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Effective model of protein-mediated interactions in chromatin
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Protein-mediated interactions are ubiquitous in the cellular environment, and particularly in the nucleus, where
they are responsible for the structuring of chromatin. We show through molecular-dynamics simulations of a
polymer surrounded by binders that the strength of the binder-polymer interaction separates an equilibrium from
a nonequilibrium regime. In the equilibrium regime, the system can be efficiently described by an effective model
in which the binders are traced out. Even in this case, the polymers display features that are different from those
of a standard homopolymer interacting with two-body interactions. We then extend the effective model to deal
with the case where binders cannot be regarded as in equilibrium and a new phenomenology appears, including
local blobs in the polymer. An effective description of this system can be useful in elucidating the fundamental
mechanisms that govern chromatin structuring in particular and indirect interactions in general.
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I. INTRODUCTION

DNA-binding proteins, such as cohesin [1], HP1 [2],
SATB1 [3], H-NS [4], and many others, mediate the physical
interactions between distal regions of chromatin. While some
of them perform this task in a complex way, like the case of
cohesin that consumes energy to extrude chromatin loops [5],
others work under conditions that are usually regarded as of
near-equilibrium. For example, HP1 is regarded to mediate
interactions in heterochromatin by binding to DNA and ho-
modimerizing, with a mechanism that is weakly dependent on
ATP consumption [6].

A simple model of the latter mechanism was developed by
the Nicodemi group, who described the chromatin fiber as a
polymer surrounded by diffusing beads that can bind to pairs
of monomers of the polymer, mediating their mutual interac-
tion [7]. This is referred to as the string and binder switch
(SBS) model. For homopolymers, they describe two phase
transitions at increasing binder concentration or interaction
energy [8] from a coil to a disordered globule and then to a
globule with an ordered arrangement of binders. Using a het-
eropolymeric model and multiple types of binders, the authors
can reproduce chromatin folding into multiple domains [9]
observed experimentally [10].

Using molecular dynamics simulations of a polymer inter-
acting with binders with a fixed number of interacting patches,
Marenduzzo and coworkers showed that chromatin collapse
into clusters, stabilized by the entropic bridging that mini-
mizes the bending and looping penalties in the polymer [11].
If the binders undergo an internal dynamics between a binding
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and a nonbinding state, clusters are liquid, and it is possible to
tune their size [12]; clusters induced by cohesin in the absence
of ATP were studied experimentally in yeast [13].

On the other hand, several polymeric models were stud-
ied in the literature to describe profitably the conformational
properties of the chromatin fiber, especially at large length
scale, which are controlled by a direct interaction between
their monomers [14–18]. In all these models, the fact that the
structuring of chromatin is controlled by binding proteins is
treated implicitly.

A relevant question is whether one can trace out the degrees
of freedom associated with the binders and build an effective
model for the polymer. In fact, the motion of the chromatin
fiber at the length scale of megabases, which is the most rele-
vant for transcriptional control, takes place with a diffusion
coefficient D ≈ 3 × 10−3 µm2/s [19] that is two orders of
magnitude smaller than that of the proteins that mediate its
interaction [20]. One can then test the hypothesis that binders
are at equilibrium during the motion of the fiber and calculate
an effective potential for the polymeric chain that depends
only on its degree of freedom. In the regime in which this
approximation is valid, we expect that the system behaves as
a homopolymer, displaying a transition between the standard
coil and globular phases [21].

Using the analytical tools of statistical mechanics and
molecular dynamics simulations, we studied a simple ho-
mopolymeric model interacting through floating binders, as
a simple case to investigate the basic mechanism of protein-
mediated interactions. In particular, we investigated both the
regime in which the effective model applies and that in which
binders cannot be regarded as at equilibrium within a bio-
logically relevant time and a new phenomenology appears in
this metastable state. Of course, this model is not sufficient
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FIG. 1. Values of the average gyration radius 〈Rg〉 normalized to R0 = aN1/2 and of the order parameter �S that quantifies the localization
of globules along the chain. The dashed line indicate the region in which the radius of gyration assumes the value of an ideal chain.
Representative snapshots of the system are displayed close to the plots.

to reproduce the richness of structure that chromatin exhibits
in the cellular nucleus. However, the ability to simplify the
description of the system while retaining its phenomenology
is helpful in elucidating the basic mechanisms that control
chromatin structuring in this case, and the behavior of physical
systems in general.

II. BINDERS DISPLAY TWO EQUILIBRATION REGIMES

The starting point of this study are molecular dynamics
simulations of the SBS model. We made use of a reference
chain of NB = 103 identical monomers interacting with the
potential,

U = Uchain + U B
HC + U b

HC + U Bb
LJ , (1)

where Uchain = k
2

∑
i(|Ri+1 − Ri| − a)2 is a harmonic poten-

tial that describes the polymeric bonds (setting k = 102 and
a = 1, in arbitrary units), U B

HC = 4
∑

I [σ
12/|RI − RJ |12 −

1/4] and U b
HC = 4

∑
i[σ

12/|ri − r j |12 − 1/4] are hard-core
potentials on the beads of the chain and on the binders, respec-
tively, and U Bb

LJ = 4ε
∑

[σ 12/|RI − r j |12 − σ 6/|RI − r j |6] is
the attractive potential between the beads and the binders. Up-
percase letters refer to the polymeric chain, lowercase letters
to the binders.

