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Ecological communities with many species can be classified into dynamical phases. In systems with all-to-all
interactions, a phase where species abundances always reach a fixed point and a phase where they continuously
fluctuate have been found. The dynamics when interactions are sparse, with each species interacting with
only a few others, has remained largely unexplored. Here we study a system of sparse interactions, first
when interactions are of constant strength and completely unidirectional, and then when adding variability and
bidirectionality. We show that in this case a phase unique to the sparse setting appears in the phase diagram,
where for the same control parameters different communities may reach either a fixed point or a state where the
abundances of only a finite subset of species fluctuate, and we calculate the probability for each outcome. These
fluctuating species are organized around short cycles in the interaction graph, and their abundances undergo large
nonlinear fluctuations. We characterize the approach from this phase to a phase with extensively many fluctuating
species, and show that the probability of fluctuations grows continuously to one as the transition is approached,
and that the number of fluctuating species diverges. This is qualitatively distinct from the transition to extensive
fluctuations coming from a fixed point phase, which is marked by a loss of linear stability. The differences are

traced back to the emergent binary character of the dynamics when far from short cycles.
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I. INTRODUCTION

Ecosystems can be extremely diverse [1], and the large
numbers of species make statistical mechanics a powerful
tool in addressing such systems. Theoretical and experimental
work has revealed dynamical phases with distinct behavior
[2-11], with a notable example being a transition from a phase
where the dynamics from any initial conditions reach fixed
points to one where variables fluctuate indefinitely, which
is marked by a loss in the fixed points’ stability [2—4,6,11].
Related transitions are also found in other fields [12-15].

Most research in the field has assumed that each species in-
teracts with many others, where central-limit-type arguments
apply [3,6,16]. Much less is known about sparsely interacting
systems, where each species interacts significantly with only
a handful of the (many) other species, despite evidence that
such systems are ubiquitous in nature [17-20]. Previous works
generalized relations between diversity and interaction prop-
erties [21] from fully interacting to sparse settings [22,23], and
obtained statistics of the number of fixed points in the limit of
strong interactions [24]. In [25] the species abundance dis-
tribution was analyzed at fixed points of sparsely interacting
systems. For symmetric interactions, properties of fixed points
[10] and activated dynamics [9] have been found to differ dra-
matically from their fully connected counterparts. This work
will focus on long-time deterministic dynamics, irrelevant in
systems with symmetric interactions, which always eventually
reach fixed points [26,27].

Here we study the dynamics of many-species sparsely
interacting communities when interactions are far from sym-
metric. We first study a minimal model where interactions
are unidirectional and detrimental to the affected species
(i.e., amensalistic) and of equal strength. We then extend
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the analysis to bidirectional interactions with variability
in strength.

Our analysis reveals three phases, in both the minimal
model and the more general model: (1) a fixed point (FP)
phase, where dynamics always reach a stable fixed point; (2)
an extensive fluctuations (EF) phase, where the abundances
of a finite fraction of the species fluctuate; and (3) a local
fluctuations (LF) phase, where the abundances of a finite
number (not growing with system size) of clustered species
may fluctuate, while the rest are fixed. The fluctuating species
are localized around short loops in the interaction graph. This
phase arises in the sparse setting and cannot appear when
there are all-to-all interactions. We calculate pg, in this phase,
the probability of sampling a system whose dynamics do
not reach a fixed point, an experimentally accessible quantity
of great interest [11]. We find that 0 < pg,. < 1 even for
many-species systems, in contrast to fully connected settings
where payc = 0 or 1 in the fixed point and fluctuating phases
respectively [3,16].

This paper focuses on the local fluctuations phase and
the phase transitions between it and other phases, which are
qualitatively different from those in fully interacting systems.

II. MODEL DEFINITIONS

We employ standard Lotka-Volterra dynamics, with migra-
tion from a species pool. The migration models the effect
of migration to an “island” from a “mainland” and captures
important phenomena of dynamical fluctuations and diversity
[5,6,10,11,16,28-30]; these effects also appear in explicit spa-
tial models [31-34]. The dynamics of the abundance (i.e.,
population size) N; of species i in the local community is

©2024 American Physical Society


https://ror.org/03qryx823
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.109.064410&domain=pdf&date_stamp=2024-06-20
https://doi.org/10.1103/PhysRevE.109.064410

STAV MARCUS, ARI M. TURNER, AND GUY BUNIN

PHYSICAL REVIEW E 109, 064410 (2024)

