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Universal characterization of epitope immunodominance from a multiscale
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We introduce a multiscale model for affinity maturation, which aims to capture the intraclonal, interclonal, and
epitope-specific organization of the B-cell population in a germinal center. We describe the evolution of the B-cell
population via a quasispecies dynamics, with species corresponding to unique B-cell receptors (BCRs), where
the desired multiscale structure is reflected on the mutational connectivity of the accessible BCR space, and on
the statistical properties of its fitness landscape. Within this mathematical framework, we study the competition
among classes of BCRs targeting different antigen epitopes, and we construct an effective immunogenic space
where epitope immunodominance relations can be universally characterized. We finally study how varying the
relative composition of a mixture of antigens with variable and conserved domains allows for a parametric
exploration of this space, and we identify general principles for the rational design of two-antigen cocktails.
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I. INTRODUCTION

The molecular foundation of pathogen recognition and
neutralization is the specific, high-affinity binding between
antibodies and antigens [1]. Individual antibodies or B-cell
receptors recognize the antigen at discrete surface-accessible
regions, known as antigenic determinants or B-cell epitopes.
The size of these recognition sites is considerably smaller than
the overall size of natural antigens, such as viral proteins or
other pathogen-derived molecules. As a result, a population of
antibodies interacting with the same antigen can give rise to a
multitude of different structural conformations for the bound
antigen-antibody complex.

While the accurate identification and prediction of B-cell
epitopes is still a laborious and expensive experimental task
and an outstanding computational challenge, a mixture of
experimental and computational methods have been devel-
oped to extract a coarse-grained classification of groups of
antibodies based on where they bind on the surface of a given
antigen [2,3]. We can then see antigens, from the perspective
of immune responders, as displaying a mosaiclike surface,
with antibodies that bind on the same tile grouped into distinct
classes. The question we are interested in is when and why
certain antibody classes can outnumber others in the antibody
repertoire of an individual or of a population.

The composition of each individual’s antibody pool is the
result of an accelerated evolutionary process called affinity
maturation, occurring in the lymph nodes upon the encounter
of a foreign agent. In response to this event, the immune sys-
tem of the host organizes a sophisticated learning machinery
in substructures of the lymph nodes known as germinal cen-
ters, where low-affinity naive B cells undergo iterated rounds
of replication, mutation, and selection to acquire the desired
specificity. The resulting B-cell population produced by this
affinity maturation process will compose the memory and
antibody repertoires of the infected host [4].

Antigenic drift—i.e., the immune evasion pattern of some
viruses—has revealed that the primary antibody response is
often focused towards a small subset of epitopes, referred
to as immunodominant, rather than being uniformly directed
towards the entire set of possible target sites [5]. The physic-
ochemical, structural, and geometrical aspects of the distinct
antigen epitopes, as well as potential biases in the naive B-cell
repertoires, indeed cause the antigen surface to be nonho-
mogeneously immunogenic [6,7]. While in principle these
differences in epitope immunogenicity could vary from one
individual to another because of the personalized aspects of
naive repertoires [8], epitope immunodominance seems to
be largely a property of the pathogen, only slightly affected
by individual or even organismal particularities (at least for
certain viruses) [9].

The key idea explored in this paper is that B-cell epi-
tope immunodominance can be described as a phenomenon
emerging from the general statistical features of the affin-
ity landscapes of competing antibody classes. We introduce
a minimal model for affinity maturation, inspired by a
long tradition of computational models, such as those in
Refs. [10–15], whose central feature is a multiscale represen-
tation of the clonal competition in a germinal center. B-cell
competition indeed occurs at several different stages:

(i) Interclass level: following the nomenclature used for
SARS-CoV-2 antibodies, B-cell receptors (BCRs) are cat-
egorized into classes based on the epitopes to which they
bind [16].

(ii) Intraclass level: within each class, competition occurs
among clonal lineages originating from different B-cell ances-
tors (germlines).

(iii) Intraclonal level: somatic hypermutations occurring
during affinity maturation produce variability in the fitness of
B cells within the same clonal family, enabling competition
even at this level.
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Within this framework of evolving B-cell populations,
more immunodominant epitopes are associated with higher
fixation probabilities of the corresponding BCR classes. We
compute the fixation probability as an extreme value problem,
and we identify, for a specific class of fitness landscape mod-
els, a restricted set of universal parameter combinations that
modulate immunodominance.

The proposed model can be applied to immunodominance
phenomena across different affinity maturation contexts. For
example, we investigate how the epitope immunodominance
relations can be manipulated by exposing the system to a
cocktail of two antigens with varying relative concentrations.
This is relevant to the problem of vaccination by a cock-
tail of antigens, a procedure employed in the development
of vaccines against highly mutating pathogens, such as the
SARS-CoV-2 bivalent booster [17,18]. The rationale behind
the use of immunogen cocktails is that simultaneous expo-
sure to two or more antigen variants confers a competitive
advantage to broadly neutralizing antibodies, i.e., antibodies
capable of neutralizing multiple variants of a virus by recog-
nizing conserved regions of the antigen. We employ our model
in a toy description of the cocktail context to determine under
what general conditions the manipulation of vaccine com-
positions can alter the immunodominance relations between
conserved and variable epitopes.

A more detailed mathematical description of the dynamical
model is provided in Sec. II. Results for the construction of a
universal immunodominance phase diagram and for the prob-
lem of optimizing a bivalent antigen cocktail are presented in
Sec. III. Implications for future work and data analysis are
briefly discussed in Sec. IV.

II. MODEL

A. A schematic description of affinity maturation

Affinity maturation (AM) is the key training process en-
abling the mammal adaptive immune system to learn upon
the encounter of a foreign agent. It encompasses an intricate
series of reactions, involving various lymphocytes, cytokines,
and signaling pathways [4,19,20]. At a coarse-grained level,
AM is akin to an iterative two-step evolutionary process that
takes place in germinal centers (GCs) upon encountering a
pathogen: Germline B cells with some affinity to the antigen
first undergo replication with a fast accumulation of mutations
(in the dark zone of GC), followed by competitive selection (in
the light zone of GC). Through repetition of these two steps,
the B-cell repertoire of an individual is expanded and refined
in affinity for the encountered antigen.

We adopt here a simplified model for affinity maturation,
which describes the evolution of B cells via parallel mutation,
replication, and death events. Competition is introduced by
looking at the dynamics of the fraction of each BCR sequence
in the germinal center, rather than their absolute number,
as in Eigen’s well-known quasispecies model [21]. In GCs,
all B cells compete for the same resources, i.e., interactions
with follicular T cells and antigen capture. We consider each
productive B-cell receptor sequence as a distinct quasispecies,
denoted by index i = 1, . . . , N . Replication, death, and
mutation events are described as simple first-order

reactions:

Bi
λi−→ Bi + Bi, Bi

δ−→ ∅, Bi
μ ji−→ Bj, (1)

where λi is a replication rate that depends on the affinity
of the BCR to the presented antigen, δ is a constant death
rate, and μ ji is the effective mutation rate from sequence i
to sequence j. For the sake of simplicity, we assume that
mutations only occur at a constant rate μ between pairs of
productive sequences at a Hamming distance of 1 [22].

