting that

∑
j �=i p2

j = ∑
j p2

j − p2
i = pC − p2

i , we obtain

4N (3)
∑

i

p3
i + 2N (2) pC + N (4) p2

C . (A11)

(a) (b) (c)

FIG. 9. Benchmarking of variance estimators on T-cell-receptor repertoire data. (a) Frequency-rank plot of TCR multiplicities among
3 × 107 clonotypes from a metarepertoire. (b) Bias and (c) variance as a function of sample size N . Expectation values were calculated at
each sample size by splitting the total sequence pool into nonoverlapping subsets. Bias and variance are expressed as fractions, i.e., divided
by the true value or its square, respectively. The shaded areas differentiate sampling regimes: blue N <

√
2D, orange

√
2D < N with effective

diversity D = 1/p̂C ∼ 1.5 × 106 [estimated by applying Eq. (2) to the complete dataset]. Note that in panel (b) a symlog scale is used to
account for the large bias of the plug-in method, i.e., bias values are transformed by sign(x) log10(|x| + 1). Data: A metarepertoire of 3 × 107

complementary determining region 3 (CDR3) sequences of the TCR β-chain constructed by random selection from the combined productive
clonotypes of 200 healthy human donors from the Emerson et al. [32] study.
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Plugging this numerator into Eq. (A8), we obtain after some
algebra

Var( p̂C ) = 4N (3) ∑
i p3

i − 2N (2)(2N − 3)p2
C + 2N (2) pC

[N (N − 1)]2
,

(A12)

the expression first published by Simpson [12].

APPENDIX B: SUPPLEMENTAL FIGURES

Figures 5–7 are supplemental to Fig. 2. Figure 8 shows a
comparison of the Poisson and unbiased estimators, and Fig. 9
shows benchmarking of the variance estimators on bulk TCR
repertoire data.
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