(a) ? Fluctuation Probability T (b) —f Boundary
3 "
- 1
D 2
c
I Local Fluct.
7))
c
O 1 !
=] |
S |
I Fixed Point
c |
0 :
0 2 CLF-EF 4
Connectedness C
((En) - i ) (d) o, e (f) 103 _
a H 1 ===rAnalytical | | [eee Analytical l "ttr(1-Cley | =
O ~F-Bin $=1200 T-a=15 ® —-s=12500| *
T 08 —f—Bin $=38400 g — 0.8 [|-—a=3 Ro) —J—s=25000| =
I 0. 0.15 LV $=1200 g (2] Q 550000, [
= LV 89600 5 e .
2 0.6 ~ . "g‘ 0.6 g_) ..'
2 o 0.1 / 3 £ 500 q
g 0.4 1 T 04 3 :
2 111 = © 4
o = (&) ‘4
2Ny —EF a>1 0.05 o 0.2 =
@ EF a<1 -
2 =—LF a>1 . 5
_(7) 0 LT 0 0 0
0 500 1000 0.5 1 1.5 0 0.5 1 0.9 0.95 1
time C/CLF_EF C/CLF_EF C/CLF_EF

FIG. 1. The minimal model. (a) Phase diagram and fluctuation probability in the space of connectedness C and interaction strength o.
Thick red lines mark transition lines between phases, and thin lines in the local fluctuations (LF) phase mark discontinuous jumps in fluctuation
probability, at the values «.(n). (b) A short three-species cycle that fluctuates in the LF phase at ¢ > «.(3) = 2 and its neighborhood. Shown are
N; = 1 species (red), N; = 0 (gray), and fluctuating N; (red-gray). (c) Examples of abundance dynamics of single species in the Lotka-Volterra
model, in the LF phase, and in the extensive fluctuations (EF) phase for@ > 1 and o < 1. (d) The steady-state distance d, between copies of the
same system initiated with different initial condition as a function of C. Analytical results are compared with simulations of the Lotka-Volterra
and binary models. (¢) The fluctuation probability pg,.(C) in the Lotka-Volterra model, compared with the analytical result, fore = 1.5 < o,
a =3 > o). The probability reaches 1 at the transition to the EF phase. (f) The average number of fluctuating species as a function of C,

from binary model simulations, and the expected behavior (1 — C /Crrgr)”" near the transition.

given by

dn; _
dr

N
Ki =Y aiyN; | + A (1)
j=1

The interspecies interaction strengths are «;;. K;/a;; are car-
rying capacities (abundance reached if a species were alone),
and as is often done we take all K; = 1 and «;; = 1 [35]. The
pool migration rates A; are taken to be small, A; = L < 1. We
start with a simple but enlightening version of the model. Here
interaction strengths «;; for i # j are drawn independently,
with «;; = o with probability C/S, and «;; = 0 otherwise. C
is a model parameter called the connectedness. This setting
is relevant when there are few significant interactions per
species, with other interactions weak enough to be neglected.
This corresponds to a directed Erdés-Rényi graph, with an
edge from j to i if «;; = . This graph is sparse, with a
fixed average number C of incoming edges per species, even
as § — oo. Some known facts regarding these graphs are
the following: almost all edges i — j do not have a reverse
Jj — i; the local neighborhood of almost all vertices is a tree

(no cycles); there are only a few cycles of any finite length
(their average number doesn’t scale with §); and finite-length
cycles are isolated (the distance between them grows with
S) [36]. Unidirectional interactions are taken as a starting
point for understanding asymmetric interactions and the time-
dependent phenomena that can occur for them, unlike for
symmetric interactions where dynamics always reach fixed
points [26]. The phase diagram in terms of the two parameters,
C and «, is shown in Fig. 1(a).

III. ONSET OF EXTENSIVE FLUCTUATIONS

When o > 1, we see two distinct dynamical behaviors
depending on C, with a transition at Cyggp, which we show
below to be Crrgr = e. For C < Crp.gr, all species (except
possibly a finite number near short cycles in the graph; see
below) are fixed at either N; &~ 1 or N; ~ 0 (both to order
A, henceforth we write N; = 0, 1). Species fixed at N; =0
are referred to as locally extinct, since they are present in
small numbers, supported only by the migration. At > 1 and
C > CLggF, an extensive number of species fluctuate. At small

064410-2



LOCAL AND EXTENSIVE FLUCTUATIONS IN SPARSELY ...

PHYSICAL REVIEW E 109, 064410 (2024)

A, and reasonable values of the interaction strength o = O(1),
the fluctuating species spend most of the time near 0,1 [see
Fig. 1(c)] with rapid switches between them for A < 1 (the
fraction of time spent switching scales as 1/|In A|—see Ap-
pendix A—so switches appear more gradual at intermediate
migration rates). The switches when « > 1 are due to compet-
itive exclusion [37], where once a species has N; = 1 it then
drives others to extinction.

These rapid switches can be captured by a model with
binary variables, N; € {0, 1}, which is helpful in deriving the
location of the transition and other properties. In it, a ran-
domly chosen species i switches to N; = 0 if at least one of
its incoming arrows have N; = 1, and to N; = 1 otherwise,
reflecting the growth or decline of N; with such inputs in the
Lotka-Volterra model. The switches are done at some constant
rate, so the only free parameter is the connectedness C. (The
overall rate depends on «, but this changes only the timescale
of the system.)