B. Structure of the B-cell receptor space

Once the hopping rate is fixed, only the connectivity of the
graph of allowed mutations needs to be specified. In accord
with the choice of a homogeneous rate, we decide to focus
here only on the likely mutations that can accumulate on any
BCR sequence during the process of affinity maturation [23].
For each clonal lineage, originating from a distinct germline
ancestor, let us encode in a binary string of length d any of
such accessible sequences, so that the resulting mutational
graph associated with the lineage is a d-dimensional hyper-
cube.

Since multiple germlines are recruited to initiate affinity
maturation, we describe the germinal center as a collection of
disconnected hypercubes. The mutual distance between two
distinct germlines is indeed typically larger than the muta-
tional distance between somatic B cells and their germline
ancestors (usually of the order of 10 residues or less
[24,25]), suggesting that events of convergent evolution can be
generally neglected.

To capture the competitive dynamics of B-cell subpopula-
tions targeting distinct parts of the antigen, we finally group
the clonal lineages into classes [26]. To each class we as-
sign a specific distribution of fitness landscapes, so that the
landscapes attributed to all lineages within the same class are
treated as independent, quenched realizations derived from
these distributions. This model is based on the premise that the
fitness of a B-cell receptor is largely determined by its binding
affinity to the presented antigen, and that the specific geometry
and chemical properties of each epitope will sculpt affinity
landscapes sharing similar statistical features for groups of B
cells within the same class. Our goal is to describe immun-
odominance in terms of the statistical differences among these
class-specific fitness landscape ensembles.

Figure 1 provides an illustration of the resulting structure
of the GC space.

C. Evolution dynamics

Let nα
i be the expected size of quasispecies i belonging to

lineage α; from (1), we can derive a simple linear ordinary
differential equation (ODE) for n(t ) ∈ RN×M :

∂t n
α
i = [

f α
i δi j + μ�i j

]
nα

j , i = 1, . . . , N, α = 1, . . . , M,

(2)

where N = 2d is the number of nodes of each hypercube [27],
and M is the number of clonal lineages in a single germinal
center, typically of the order of 10–102 [4]. The M clonal
lineages are organized into a small number of classes, indexed
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FIG. 1. Structure of the affinity maturation model. B-cell evolution in a germinal center is described by a parabolic Anderson model
(PAM) on a collection of disconnected d-dimensional hypercubes. Each clonal lineage evolves on a distinct hypercube, and lineages are
grouped into classes, depending on the targeted antigen epitope. The resulting Anderson matrix has a block-diagonal structure, with smaller
blocks representing individual lineages/hypercubes. The diagonal entries are random variables drawn from the fitness distribution of the class
corresponding to the outer, epitope-specific block. B cells are subject to an all-to-all competition, which manifests at three different levels [cf.
Eqs. (3)–(5)]. On the right panel, we show Muller plots for the evolution of quasispecies at each of these three levels for a quenched realization
of a germinal center seeded by M = 5 germlines belonging to two distinct classes (mV = 3, mC = 2), with Gaussian fitness distributions
pV ( f ) = N (1.6, 0.5), pC ( f ) = N (1.4, 0.7).

by �, each of which contains m� elements. The �i j ma-
trix indicates the Laplacian of the d-dimensional hypercube;
the fitness is the net growth rate f α

i = λα
i − δα . Initially the

population is localized on the precursors’ sequences: hence,
without loss of generality, nα

i (0) = δi,0 ∀α.
In the case of independent identically distributed (IID) fit-

ness variables, the model in Eq. (2) is known as the parabolic
Anderson model (PAM) [28]; analytical results for the PAM
dynamics in the thermodynamic limit are known for several
types of graphs, including hypercubes [29].

We are interested here in the evolution of B-cell species
frequencies. This is a common way to introduce competition
in evolutionary models with only first-order reactions, which
has been demonstrated to capture the behavior of classical
fixed population models (such as Wright-Fisher’s or Moran’s)
in the limit of infinite population size [21]. Given the structure
of the model, we can focus on competition at different levels:

(i) Intraclonal level:

∂t y
α
i = [

f α
i − f̄ α (t )

]
yα

i + μ

N∑
j=1

�i jy
α
j , (3)

where yα
i (t ) = nα

i (t )/
∑N

i=1 nα
i (t ) is the fraction of identical

clones i within the lineage, and f̄ α (t ) = ∑N
i=1 f α

i yα
i (t ) is the

average fitness of the clonal family.
(ii) Intraclass level:

∂t X
α
� = [ f̄ α (t ) − �� (t )]X α

� , (4)

where X α
� (t ) = ∑

i nα
i (t )/

∑
α∈�

∑
i nα

i (t ) is the fraction of
lineages in the class, and �� (t ) = ∑

α∈� f̄ α (t )X α
� (t ) is the

population-averaged fitness of class �.
(iii) Interclass level:

∂t z� = [�� (t ) − F̄ (t )]z�, (5)

where z� (t ) = ∑
α∈�

∑
i nα

i (t )/
∑

α

∑
i nα

i (t ) is the relative
size of class �, and F̄ (t ) = ∑

� �� (t )z� (t ) is the total
population-averaged fitness.

At the intraclonal level, the system reaches at long times
a state of mutation-selection balance. At the intraclass and
interclass level, due to the disconnected structure of the global
graph, the stable fixed points of Eqs. (4) and (5) correspond to
fixation of the asymptotically fittest quasispecies and extinc-
tion of the rest. The eventual dominance of a single clonal
lineage in the GC population is consistent with experimental
observations, even though affinity maturation typically termi-
nates before the GC becomes completely monoclonal [30,31].
In this work, we will use the quenched average of z� (t ) at
long times to study epitope immunodominance from the GC
response.