The binary model can be understood (including the loca-
tion of the phase transition) by solving for certain extensive
properties. First, consider the fraction of N; = 1 species at
long times, ¢ = Pr[N; = 1]. For a typical species i, the values
N; of its incoming species are independent, since almost all
cycles are long and so the species j do not affect one another.
Using the requirement that after a switch N; = 1 if and only
if all incoming N; = 0, one obtains ¢ = >, Px(1 — $)* =
e~ C?, where Px = e “CK/K! is the probability for K in-
coming edges. This is solved by ¢ = W(C)/C, with W the
Lambert W function. This is the same value of ¢ found for
fixed points in the limit of infinitely strong interactions by
other methods [24]. The transition to the EF phase, marked
by the appearance of persistent fluctuations, can be located
using the technique of [38-40] as reviewed in Appendix C.
It involves solving for the distance dj,(t) = é Ziszl |Ni1 (t) —
N?(t)| between two copies of the same system with different
initial conditions {N/'}, {N?} by writing a closed differential
equation for it, depending also on the known ¢. The distance
at long times is zero in the LF phase and increases continu-
ously when increasing C above the transition point C = e [see
Fig. 1(d)]. This means that above C = e there is no stable fixed
point that is reached dynamically.

We conclude that in the binary model at & > 1 there is a
transition at C = Cppgr = e into an EF phase; see Fig. 1(d).
The above analysis for the binary model also applies to the
Lotka-Volterra model: For a fixed point in the Lotka-Volterra
model, N; & 0 or N; & 1 away from short cycles. Then, just
as for the binary model, each present species must have only
extinct neighbors, and each extinct species must have an in-
coming interaction from a present neighbor. The argument for
calculating ¢ is therefore valid for the Lotka-Volterra model.
Also, if a fixed point is stable in the binary model, it is also
stable in the Lotka-Volterra model. Thus, the transition value
Cirgr = e is exact, while the dynamics at C > Crpgp are
qualitatively similar; see Fig. 1(d).

IV. LOCAL FLUCTUATIONS

We now turn to analyze local fluctuations in the Lotka-
Volterra framework. As follows from the discussion above,
for C < Crggr and @ > 1 the variables N; reach a fixed value,

except possibly a subextensive fraction. We now characterize
the structure of the fluctuating subsets, show that they are fi-
nite, and calculate the probability that such fluctuations occur.

Consider a local set of fluctuating species and the subgraph
of the interactions between them. First, we argue that all the
static species they interact with are extinct, so that the set is
effectively isolated from the rest of the community. To do
that, look at the set’s boundaries, i.e., species that interact
with the fluctuating species but do not themselves fluctuate;
see Fig. 1(b). If a boundary species N; is upstream from a
fluctuating species i, it must be extinct (N; = 0), otherwise
it would not allow N; to fluctuate: if N; = 1 and o;; > 1, N;
would be prevented from growing. If this boundary species
is downstream from the fluctuating species it must also be
extinct, otherwise it too would fluctuate. Second, as the dy-
namics on any finite tree are known to always reach a fixed
point [27], the fluctuating subset must include a single short
cycle in the interaction graph (and no more than one, as finite-
length cycles are rare and distant from each other in sparse
graphs); see the example in Fig. 1(b). The fluctuating subset
will then include the cycle and possibly downstream species,
since species upstream from the cycle are unaffected by it.

Since all incoming species to the cycle are extinct, the cycle
behaves as if it is isolated. In isolation, it can fluctuate only if it
is directed, i.e., all interactions are directed in the same sense
along the cycle (otherwise the cycle can be broken up into
chains which must reach a fixed point), and only if it is of odd
length (otherwise there is a stable fixed point where species
along the cycle alternate between N; =0 and N; = 1). On
these cycles, there exists a fixed point where the N;’s are not
0,1, butinstead N; = 1/(1 + «) for all the cycle species. There
are fluctuations if this fixed point is unstable, with stability
lost for o > a.(n) = 1/ cos(w/n) for cycles with n species
where n is odd; see Appendix B. So the cycle would fluctuate
if @ > a.(n), and with it the local variables downstream from
it; see example in Fig. 1(b). The n = 3 cycle, for example, is
the well-known “rock-paper-scissors” configuration [41-43].
Note that in addition to there being fluctuations near a cycle,
there is also a departure from the binary dynamics. When
o < o, the fixed point has abundances along the cycle that
are neither 0 or 1, which leads to downstream species having
abundances that are also not 0,1 and are set by Eq. (1). Also,
for « larger than but close to «.(n), the abundances do not
switch between 0 and 1, but fluctuate between intermediate
values. This also propagates downstream.