In the asymptotic-time limit, for any class �, z� can only
take values 0 or 1, depending on the realized collection of
random fitness landscapes that describes the germinal center.
The quenched average E[limt→∞ z�∗ (t )] is then equal to the
fixation probability of class �∗, which can be computed as an
extreme value problem:

E[ lim
t→∞ z�∗ (t )] = Pfix,�∗ = m�∗

∫
dxρ�∗ (x)

× P�∗ (x)m�∗ −1
∏

� �=�∗
P� (x)m� , (6)

where ρ� (x) is the probability density function (p.d.f.) of the
asymptotic growth rate of the hypercube “mass,” and P� (x) is
its cumulative density function (c.d.f.). The mass of hypercube
α is defined as Nα (t ) = ∑

i nα
i (t ) and its asymptotic growth

rate is

xα = lim
t→∞ ∂t log Nα (t ). (7)
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FIG. 2. The table summarizes the reactivity pattern of antigens and BCR classes. In the schematic illustration for the effective fitness
landscapes, reactivity is modeled by a Gaussian fitness distribution assigned to each antigen-BCR class pair. Nonreactive pairs have a narrow
fitness distribution centered around zero, while reactive pairs have mostly positive fitness values. The effective “cocktail fitness landscape” (last
row) is the weighted average of the fitness landscapes imposed by individual antigens, with weights equal to the relative antigen concentrations.
The distribution of class C remains unaffected by c since the targeted epitope (in green) is the same on both antigens.

Given the linear nature of Eq. (2), the asymptotic growth rate
of any hypercube mass is given by the ground-state eigen-
value of the matrix Hα

i j = − f α
i δi j − μ�i j (corresponding to

an Anderson Hamiltonian when the f ′
i s are IID variables).

There is no general expression for the p.d.f. of the ground-
state eigenvalue of this random matrix, but we can derive
approximate expressions using first-order perturbation theory
in two limiting regimes.

Without loss of generality, let us fix the mutation rate to
μ = 1/d: all growth rates f α

i are then measured in rescaled
units, such that one mutation per unit time is expected. Let
σ� denote the spread of the fitness values for any class �: the
two limiting regimes are obtained when dσ� 
 1 (delocalized
limit) or dσ� � 1 (localized limit). The corresponding p.d.f.s
for the ground-state eigenvalues are (see Appendix A)

ρdel
� (x) =

∫
dfπ� (f ) δ

(
x − 1

N

N∑
i=1

fi

)
, (8)

ρ loc
� (x) =

∫
dfπ� (f ) δ(x − max

i=1,...,N
{ fi} + 1), (9)

where π� (f ) is the distribution of the realized disordered
fitness landscape f . When dσ� 
 1, the asymptotic growth
rate can be identified with the average fitness on the hyper-
cube, thanks to the delocalized nature of the ground-state
eigenvector. This regime corresponds to a scenario in which
competition within the same lineage is not strong. By con-
trast, a strong selection-weak mutation regime corresponds to
the localized limit, dσ� � 1, where, neglecting the constant
offset, the asymptotic growth rate can be identified with the
extremum of the hypercube fitness values, where the ground-
state eigenvector is localized.

D. Antigen cocktails

To model affinity maturation in the context of vaccination
or infection by an antigen cocktail, we must specify the fitness
landscape imposed by individual antigens on any class of
BCRs, as well as the rules by which these landscapes are
combined when the antigens are mixed.

Let us focus on a simplified scenario in which only two
antigens are included in the vaccine, in relative proportions
c and 1 − c. We further assume that the antigens are two
variants of the same protein where we can distinguish, at
a coarse-grained level, a mutated dominant epitope and a
conserved subdominant epitope (see Fig. 2). The mutants
are significantly distant in antigenic space, so that most of
the antibodies generated after a primary immunization with
one antigen may not neutralize the unseen antigen, as ob-
served in the case of the SARS-CoV-2 wild-type strain and
omicron variant [32,33]. Hence, at a first approximation,
cross-reactivity can only be achieved by targeting the con-
served subdominant epitope.

In this scenario, at least three classes of antibodies must
be introduced: the classes targeting the mutant epitopes on
antigen 1 and antigen 2, named A and B, respectively, and the
class targeting the shared epitope (C). Let f �,a indicate the
fitness value of a BCR belonging to class � ∈ {A, B,C} under
exposure to antigen a ∈ {1, 2}. We can interpret f �,a

i dt as the
probability to have a replication event for the BCR i in a time
interval dt , conditioned to the encounter of antigen a. Then
the marginal probability of a replication event per unit time,
in the presence of multiple antigens, reads

f �
i = c f �,1

i + (1 − c) f �,2
i . (10)

This weighted average describes the effective fitness of the
BCRs in the cocktail when all antigen types are presented
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homogeneously and abundantly on the follicular dendritic
cells, so that each B cell, during its residency in the light zone,
effectively samples their relative concentration. In the rest of
this paper, we will work in this condition.

Similarly, the frequencies of activated precursors will be
impacted by the composition of the cocktail. Let us assume
that, for a fixed total amount of antigen, the expected number
of precursors entering the GC is fixed to M, but the number of
precursors of each class m� depends on the original abundance
ν� of reactive B cells of class � in the repertoire and on the
concentration of the targeted epitope. Imposing the condition∑

� m� = M, we have

mA

M
= cνA

Z (c)
,

mB

M
= (1 − c)νB

Z (c)
,

mC

M
= νC

Z (c)
, (11)

where Z (c) = cνA + (1 − c)νB + νC .
For the sake of simplicity, let us assume that the fitness

associated with each nonreactive antigen-BCR pair is exactly
zero, while fitness values associated with reactive antigen-
BCR pairs are mostly positive. In that case,

f A
i = c f A,1

i , f B
i = (1 − c) f B,2

i , f C
i = f C

i , (12)

where we assume that the fitness of the BCRs that target
the unchanged epitope (class C) is unaffected by the antigen
background. The same prescription as Eq. (12) also applies to
the effective asymptotic growth rates of the hypercubes’ mass.
Therefore,

Pfix,C =
∫

dx
∂

∂x
PC (x)mC (c)PA

(
x

c

)mA(c)

PB

(
x

1 − c

)mB (c)

.

(13)

III. THE RANDOM ENERGY MODEL

A. Universality of immunodominance for REM landscapes

So far we described a flexible paradigm that can be adapted
to any fitness landscape model. We must now specify what
type of fitness landscape is associated with the hypercubes
where the clonal lineages evolve. Several theoretical models
have been proposed over the decades to effectively model the
topography of real fitness landscapes [34–38], and, since the
advent of high-throughput sequencing techniques, an increas-
ing number of them have been empirically reconstructed [39].

In the case of affinity maturation, the fitness landscape
is shaped by the presented antigen. To achieve reproducible
antibody evolution, at least at the phenotypic level, the fitness
of BCRs must be largely determined by their binding affin-
ity to the antigen, a phenotype that has long been believed
to have an almost linear relation to the genotype [20,40].
However, recent experimental results have demonstrated that
other random effects can contribute to determining the ef-
fective fitness landscape at our level of description, where
stochastic subprocesses—like antigen capture from follicular
dendritic cells, antigen presentation on the B-cell surface, and
the encounter and interaction with T-helper cells—are not
resolved [41].

Motivated by these findings, by some evidence of epistasis
in the binding affinity of antibodies to antigens [42–45], and
for the sake of tractability, we study here a maximally epistatic

model known as House of Cards or the random energy model
(REM) [35,36,46,47], where the fitness values associated with
each node in the graph are independent random variables
drawn from an identical distribution: π� (f ) = ∏

i p� ( fi ). Un-
der this assumption, the asymptotic growth rate distributions
in Eqs. (8) and (9) are guaranteed to converge to universal
laws as N → ∞.

Thanks to the generalized central limit theorem, the desired
distribution in the delocalized regime reads

ρdel
� (x) ≈ hα�,β�

(
x − μ�,N

σ�,N

)
for N � 1, (14)

where hα,β (z) is a stable distribution (for 0 < α � 2, −1 �
β � 1), whose canonical representation is given in terms of its
characteristic function [48]. When the parent fitness variable
has a finite variance, Eq. (14) reduces to the standard central
limit theorem, where α = 2 and β is irrelevant, and h2,β (z)
corresponds to the Gaussian distribution.

Similarly, it is known from the theory of extreme value
statistics that the c.d.f. of the maximum of a set of IID vari-
ables converges (for most distributions) to one of three types
of functions, rewritten in compact form as∫ x

−∞
du ρ loc

� (u) ≈ Gγ�

(
x − b�,N

a�,N

)
for N � 1, (15)

where

Gγ (z) =
{

e−(1+γ z)−1/γ

, γ �= 0, 1 + γ z � 0,

e−e−z
, γ = 0,

(16)

and bN,� and aN,� are, respectively, average and standard
deviation of maxi=1,...,N { fi} [49].

In summary, in both the localized and delocalized cases,
the c.d.f. of the mass growth rate is of the form

P� (x) ≈ �K�

(
x − ��,N

��,N

)
, (17)

where K� is a set of parameters indicating the shape and
skewness of the asymptotic growth rate distribution in the two
considered regimes. Specifically, K� = (α, β ) in the delocal-
ized limit for the stable distribution hα,β (x), and K� = γ in
the localized limit for the extreme value distribution G′

γ (x).
The two sets of parameters ��,N and ��,N represent, respec-
tively, the shift and scale parameters of the variable of interest
(average or maximum); they will depend on N and on the
parameters of the parent fitness distribution.

Using the functional form of Eq. (17) in Eq. (6), we obtain

Pfix,�∗ ≈
∫

dx
∂

∂x

[
�K�∗

(
x − ��∗,N

��∗,N

)m�∗ ]

×
∏

� �=�∗
�K�

(
x − ��,N

��,N

)m�

, N � 1. (18)

Equation (18) shows that, thanks to universality, the fix-
ation probability of each class depends only on a handful
of parameters derived from the fitness distributions p� ( f ),
and on the germline abundance of the different BCR classes.
For any combination of these model parameters, we can use
Eq. (18) to study the interclass competition in the asymptotic
time limit, and identify the class with the highest fixation
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FIG. 3. Fixation probability for the two-class competition prob-
lem (C vs V ) in the case of REM fitness landscapes, with asymptotic
mass growth rate distributions of the two classes C and V belonging
to the same universality class [KC = KV in Eq. (17)]. Specifically,
we take Gaussian limit stable laws (αC = αV = 2) in the delocalized
regime, and Gumbel extreme value distributions (γC = γV = 0) in
the localized regime. In this plot, mV = mC = 0.5M, M = 50.

probability as the dominant one. We can then immediately
construct universal immunodominance phase diagrams in the
joint parameter space of the limit distributions associated with
the asymptotic growth rates of all the considered classes.

Let us first focus on the simplest, two-class problem, where
only two distinct epitopes are considered, targeted by two
classes of BCRs named V (variable) and C (conserved). We
are interested in determining when each one of the epitopes
is dominant or recessive. Plots of Pfix,C for some example
combinations of universal distributions are shown in Fig. 3
as a function of the following dimensionless combinations of
the distribution parameters [50]:

�̃N = �V,N − �C,N

�C,N
and �̃N = �C,N

�V,N
. (19)

Assuming that the GC capacity M is constrained by the to-
tal antigen amount and resource availability, the variables of
our problem are only �̃N , �̃N , and mC/M. These parameters
represent the axes of a three-dimensional immunogenic space,
where different phases can be identified, as the immunodom-
inant epitope switches from C to V (cf. Fig. 3).

Note that the parameters appearing in Eq. (18), or their
dimensionless combinations in Eq. (19), all refer to the distri-
butions of the asymptotic growth rates. The practical question
is how to relate these parameters of the universal distributions
to the parameters of the parent fitness distributions p� ( f )?
To answer this question, it is useful to resort to derivations
of the stable limit laws and extreme value distributions based
on the renormalization-group (RG) method. This idea has
been repeatedly explored in the literature [51–57] and used
to derive finite-size corrections to the limit distributions, as
well as the asymptotic scaling of shift and scale parameters—
corresponding to ��,N and ��,N in our notation. A concise
derivation of the flow equations in the space of probability
density functions in both the localized and delocalized case is
reported in Appendix B.

In the delocalized case we restrict to the Gaussian case;
other cases refer to parent fitness distributions with diverging

first or second moments, which are not biologically relevant.
Identifying log N = s (treated as a continuous variable for
large N) and rescaling the sums in such a way that first and
second moments do not change with N (see Appendix B), we
find the following flow equations for the parameters of the
asymptotic mass growth rate:

∂s�� (s) = 0, ∂s�� (s) = − 1
2�� (s). (20)

Recalling the definition in Eq. (19) for the two-class problem,

∂s�̃(s) = 1
2 �̃(s), ∂s�̃(s) = 0. (21)

In the localized regime, ��,N and ��,N can be computed if
we know the cumulative density function

F� (z) =
∫ z

−∞
df p� ( f ) ≡ e−e−ϕ� (z)

(22)

via the set of equations (see Appendix B and Ref. [49])

�� (s) = ϕ−1
� (s), �� = �′

� (s). (23)

From Eqs. (23), the flow equations for �̃(s) and �̃(s) read

∂s�̃(s) = 1

�̃(s)
− 1 − γC (s)�̃(s), (24)

∂s�̃(s) = [γC (s) − γV (s)]�̃(s), (25)

where γ� (s) = �′
� (s)/�� (s) → γ� as s → ∞ for � ∈

{C,V }. Asymptotically,

�̃N ≈ �̃0NγC−γV , (26)

�̃N ≈ �̃0N−γC − 1 − N−γC

γC
+ N−γC

γV �̃0
(NγV − 1), (27)

where the initial conditions �̃0 = �C (0)/�V (0) and �̃0 =
[�V (0) − �C (0)]/�C (0) are defined after the following re-
lations:

F� ( − �� (0)/�� (0)) = F ′
� ( − �� (0)/�� (0)) = e−1. (28)

The flow equations (21) or (24)–(25) can be exploited to
construct an immunodominance phase diagram in the space
of “bare” control parameters �̃0, �̃0—which can be directly
reconstructed from the parent distribution p� ( f )—rather than
�̃N , �̃N . The idea is to identify from these equations the stable
fixed points and their basins of attraction, and to associate
with each basin the asymptotic value of Pfix,C computed at the
corresponding fixed point.