A. Fluctuation probability

As described above, fluctuations require three conditions:
an odd directed cycle exists in the graph, it is unstable (this de-
pends on «), and incoming interactions from boundary species
do not drive cycle species to extinction. The probability that
these three conditions are satisfied can be calculated exactly.
The third condition requires that all the species upstream of
any species in the cycle have abundances of zero. For each
species i on the cycle, the probability that none of the in-
coming species will have N; = 1, and therefore prevent N;
from fluctuating, is the same as the probability for a typical
species (i.e., away from a cycle) not to be driven to extinction,
which is exactly ¢. Thus, given a directed cycle of length n
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that fluctuates in isolation, the probability of fluctuating in
the full graph is ¢" (as different species have independent
incoming links, as happens in a typical tree-like environment;
see above). The number of directed cycles of length n is
Poisson distributed with mean C"/n [36]. Each fluctuates with
probability ¢”, so the number of fluctuating cycles of length n
is Poisson distributed with mean m,, = (C¢)"/n = [W(C)]"/n
[using ¢ = W(C)/C]. The numbers of cycles of different
lengths are independent, so the total number of fluctuating
cycles of any length is Poisson distributed, say, with mean
m. The probability of at least one cycle fluctuating is then
Pue = 1 —e ™. Intherange ¢, 2n + 1) < ¢ < a.(2n — 1),

_ i L)
ot 2j+1
1 [1 + W(C)] L w(e)P!

= | — ISR (2
2 1-w(©) 2j+1

~.
Il
o

The calculated probabilities are shown in Figs. 1(a) and 1(e);
note that the probability jumps at the o (n) where different
cycles lose stability, and that the probability reaches 1 at
C = Crppr [since W(e) = 1] foralla > 1. As oo (n) —> 1%,
when decreasing to @ < 1 from the LF phase all cycles be-
come stable, and the system enters the FP phase at app. p = 1.

For the binary model, the probability of fluctuations can
be found by noting that all odd cycles are unstable (if all
upstream species are extinct). Therefore the probability is
the same as in the Lotka-Volterra model when all cycles are

C 1-W(C)

unstable, i.e. for @ > a.(3), puc = 1 — T TIO)-

B. Downstream effect of fluctuations

Now consider the total number of fluctuating species, in-
cluding the species in fluctuating cycles as well as the ones
downstream from them. A species on a fluctuating cycle may
drive downstream species to fluctuate as well, and the fluc-
tuations spread in this way until they are “blocked,” when a
fluctuating species only links downstream to extinct species (if
any). This downstream spread can be considered as a branch-
ing process, generating a downstream tree. The number of
species driven to fluctuate by any fluctuating species is Pois-
son distributed. Denote the mean of this distribution by p(C).
As a species downstream from a fluctuating species is driven
to fluctuate iff it is not driven extinct by other neighbors with
N; =1, this occurs with probability ¢ = Pr[N; = 1]; and as
the average number of outgoing edges is C, this gives p(C) =
¢C = W(C). The downstream species from each species on
the cycle (excluding its neighbor along the cycle) form a tree
of fluctuating species. Such a tree can be shown to have a
diverging average size when p(C) = 1 [44], which occurs at
at C = Crrgr = e. The number of fluctuating species near the
divergence grows as (1 —C /Crrer)”!, a known result from
branching processes [44]. This is shown in Fig. 1(f). This
occurs at the same point as the transition to the EF phase, so
there is no intermediate phase between the LF and EF phases.
Above CLggr the dynamics of small subgraphs can no longer
be understood in isolation. As we use here only the extensive

(a) 12
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10 == —0=0.7, oa=0.15 o

C/C C/C.

FIG. 2. The response x when approaching the EF phase by in-
creasing the connectedness C. The x axis shows C/Cgr where “Cgr”
means Cppgr of Crpgr(), depending on the transition. (a) x diverges
when increasing C at constant o coming from the FP phase, indicat-
ing a loss of stability. In contrast, x does not diverge when coming
from the LF phase. The dotted black line is a fit to A(Crp.gr — C) 7,
and the dotted gray line is the analytical result for ¥ when coming
from the LF phase. (b) The transition properties do not change
when adding variability [«;; # 0 are drawn from Normal(e, 0, )] and
bidirectionality (for every «;; = o the reverse interaction is «j; = )
to the interactions. For a = 0.7, x still diverges as (Cgp.gr — C)7!,
and fora = 2.5, x = W(C)/C still holds.

value ¢, which is the same in the binary and Lotka-Volterra
models, these results hold for both models.

A similar divergence in the number of fluctuating variables
occurs in the “frozen phase” of binary models such as the
Kauffman model [45]. In this context, the fluctuation prob-
ability pgy has not been calculated and may be of interest.
Note, however, that the frozen phase has been discussed in the
context of binary models, while for the Lotka-Volterra model
fluctuations on the cycle may be between some intermedi-
ate values [for « close to «.(n)], as will be the fluctuations
downstream from it.

V. COMPARISON OF TRANSITIONS TO THE EF PHASE
FROM THE FP AND LF PHASES

For a < 1, at small values of C, the system is in the FP
phase rather than the LF phase, in which the system always
reaches a fixed point. Besides the possibility of local fluctua-
tions in the LF phase, there are other distinctions between the
FP and LF phases. Consider the response x to small changes
in the carrying capacities K; — 1 + ¢;, with &; independent
random numbers. Denoting by #n; the corresponding change in
the fixed point value of N;, x is defined as (3_;n?)/(}_; €?).
In systems with all-to-all interactions, x diverges when ap-
proaching the transition to a chaotic phase. This is tied to the
closing of the gap in the spectrum of the matrix {«;;}, which
is known to occur at this transition [3,6,16]. For the persistent
species at a fixed point, dN;/dK; = (¢ ~');;, and so x diverges
when «;; has a zero eigenvalue. We find that x diverges also
in sparse communities when approaching Cgp_ gr(e) from the
FP phase; see Fig. 2.

This is very different from what happens in the transition
from the LF phase: here y will turn out not to diverge at the
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transition. First, the definition of x must be generalized to
allow for fluctuations, by measuring the change in the time
average of N;(t) in response to the changes in K;. In the LF
phase, all but finitely many species are static with N; = O or 1,
so these determine the value of x when S — oo. The species
that do not fluctuate and have N; = 1 are isolated (surrounded
by extinct species, if any), so one can see that n; = ¢; for them,
while for the species with N; = 0, n; = 0. We therefore have
x = ¢. Thus the response remains finite when approaching
the transition from the LF phase. This could be expected as
species are cut off from one another in the LF phase, which is
what allows a small subgraph to fluctuate without leading to
dynamics in the whole system.

VI. BEYOND THE MINIMAL MODEL

The minimal model discussed so far assumes unidirec-
tional interactions of constant strength «. We conclude by
discussing the robustness of the results when introducing
changes to interaction coefficients. The distinction between
the phases is robust when introducing variability in ¢;;, and
bidirectionality (competitive rather than amensalistic interac-
tions), namely, aj; # 0 with a finite probability when a;; # 0.
The results for the minimal model can be summarized as
follows: In the LF phase, a hybrid binary-continuous behavior
emerges, with most variables taking two values, while close
to short cycles the variables might take values at N; ¢ {0, 1}
and might fluctuate. The probability of fluctuations has 0 <
Pue < 1, and it reaches 1 at the transition to the EF phase,
where the number of fluctuating species diverges and becomes
extensive. Approaching the FP phase from the LF phase by
lowering «, cycles of ever-longer length become stable. This
reduces the probability of fluctuations due to finite-length
cycles, until pgyc = 0 when o = 1.

In the LF phase in the minimal model, both the fluctuating
subsets and species with fixed N; = 1 are isolated. Those
properties are maintained when adding some variability and
bidirectionality: The fluctuating subsets remain of finite size,
because their downstream extension is limited by the chance
of reaching an extinct species (that cannot fluctuate), and this
probability depends continuously on the «;; values; while they
remain isolated from species upstream from them, in spite of
some bidirectionality, because these species are extinct. We
prove in Appendix D, that assuming that all strong interactions
are «;; > 1 and the reverse aj; > 0, any species with N; > 0
that is far from cycles is isolated, just as in the minimal
model. The terms “upstream” and “downstream” in this con-
text would refer to the direction of the stronger interaction that
is larger than 1 (if both «;;, arj; > 1 the system always reaches
a fixed point and is not in the LF phase [10]). Thus x = ¢,
which is finite when approaching the transition; see Fig. 2(b).
Simulations also confirm that in the LF phase, the number of
fluctuating species is finite (as the distance dj, approaches
zero for large S) and that 0 < pg,. < 1, and that in the EF
phase a finite fraction of species fluctuate (as dj; is finite for
large S) while pg,. = 1; see Fig. 3. Note that changes of «;;
beyond some size may drive the system to other phases not
discussed here, such as those found for symmetric interac-
tions, where there can be no persistent fluctuations [9,10].

(a) 1 e——
—.08 i —-LF std(a)=0.15
@ —-EF std(a)=0.15
o LF 6=0.1
T 06 . -F EF 8=0.1
©
S ~
2
(&)
S04
=
— L)
Qo2 \
0
250 1000 4000 250 1000 4000
S S

FIG. 3. Distinctions between the LF and EF phases are robust
to adding bidirectionality and variability. Bidirectionality is added
using 8 = 0.1, and variability by taking std(e) = 0.15. We use
the labels LF and EF to represent specific parameter sets used in
these graphs and belonging in the two phases, which are (C, @) =
(2.5,2.2), (2.5, 4) respectively. (a) The probability pg, as a function
of system size S. (b) The long-time distance between copies of the
same system initialized with different initial conditions, as a function
of system size S.