Figure 4 depicts the flow equations and the resulting im-
munodominance phase diagrams in some illustrative special
cases. If we work in the delocalized regime and assume, as in
Fig. 3, that the tails of the two parent fitness distributions are
of the same type, so that the shape parameters associated with
V and C converge to the same value at the same rate, then �̃∞
is a constant and �̃∞ diverges, keeping the same sign as �̃0.
Then we obtain only two asymptotic values for Pfix,C , i.e., 0
(for �̃0 > 0) or 1 (for �̃0 < 0). In the localized case, when
γV (s) = γC (s) → γ , �̃ is a constant and

�̃ = 1

γ
(1/�̃ − 1) (29)
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FIG. 4. First row: Identification of the basins of attraction of the RG flow equations for the fixed points �̃ = −∞ (Pfix,C = 1) and �̃ =
∞ (Pfix,C = 0) in three example cases: (a) Delocalized Gaussian case; (b) localized case, with γC = γV = 0; (c) localized case, with γC =
γV = −1. In the background, we show the fixation probability of class C in the space of asymptotic parameters �̃N , �̃N for M = 50, mC =
mV = 0.5M. In the foreground, solutions of the flow equations (21) (a) and (24)–(25) (b,c) are shown in orange. Second row: Parametric
exploration of the immunogenic space along the lower bound in Eq. (30). The shaded region indicates the C immunodominant phase in the
two-class setting. The black parametric curves are described by Eqs. (34) and (35), with parameters (I) (symmetric case) �A,1 = �B,2 = �C ;
�C = 0.75�C ; �A,1 = �B,2 = 2�C ; (II) (asymmetric �) �A,1 = �B,2 = 1.5�C ; �C ; �A,1 = 2.5�C ; �B,2 = 1.25�C ; (III) (asymmetric �)
�A,1 = �C ; �B,2 = 2�C ; �C = 0.5�C ; �A,1 = �B,2 = 1.33�C . For each curve, the empty circle denotes the c = 0 point, the filled triangle the
c = 1 point. (d) Delocalized regime (Gaussian): here the transition line is vertical and the colored circles indicate the leftmost points along the
parametric curves. These points correspond to c∗ = 1/2 when �A,1 = �B,2 and to c∗ �= 1/2 when �A,1 �= �B,2. (e) Localized regime, γ = 0
(Gumbel): here the transition line is horizontal, and thus sensitive to imbalances of the kind �A,1 �= �B,2. (f) Localized regime, γ = −1/2
(Weibull): colored points represent the farthest points from the transition line, in the immunodominant phase of epitope C.

identifies a line of fixed points, for γ �= 0, whose stability is
determined by the sign of γ . When γ < 0, the points are un-
stable [58]: since lim�̃→∞ Pfix,C = 0 and lim�̃→−∞ Pfix,C = 1,
the line of fixed points becomes a transition line between a
phase where the C epitope is dominant and a phase where it is
subdominant.

Let us finally note that in the N → ∞ limit the parameter
mC/M, indicating the fraction of class C germlines in the GC,
becomes irrelevant: the phase diagram is thus the same for
all values of mC/M ∈ (0, 1), as long as M 
 N . Finite-size
corrections may, however, be important: it is known that the
slow convergence to the asymptotic distribution in the size N
of the data set is problematic for the quantitative application
of extreme value theory to real situations [59]. In our problem,
finite size effects may become especially non-negligible if the
effective size of the uncorrelated sequence space explored by
each clonal lineage is not too big, as can happen in the case
of short-lasting affinity maturation or if we allow for strongly
correlated fitness landscapes.

This analysis, which we illustrated for the two-class prob-
lem, can be extended to multiple classes of BCRs targeting an
increasing number of distinct epitopes.

B. General principles for optimal antigen cocktail design

The immunogenic space construction introduced in the
previous section can be used to investigate under what con-
ditions antigen cocktails can be used to invert the natural
immunodominance relations between conserved and highly
mutable epitopes. Under the assumptions outlined in Sec. II D,
manipulating the relative antigen concentration c in a two-
antigen cocktail describes a parametric exploration of the
immunogenic space of the three-class problem, as described
by the combination rules for the fitness landscapes of Eq. (12)
and precursor frequencies of the various BCR classes in
Eq. (11).

This space is higher-dimensional than the examples
of Sec. III A, but if we are only interested in the
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immunodominance of one epitope (e.g., the conserved epitope
targeted by B cells of class C), we can exploit a lower bound
on P3cl

fix,C (c) that casts the parametric three-class problem into
an effective two-class problem:

P3cl
fix,C (c) � P2cl

fix,C (�̃eff(c), �̃eff(c), mC (c)), (30)

where

Pfix,C (c) ≈
∫

dx
∂

∂x
�KC

(
x − �C,N

�C,N

)mC (c)

× �KA

(
x − �A,N (c)

�A,N (c)

)mA(c)

× �KB

(
x − �B,N (c)

�B,N (c)

)mB (c)

, (31)

with

�A,N (c) = c�A,1
N , �B,N (c) = (1 − c)�B,2

N , (32)

�A,N (c) = c�A,1
N , �B,N (c) = (1 − c)�B,2

N . (33)

In Eq. (30), P2cl
fix,C is the fixation probability of C against a

single effective class V , representing the most successful of A
and B, with effective parameters

�̃eff
N (c) = max

{
c�A,1

N , (1 − c)�B,2
N

} − �C
N

�C
N

, (34)

�̃eff
N (c) = �C

N

max
{
c�A,1

N , (1 − c)�B,2
N

} . (35)

Let us note that Eqs. (30)–(35) are valid for any N , even
though the bound may not be equally tight.

For the sake of simplicity, we work in the space of “bare”
parameters (�̃0, �̃0), where the immunodominance phase di-
agram exhibits a sharp transition. From a comparison between
the shape of the parametric curves described by Eqs. (34) and
(35) and that of the transition line in the N → ∞ limit, we
can gain insight into several questions of interest, i.e., given
a pair of antigens, what is the optimal cocktail formulation
that maximizes the production of class C B cells? And what
are the conditions under which the optimized cocktail can
make an epitope that is naturally immunorecessive de facto
immunodominant?

As regards the optimization of the cocktail composition, an
obvious solution exists if the system is symmetric under ex-
change of c and 1 − c, i.e., if pA,1( f ) = pB,2( f ) and νA = νB.
In that case, the optimum corresponds to a balanced mixture
of antigens (c∗ = 1/2) for any finite but large N , in both
evolutionary regimes (see Appendix C). When the symmetry
is broken, the optimal composition will deviate from the even
mixture in order to balance the competition exerted by classes
A and B on class C. The specific value of c∗ is only implic-
itly determined for finite N in this asymmetric case, but a
qualitative analysis can be extracted from the study of the im-
munodominance phase diagrams in the N → ∞ limit. When
�A,1 �= �B,2 [curve III in Figs. 4(d)–4(f)], the asymmetry
stretches the parametric lower bound curve in the horizontal
direction: as a result, this asymmetry is best sensed in the
delocalized case, where the transition line is perpendicular to
that direction. Similarly, the localized Gumbel case exhibits a

transition line in the horizontal direction, making the system
most sensitive to asymmetries in the � parameters of classes
A and B, which stretch the parametric lower bound curve in
the vertical direction [curve II in Figs. 4(d)–4(f)].

A sufficient condition for the inversion of the immunodom-
inance hierarchy is that the parametric curve of Eqs. (34) and
(35) crosses the manifold P2cl

fix,C = 1/2 for some c ∈ (0, 1).
Clearly there is a restricted range of combinations of the
original parameter values for the three BCR classes such that
this crossing can be achieved. In the delocalized limit, this
condition is tied to the �� parameters of the parent single-
antigen fitness distributions, while in the localized limit, for
γ = 0, it is constrained by the �� parameters. For values
of the shape parameter γ < 0, the conditions for inversion
look generally more intricate, unless classes A and B have
symmetric distributions for antigens 1 and 2.

These general guidelines are robust to the specific
details of the problem, as they only arise from the identifi-
cation of asymmetries of epitope-specific fitness distributions
and of the universality class of the problem. The bulk of
the presented results is based on the assumption N � 1 and
on long-time asymptotics: we did not investigate in depth
finite-size or finite-time corrections. However, we remark
that finite-time effects may be important in the strongly lo-
calized limit, where the effective size N of the explored
sequence space is dramatically reduced. In such a case, since
finite-size corrections also extend to the third axis of the
immunogenic space—i.e., germline abundance—cocktail op-
timization becomes sensitive to possible imbalances in the
relative germline abundances, with greater sensitivity exhib-
ited for smaller N .

IV. CONCLUSION

Understanding epitope immunodominance hierarchies is
of paramount importance for developing universal vaccines
against highly mutable pathogens and for studying pathogen
coevolution in immunized hosts or populations. Using a
coarse-grained model for affinity maturation and an asymp-
totic definition of immunodominance, we proposed here a
simple framework to characterize immunodominance hier-
archies from the statistical features (or rather differences
in them) of epitope-specific fitness landscapes of germinal-
center B cells.

We analyzed the paradigmatic case of random energy
model landscapes, showing that in this case, as the dimension
of the genotypic space explored during affinity maturation
increases, the details of the problem become less and less
important and a form of universality emerges—at least in evo-
lutionary regimes that are far from the localization transition.
At long times, the impact of the precursor cell abundance
vanishes (provided that the number of precursors per class re-
mains sufficiently large for our deterministic approximation)
and the average GC population becomes insensitive to the de-
tails of the fitness distributions of the various antibody classes.
The fixation probability of any class, serving as a proxy for
the immunogenic advantage of the targeted epitope, ultimately
depends on a small, universally defined set of parameters.

This set of parameters defines what we refer to as
immunogenic space, where a phase transition occurs between
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immunodominant and immunorecessive states for a given
epitope. We believe that such construction of an immun-
odominance phase space, which can be extended to other
fitness landscape models, can be a useful tool to visualize and
characterize pathogen evolution or to determine under what
general conditions the manipulation of vaccine compositions
may invert the immunodominance relations between epitopes.
While, to the best of our knowledge, comprehensive data
sets enabling a systematic comparison of the binding affinity
landscapes of BCRs across various classes are currently lack-
ing, recent advances in epitope mapping and deep mutational
scanning techniques indicate the potential for their acquisition
and analysis [42,60,61].

In conclusion, we believe that, despite its extreme simplic-
ity, the framework we have proposed presents a promising
avenue for a deeper understanding, prediction, and manipu-
lation of immunodominance relations within the context of
affinity maturation. To fully realize its potential, an invaluable
input would be high-throughput experimental data that cap-
ture without bias the coarse-grained statistical properties of
epitope binding affinities.
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APPENDIX A: FIRST-ORDER PERTURBATION THEORY
FOR THE GROUND-STATE EIGENVALUE

OF THE ANDERSON MODEL

For each clonal lineage α, we have from Eq. (2)

Hα
i j = − f α

i δi j − 1

d
�i j, �i j = −dδi j + Ai j, (A1)

where Ai j is the adjacency matrix of the d-dimensional hy-
percube. Without loss of generality, let us take a zero-mean
random diagonal and designate by σ the scale parameter of the
IID variables, however defined (e.g., standard deviation, when
not diverging). Let us define as f̃ α

i = f α
i /σ a new random

fitness variable with the same type of distribution but unit
scale. The parameter that controls the Anderson localization
transition is dσ = ε, with εc ∼ O(1). Two limiting regimes
can be identified:

(i) dσ = ε 
 1—delocalized regime. We can rewrite

Hα
i j = 1

d

(
εH1

i j + H0
i j

)
, (A2)

where H0
i j = −�i j and H1

i j = − f̃ α
i δi j . The spectrum and

eigenvectors of the unperturbed Hamiltonian are exactly
known for the d-dimensional hypercube. However, at first
order in perturbation theory we are only interested in the
unperturbed ground-state eigenvalue, λ0

0 = 0, and the associ-
ated eigenvector, v0

0 = 1√
N

(1, 1, . . . 1), which are common to

any graph Laplacian. Given the structure of v0
0, the first-order

correction for the asymptotic growth rate is

x = −λ0 � − 1

d

(
λ0

0 + ελ1
0

) = 1

N

N∑
i=1

f α
i , (A3)

from which we obtain the distribution ρdel(x) in Eq. (8).
(ii) dσ = ε � 1—localized regime. Let us rewrite

Hα
i j = σ

(
H0

i j + ε−1H1
i j

)
, (A4)

where the unperturbed Hamiltonian H0
i j = (− f̃ α

i + σ−1)δi j is
already diagonal, with the ground state localized on the site
with the maximum fitness. The perturbation is H1

i j = −Ai j .
Since the adjacency matrix has null diagonal entries, at first
order we have no correction to the ground-state eigenvalue,
leading to

x � max
{

f α
i , i = 1, . . . , N

} − 1. (A5)

Both results hold true even when the random energy land-
scape is correlated; what changes, in such a case, is only how
the distributions of the empirical mean and of the maximum
are computed.