In contrast, at low values of « (the FP phase), increasing the
connectedness C towards the EF phase is still accompanied
by a divergence in yx, even with the changes to the model,
see Fig. 2(b). This is because the changes in «;; change the
spectrum of the matrix {c;;} continuously, so the spectral gap
still closes.

Consider now the distinction between the FP and LF
phases themselves. Variability in «;; affects the stability of
local cycles, so the sharp change in probability of local fluctu-
ations at the boundary between the FP phase and LF phase
is broadened. There remains, however, a sharp distinction
between these phases in the decay of fluctuations away from
a local perturbation: In the LF phase it is cut off at a finite
distance (see above), while in the FP phase, the size of the
fluctuations decays exponentially with the distance from the
source of the fluctuations but extends arbitrarily far.

VII. CONCLUSIONS AND DISCUSSION

We study the behavior of sparse ecological communities
using the Lotka-Volterra framework. We start our analysis
using a minimal model, where interactions are unidirectional
and of constant strength. We find that in addition to a fixed
point and extensive fluctuations phase, the system exhibits a
local fluctuations phase at low connectedness and strong inter-
actions, unique to the sparse setting. This phase cannot exist
in fully interacting systems, which do not have the concept of
locality in the interaction graph. The fluctuating species form
local finite subgraphs, driven by short, odd-length directed
cycles. The probability pg,., of sampling a system whose
dynamics do not reach a fixed point, satisfies 0 < pgyc < 1
even for many-species systems, in contrast to fully connected
settings. The response x to changes in carrying capacities,
which diverges at the transition to a fluctuating phase in fully
connected system, remains finite in the transition between the
local- and extensive-fluctuations phases. The existence of all
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three phases is robust to the addition of variability and bidirec-
tionality in interaction strengths, up to some finite strengths
beyond which the system switches to other phases. Sharp
distinctions remain in the behavior of x at the transitions to
extensive fluctuations, and in the decay of fluctuations in the
FP and LF phases: fluctuations are cut off at a finite distance
from the cycles in the LF phase, but decay exponentially with
the distance in the FP phase.

Our results suggest a perspective on why and when
few-species models may be relevant in natural settings. Fluc-
tuations in nature are often studied using models of only a few
species [46-51], and the success of this approach would seem
surprising as these few species are typically in interaction with
other species in a diverse ecosystems [52]. In our model, we
find that in the LF phase only a small number of species
fluctuate appreciably: In the minimal model, their dynamics
can be modeled as if in isolation, while when the interactions
are bidirectional and variable, the dynamics may not be the
same as if in isolation, but fluctuations are still concentrated
on a few species. This gives a picture for why and when few-
species descriptions work. In contrast, dynamical descriptions
that only include a few species are expected to be problematic
in the EF phase, where the dynamics of any finite subset
of fluctuating species is inseparable from that of the entire
system.
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APPENDIX A: MIGRATION SIZE EFFECTS

As mentioned in the main text, in the o > 1 range, the
switches between the states N; & 0, 1 are more rapid for lower
migration rates, with the ratio between the switch time and the
sojourn time (the time spent in a given state between switching
events) scaling as 1/|1In A|. To understand this, consider first
the abundance of an extinct species, growing from N; & 0 to
N; =~ 1. Prior to this, species i was extinct, meaning there was
some incoming species j with o;; = o and N; = 1. At some
time 7y species j switched to N; ~ 0, allowing the abundance
of N; to grow. For some period of time before, for ¢t < t,
species i had a near-constant abundance, dN;/dt ~ 0, giving
Ni(to) = A/(aN; — 1) = O(A). For t > g, one has dN;/dt ~
N;(1 — N;) + A &~ N;. This is because all incoming species
have N; ~ 0, and because throughout most of the dynamics,
A K N; < 1. The timescale for N; to grow exponentially from
O()) to O(1) is then ~|In A|. A similar timescale is derived
and explained systematically in the chaotic dynamics phase in
systems with all-to-all interactions [53].

On the other hand, as we take very small X, below some
threshold Ne*"°t > ) a species can be considered extinct. Say
that we consider N; =~ 0 if N; < N&tint = 0.01. The time of
the switch would be the time needed to grow from N€Xinct to
O(1), which is independent of X; similarly, when a species
goes from N; ~ 1 to N; = N the time of the switch would
be independent of A. Therefore, the timescale for the sojourn
time at each state is ~|In A|, while the switches are indepen-
dent of it. Consider Figs. 4(a)—4(d), showing the dynamics of
a single species for A = 1073, 107!°, in both the LF and EF
phases. For the larger value of A, the timescale of the switches
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FIG. 4. The sojourn times depend on the migration rate. (a)—(d) The dynamics of a single species N;(¢) which is part of a system with
S = 1000, o = 2.5. In the left column, the migration rate of all species is A = 107!, and on the right it is A = 1073. In (a)—(b) the system is in
the LF phase, with C = 2. The species is part of a cycle generating the local dynamics. In (c)—(d) the system is in the EF phase, with C = 4. (e)
The correlation C(t) for three different migration rates, averaged over systems in the EF phase, with § = 1000, C = 3.5, and « = 3. For each
value of the migration, the correlation is normalized so that at C(t = 0) = 1, C(t — 00) = 0. The correlations for the different migrations
collapse to the same curve when rescaling T by |In A|. Inset: the same curves when 7 is not rescaled.
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is closer to that of the sojourn times. In the EF phase, this
also results in “spikes” in N;(¢): this happens when the species
incoming to N; start to change their states before the switch
time is complete. This effect decreases as A decreases and the
sojourn times become longer.