APPENDIX B: RENORMALIZATION-GROUP EQUATIONS
FOR SUM AND EXTREME VALUE STATISTICS

OF IID VARIABLES

For completeness, we present in this Appendix a concise
derivation of the renormalization-group (RG) equations for
the shift and scale parameters of the stable laws describing the
sum and extreme value statistics of a large set of IID variables.
The presentation is largely based on Refs. [49,51].

Let us consider a set of N IID variables x1, . . . xN with
distribution px, characteristic function φx, and cumulative Fx.
The assumption underlying the RG construction is that, upon
an N-dependent linear transformation of the variable of inter-
est (sum or maximum), the p.d.f. of the transformed variable
converges to a well-defined limit. Let us define

ζN =
∑N

i=1 xi − bN

aN
, ξN = maxi=1,...,N xi − bN

aN
, (B1)

and correspondingly their characteristic and cumulative func-
tions:

φζN (t ) =
∫

dζ pζN (ζ )e−itζ = φx

(
t

aN

)N

eibN
t

aN , (B2)

FξN (z) =
∫ z

dξ pξN (ξ ) = Fx(aN z + bN )N . (B3)

Since the maximum and the sum of a set of IID variables
can be obtained iteratively, we can divide the set of N vari-
ables into p groups of equal size N ′ = N/p and compute the
overall sum as the sum over the sums of each group, and
the total maximum as the maximum of the maxima of the p
groups. The same procedure can be iterated to compute sums
and maxima within groups until we reach groups of size 1. Let
us then introduce the flowing functions φ(t, p) and F (z, p),
with p = 1 + ε parametrizing the flow (ε small):

φ(t, p) = φx

(
t

ap

)p

eibp
t

ap , (B4)

F (z, p) = Fx(apz + bp)p. (B5)
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For convenience, redefine s = log p ≈ ε, g(t, s) = log φ(t, es)
and f (z, s) = − log[− log F (z, es)], so that Eqs. (B4) and
(B5) become

g(t, s) = es

[
gx

(
t

a(s)

)
+ i

t

a(s)
e−sb(s)

]
, (B6)

f (z, s) = fx[a(s)z + b(s)] − s. (B7)

The RG equations for the sum and extreme value statistics
are obtained by rewriting, respectively, Eqs. (B6) or (B7) as
PDEs for g(t, s) or f (z, s), where gx and fx do not explicitly
appear anymore. This can be achieved by an appropriate ma-
nipulation of the partial derivatives of g(t, s) and f (z, s) with
respect to their arguments. The resulting PDEs read

∂sg(t, s) = g(t, s) − t
a′(s)

a(s)
∂t g(t, s) − it

[
b(s)

a(s)
− b′(s)

a(s)

]
,

(B8)

∂s f (z, s) =
[

a′(s)

a(s)
z + b′(s)

a(s)

]
∂z f (z, s) − 1. (B9)

Let us notice that, while f (z, s) ∈ R, g(t, s) ∈ C, and Eq. (B8)
must be read as a pair of equations for the real and imaginary
part of the flowing function g(t, s) = u(t, s) + iv(t, s). The
shift and scale parameters, b(s) and a(s), on the contrary, must
be real.

Recall that the assumption behind the RG construction
is the existence of an asymptotically stable fixed point for
Eqs. (B8) and (B9), requiring that the s-dependent coefficients
converge to constants as s → ∞. Precisely, let us denote these
constant limits of the coefficients of Eq. (B8) as

a′(s)

a(s)
→ α−1,

b(s)

a(s)
− b′(s)

a(s)
→ β, (B10)

so that the invariant solution reads

g(t ) =
{

C1t + iC2t + iβt log |t | if α = 1,

i αβ

α−1 t + |t |α(
C1 + iC2

t
|t |

)
if α �= 1,

(B11)

where α > 0, and C1,C2 ∈ R are arbitrary constants that will
be fixed by the choice of suitable boundary conditions for
the partial differential equation (PDE) (B8)—interpreted as
physically invariant conditions that relate the parent distri-
bution to the asymptotic stable law, as in the traditional RG
procedure—and from constraints coming from the support of
the parent distribution px(x) [51].

From the specification of these boundary conditions, the
flow equations for the scale and shift parameters a(s) and
b(s) are also derived. Let us focus here on the case in which
the parent distribution has finite first and second moments
[considerations about the scaling with s of a(s) and b(s) in the
general case can be found in [51]]. Let us first impose that,
for any s, the first moment of the distribution reconstructed
from φ(t, s) = eg(t,s) is equal to zero, i.e., that ∂t u(t, s)|t=0 =
∂tv(t, s)|t=0 = 0. Using this condition in Eq. (B8), we deduce

β(s) = b(s)

a(s)
− b′(s)

a(s)
= 0 ∀s ⇐⇒ b(s) = b(0)es, (B12)

where es can be identified with the number of variables of
which we are computing the sum, and b(0) is the initial

shift for the parent distribution, chosen in such a way that
∂tv(t, s)|t=0 = 0. Trying to impose the same condition on
Eq. (B11), it is clear that this is only possible for α > 1.
Let us now impose the boundary conditions ∂2

tt u(t, s)|t,0 = 1,
∂2

ttv(t, s)|t,0 = 0, corresponding to fixing the second moment
to be equal to 1. From Eq. (B8), this condition implies

α(s) = 2 ∀s ⇐⇒ a(s) = a(0)(es)1/2, (B13)

and it fixes the values of the arbitrary constants to C1 = 1,
C2 = 0.

For the coefficients of Eq. (B9), let us denote the limits

a′(s)

a(s)
→ γ ,

b′(s)

a(s)
→ δ (B14)

and the corresponding invariant solution

f (z) = 1

γ
log(γ z + δ) + C (B15)

for γ z + δ > 0, where again C is an arbitrary constant fixed
by the boundary conditions of the PDE (B9). Let us impose in
this case that f (0, s) = 0 ∀s and ∂z f (z, s)|z=0 = 1 ∀s, corre-
sponding to the conditions F (0, s) = ∂zF (z, s)|z=0 = e−1 ∀s.
From these conditions [using Eqs. (B9) and (B7)], we obtain

a(s) = b′(s), b(s) = f −1
x (s), (B16)

also implying δ = 1 and C = 0.
To obtain the flow equations for the dimensionless pa-

rameters defining the axes of the immunogenic phase space,
it is sufficient to identify ��,N , ��,N with b(s), a(s) in the
localized/extreme value regime, and with b(s)e−s, a(s)e−s in
the localized/average regime (s = log N).