The dependence on the migration rate A can also
be observed by studying the time autocorrelation C(7) =
(ZiN,-(t)Ni(t + 1)/S);, which scales with 7 as |InA[; see
Fig. 4(e).

We can also consider the dependence of switch rates on «.
The rate of a switch from N; = N to N; & 1 will be inde-
pendent of «, and from the expression for N;(#,), the decrease
in sojourn time as « is increased will scale as | In(o — 1)[. As
realistic values of « are O(1), in this range there will not be a
very significant change in the sojourn times. Specifically, for
the weak migration rates that we use, the rate of the switch
will be much faster than the sojourn times.

APPENDIX B: FLUCTUATIONS IN SHORT CYCLES

Here we prove that for isolated, directed cycles of odd
length n, fluctuations occur for & > «.(n) = 1/ cos(x /n), by
showing that they have no stable fixed point in this range. For
a cycle of length n, we label the species as Ny, ..., N,, with
species i — 1 affecting species i. There are two possible kinds
of fixed points, as either at least one species has N; = 0, or
all species have the same nonzero abundance N; = 1/(1 + «).
If all N; > 0O, the fixed point is stable if the «;; matrix is
stable. Using the eigenvalues for an n x n circulant matrix
[54], one finds that this fixed point is stable for odd n for
o < 1/cos(mr/n). We will now show that there can be no

J

stable fixed point in which there are extinct species, so for
a > 0cycle there will be fluctuations.

Assume by contradiction that the cycle has a stable fixed
point with extinct species. As n is odd, it must have at
least two consecutive species that both have either N; = 0 or
N; > 0. If there is a set of consecutive species with N; > 0,
denote as j the first species in this chain, so that N; = 1.
Therefore Nj.1 =1 —aN; =1 —a <0, in contradiction to
the assumption. If there are consecutive species with N; = 0,
again denote j as the first in the chain. Then species j + 1 has
a positive growth rate, g;11 = 1 — aN; = 1, so the fixed point
is not stable to small positive perturbations in N;, again in
contradiction to the assumption.

APPENDIX C: DISTANCES IN THE BINARY MODEL

In a binary model, at each time step dt = 1/S a random
species is chosen to be updated according to

1 if all incoming arrows j — i have N; =0
0 otherwise ’
(C1)
where for two copies of the same system, {N/}, {N?}, the
same species is updated at each step. Defining the per-species
distance djp; = Pr[Ni1 #+ Ni2] (with the probability over the
choice of initial conditions and system disorder), the total
distance is dj, = S~ > ;di2.;. Say that species N; which has
K incoming interactions from N; , ..., N;  is updated at time
t. Then as N; , ..., Nj, are independent (as almost all cycles
are long), and noting that Pr[(Nil,Niz) =0,00]=1—-—¢—
di2,i/2,

M(t-l—dt):{

K

K
di2i(t +dt) = 2Pr [N} (t +dt) = 1, N} (t +dt) = 0] = 2{]’[1% [NL @)= 0] = []Pr[(N} (). N} (1) = (0, 0)]}
r=1

=2[(1 =) = (1 = ¢ — dia(1)/2)"],

averaging over the choice of interactions, initial conditions,
and updated species the total distance obeys

2
dio(t +d) = <) Pel(1=§)F = (1= ¢ = din@)/2)"]
K

+ (1 =1/8)di2(t)

—Cg

and using dt = 1/8, Px = e™“

d

CK
o = 2;(05[(1 — ¢ — (1 — ¢ —d1n/2) 1 —d

1
=2e"[1 - e 2°"] — dy.

This has a fixed point at dj; =0 for any C. Using ¢ =

W (C)/C, this fixed point loses stability at C = e, where a new

stable fixed point appears growing continuously from 0:

dfy = 2[W(C) + W(=W?*(C)/C)]/C; (C2)

r=1

(

df, has a maximum at C ~ 7.14. For C > 1, df, ~ 2¢, im-
plying that there is no extensive overlap between the sets of
species that have N; = 1 in the two copies. ¢ disappears as
C — 00, so at this limit also df, — 0.