APPENDIX C: SYMMETRIC OPTIMIZATION

When Pfix,C (c) = Pfix,C (1 − c), the symmetry of the prob-
lem imposes that c = 1/2 be a stationary point. That this
stationary point is also a maximum and no spontaneous sym-
metry breaking occurs must be proved by the concavity of this
function.

Let us rewrite Eq. (6) for the symmetric case

Pf ix,C (c) = mCM
∫

dxρC (x)PC (x)mC M−1

× PA(x; c)mA(c)MPB(x; c)mB (c)M, (C1)

where mC is independent of c, and mA = cνmC , mB = (1 −
c)νmC , with ν = νA/νC = νB/νC . Because of the symmetry
of the effective cocktail fitness distributions,

pA( f ; c) = pB( f ; 1 − c) ⇒ PA(x; c) = PB(x; 1 − c), (C2)

independently of the regime in which affinity maturation oc-
curs. Working in the same setting as in the main text, where
f A = c f A,1 and f B = (1 − c) f B,2, meaning that replication
of a BCR is conditioned to the encounter of the reactive
epitope, we can deduce that xA/c and xB/(1 − c) are equal
in probability. Here xA and xB represent the asymptotic mass
growth rates of hypercubes in class A and B. For all the
considered limiting regimes, the transformations that map f
to x are indeed linear—extremum for the localized regime at
asymptotic times; identity for the localized regime at early
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times; average for the delocalized regime—allowing us to
rewrite the cumulative distribution of growth rates for classes
A and B in terms of a reference distribution for the variable
x̂ = xA/c or x̂ = xB/(1 − c), independent of c:

PA(x; c) = P̂

(
x

c

)
, PB(x; c) = P̂

(
x

1 − c

)
. (C3)

We can now recognize that P̂(x)νmC M ≡ P(x) is the cumulative
distribution of the maximum of a sequence of νmCM IID vari-
ables distributed as x̂. Analogously, mCMρC (x)PC (x)mC M−1 ≡
ρ̃(x) is the p.d.f. of the maximum of mCM independent vari-
ables distributed as xC . Therefore,

Pfix,C (c) =
∫

dxρ̃(x)P

(
x

c

)c

P

(
x

1 − c

)1−c

. (C4)

It is not guaranteed, for any p.d.f. ρ̃ and any c.d.f. P, that
(C4) is a concave function at c∗ = 1/2. When the fixation
probability is twice differentiable with respect to c, the general

condition reads ∂2Pf ix,C

∂c2 |c∗= 1
2
� 0, with

∂2Pfix,C

∂c2

∣∣∣∣
c∗= 1

2

=
∫

dxρ̃(x)16x2P(2x)
∂2 log P(z)

∂z2

∣∣∣∣
z=2x

. (C5)

Nonetheless, if we identify P̂(aN z + bN ) with Gγ (z) in
Eq. (16), the concavity condition can be easily proved. In
any of the three cases, γ = 0, γ < 0, or γ > 0, the former
identification implies that P(aNνmC Mz + bNνmC M ) can also be
identified with Gγ (z). Hence we obtain, with a simple change
of variables,

∂2Pf ix,C

∂c2

∣∣∣∣
c∗= 1

2

=
∫

dxρ̃N (x)16

(
x + bN

2

)2(
Gγ (z)

∂2 log Gγ (z)

∂z2

)∣∣∣
z=2x

with ρ̃N (x) =
∫

dsρ̃(s)δ

(
x − s − bN

aN

)
. (C6)

We see from Eq. (16) that Gγ (z) is not differentiable in R when γ �= 0; however, we can rewrite in this case

Gγ (z) =
{

e−(1+γ z)−1/γ

�(1 + γ z), γ > 0

e−(1+γ z)−1/γ

�(1 + γ z) + �(−1 − γ z), γ < 0
⇒ log Gγ (z) = −(1 + γ z)−1/γ �(1 + γ z) for γ �= 0, (C7)

and approximate the Heaviside functions with smooth sigmoidal functions, e.g., �l (s) = 1
π

tan−1(s/l ) + 1/2, such that �(s) =
liml→0 �l (s). As a result,

∂2Pfix,C

∂c2

∣∣∣∣
c∗= 1

2

= lim
l→0

⎧⎪⎪⎨
⎪⎪⎩

− ∫
dxρ̃N (x)16

(
x + bN

2

)2
e−2x−e−2x

, γ = 0;

− ∫
dxρ̃N (x)16

(
x + bN

2

)2
Gγ (2x)(1 + 2γ x)−

1
γ [(1 + γ )(1 + 2γ x)−2�l (1 + 2γ x)−

2γ (1 + 2γ x)−1�′
l (1 + 2γ x) + γ 2�′′

l (1 + 2γ x)], γ �= 0.

(C8)

When γ = 0, Pfix,C has a negative well-defined second derivative, which guarantees that c∗ = 1/2 is a smooth maximum. On
the contrary, when γ �= 0, Pfix,C (c) can have a kink at c∗ = 1/2. By definition, liml→0 �l (s) = �(s) and liml→0 �′

l (s) = δ(s).
Hence the first term in the square brackets has the sign of 1 + γ . This term is finite when γ > 0, while it can diverge for γ < 0,
depending on whether and how fast ρ̃N (s) converges to 0 for s → −1/2γ . The second term is null for any γ > −1. In the
third term, �′′

l formally converges to the derivative of a Dirac δ function, which yields again a null integral for any γ > −1. In

conclusion, ∂2Pfix,C

∂c2 |c∗= 1
2
� 0 for any γ > −1, and it possibly diverges for −1 < γ < 0.

One can also make a hand-wavy argument for the concavity of Pfix,C (c) in the delocalized regime: in the limit N � 1, P̂(x) is a
monotonically increasing function that varies very steeply between 0 and 1. Thus we can roughly approximate P̂(x) � θ (x − x∗):
if νmCM 
 N , this implies P(x) � θ (x − x∗), at the same order of approximation. Therefore,

Pfix,C (c) �
∫

max{cx∗,(1−c)x∗}
ρ̃(x), (C9)

implying arg maxc Pfix,C (c) = arg minc max{cx∗, (1 − c)x∗} = 1/2 ∀x∗ ∈ R0. The same line of reasoning can be applied to cases
in which we have more than two BCR classes competing with the cross-reactive one, which target equally immunogenic variants
of the variable epitope. In this scenario, the optimum c∗ = arg minc:

∑
i ci=1 max{cix∗}i=1,...,E still corresponds to the balanced

cocktail.
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