APPENDIX D: SPECIES WITH N; = 1 ARE ISOLATED
IN THE LF PHASE WHEN AWAY FROM SHORT CYCLES,
WHEN ADDING VARIABILITY AND BIDIRECTIONALITY

In the main text we show that for the minimal model
(unidirectional constant-strength interactions), for @ > 1 and
far away from short cycles, the abundances are fixed at
either N; =0, 1, with the N; =1 species separated from
each other by extinct species. Here we will prove that
this also holds when there are positive bidirectional inter-
actions as well as bounded variability in the interaction
strengths.

Consider a system where for any interaction with «;; =
a > 1, the reciprocal interaction is aj; = B > 0. Adding vari-
ability to these values will not change the proof, as long as
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the probability distribution is bounded so that o;; > 1 and
aj; > 0. We assume that there are no extensive subgraphs of
adjacent persistent species, so we focus on finite subgraphs.
As the Erd6s-Rényi graph is tree-like almost everywhere, and
we are interested in the behavior far from the short cycles,
we need only show that there are no finite tree-like subgraphs
whose sites can all have N; > 0 at a fixed point, except for a
single species in isolation.

Let us consider the Lotka-Volterra equations on a finite
connected tree with at least two species, and assume for the
sake of a contradiction that it has a stable fixed point where
all species coexist with values N/ > 0. The variables N; can
be rescaled so that the interactions are symmetrized in the
following manner [27]. Take new variables n; = N;/y;, with
y; some constants to be chosen later. The equation then gives
a new Lotka-Volterra system

dl’ll‘
=y =i Xj:(yj/)’i)aijnj)

= Yin; l/y[—n,-—ZaUnj . (Dl)
J

with interaction matrix a;; = (y;/y;);;. The y;’s are chosen
as follows: choose some species i on the tree which interacts
with species j,, n =1, ..., K, and take y; = 1. For each j,,
in order to have a symmetric interaction a;;, = a;,; one must
set y;, = vivaj,i/%j,- As all o, aj,; > 0, this choice of y;,
is real and positive. This procedure is iterated for the species
that interact with the j, species, and so on until the values
of y; are set for the entire tree. As the tree has no loops this
procedure does not lead into any loops where variables are
redefined.

Now consider the fixed point of (D1), nf = N//y;. As
vi > 0, this is a feasible fixed point with all nf > 0, and
from the assumption it is also stable. This must be the only
stable fixed point of the system, as a symmetric Lotka-Volterra
system has a stable fixed point where all species coexist iff it
has a unique fixed point [10].

We will now show in contradiction that another stable fixed
point can be constructed. Consider a new N; system, which is
the same as the original N; system but with 8 = 0. Consider
all species that have no incoming interactions (there must be

at least one on a tree), which must have N; = | at a fixed
point. All outgoing interactions from these species must have
N; =0, and continuing to move downstream all N; will be
uniquely determined to have either N; =0 or N; = 1. The
fixed point found in this way is also a stable fixed point of
the N; system. This gives a fixed point with some n; = 1/y;
and some n; = 0, which is different from #}, where for all i,
n? > 0, in contradiction to the assumption.

APPENDIX E: DETAILS OF SIMULATIONS

Here we add details on the simulations and their results
shown in the figures in the main text.

For each value of the connectedness C, couplings o;; are
chosen independently, with each «;; taken to be nonzero with
probability C/S. For Fig. 2, where there is a variance in the
interaction strengths, we first choose the «;; that are nonzero,
then sample the value from a normal distribution with mean
o and variance 0. The Lotka-Volterra equations are solved
with an ODE45 solverusing K; = 1, A; = 10~'° (unless stated
otherwise) and initial conditions are drawn from a uniform
distribution on [0, 1].

When modeling the binary system, we use initial condi-
tions where each species has an equal probability to be either
N; = 0or N; = 1. At each step, we choose a species randomly
and update it using Eq. (C1). When calculating d,,, we take
two systems with the same «;; and initiate each at two random
initial conditions, then advance them simultaneously, choos-
ing the same species to update at each step.

In Fig. 1(c) the example for the EF phase for « > 1 is taken
from a system with § = 1000,C =4, « = 3, and for o < 1
from a system with S = 3000, C = 5, « = 0.9. The example
in the LF phase is from a system with S = 1000, C = 1.5,
o = 3. In Fig. 1(d) the results for Lotka-Volterra simulations
are for « = 3. In Fig. 1(e) the probabilities are taken for
systems of size S = 1000.

In Fig. 2(a) CLp.gr = e for « = 2.5 (as proven in the text).
When coming from the FP phase with o = 0.7, we find
Crp.gr ~ 5.3 from a fit to points at C > 2. In Fig. 2(b), for both
o = 0.7 and o = 2.5, we introduce bidirectionality by setting
aji =B =0.1 when o;; = «, or add variability by drawing
the nonzero «;; from a normal distribution N(, 0.15). For
o = 0.7, the transitions occur at Cgpgr ~ 4.9, 2.7 for o, =
0.15 and B = 0.1 respectively.
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