The temperature is set to T = 1 (in energy units, also
setting Boltzmann’s constant to 1), and the volume V = 603 is
defined by elastic boundary conditions. All masses are set to

unity. The friction coefficients are γB = 100 ad γb = 1, to re-
produce the experimental ratio between diffusion coefficients
(see above). We simulated the Langevin dynamics of the
system with a time step �t = 10−3 for 109 steps. Comparing
the calculated and the experimental diffusion coefficient for a
bead of the chain and assuming that a = 102 nm, then a time
unit of the model is ≈10−1 s, so each simulation represents a
time span of the order of 105 s to102 h, which is larger than
the duration of the cell cycle of mammals. With the choice of
NB = 103, we are simulating few megabases. The simulations
are performed with LAMMPS [22], varying the number of beads
nb and ε that define the SBS model.

The average gyration radius 〈Rg〉 seemingly displays a
transition between globular and coil states of the chain along
a curved line in the parameter space defined by the number of
beads nb and the depth ε of the energy well [Fig. 1(a)]. The re-
gion corresponding to the ideal-chain behavior 〈Rg〉 = aN1/2

can be fitted with the curve

ε = ε′ − k log

(
nb

nb + kb

)
(2)

with ε′ = 0.884, k = 4.009 and kb = 36.415 (dashed curve
in Fig. 1). The rationale of trying a fit with such a logarithm
function is that it describes the loss of entropy upon binding
in a two-state system.

However, while in the low-ε part of the parameter space
the conformations of the chain look like the standard coil
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FIG. 2. Root-mean-square difference σ among the average energies U Bb

LJ + U b
HC of the beads in five independent simulations, normalized

to the standard deviation σT due to thermal fluctuations. The dashed line indicates approximately where σ starts to be larger than zero.

state of homopolymers [Fig. 1(b)], in the rest of the parameter
space it displays blobs that are not expected in the case of a
homopolymer [Fig. 1(c); see also Ref. [9]].

The formation of localized blobs, involving only specific
segments of the polymer, is a spontaneous breaking of the
translational symmetry along the chain. It can be quantified
by the Shannon entropy

�S = Smax +
∑

I

fI log fI (3)

associated with the distribution of contacts fI = 〈∑ j θ (|RI −
r j | < d0)/

∑
I j θ (|RI − r j | < d0)〉 with binders along the

chain; here θ is a step function that is 1 if its argument is true
and zero otherwise, and Smax = log NB. The order parameter
�S ranges from 0 when the contacts are uniformly distributed
along the chain to Smax when they are localized in blobs. A
nonuniform distribution of contacts (�S > 0) suggesting the
presence of blobs appears stably only at large values of ε.
Although multiple blobs can appear in the early stages of
simulations, they always coalesce into a single blob.

Since γb � γB, one can expect that the binders move much
faster than the polymer and are in equilibrium as the polymer
moves. This hypothesis could be valid at small ε, where the
binders can bind, unbind, and diffuse often enough to make
contacts with a uniform probability along the chain, but it
is not compatible with the presence of stable blobs. Thus,
we have studied the degree of equilibration of the beads by
repeating five independent simulations for each set of the
parameters ε and nb, calculating the average energy of the
binders U Bb

LJ + U b
HC in each simulation, and finally calculat-

ing the root-mean-square difference σ among the average
energies. If the binders are equilibrated within the simulation
time, we expect that σ is small, at least comparable to the
thermal fluctuations within each simulation (that are at least
of the order of 10−1 energy units). The quantity σ can be
compared with the standard deviation σT due to thermal mo-
tion, calculated from the average of the variance over the five
simulations.

The value of σ/σT (Fig. 2) is approximately zero for
ε � 1.2 independently of nb. Consequently, for larger values
of ε, binders cannot be at equilibrium within the simulation
time, which is longer than that relevant for the cycle of a cell.
Although the requirement σ ≈ 0 is only a necessary condition
for equilibration of the binders, the fact that γb � γB suggests
that in the region ε < 1.2 they can move so fast with respect
to the chain that can be regarded as in equilibrium. The small
value of �S in this region (Fig. 1) supports this suggestion.

What we found in the case of large ε is not only that essen-
tially all the binders are bound to the polymer, but also that the
energetic properties of the system depend on its initial state;
trajectories starting from different initial states are confined
to different regions of conformational space and cannot cross
from one to the other in a biologically meaningful time.

III. THE EFFECTIVE POTENTIAL FOR THE
EQUILIBRATED REGIME

We first developed an effective potential for the regime
in which binders can be regarded as at equilibrium. For this
purpose, we approximated the interaction energy between the
binders and the monomers of the chain as a spherical-well
potential

U (R, r) = −ε

NB∑
J=1

nb∑
i=1

θ (|RJ − ri| < d0), (4)

where R are the coordinates of the beads of the polymer,
indexed by i, r are the coordinates of the floating binders,
indexed by J , d0 is the interaction range, and ε defines its
strength. The binders are assumed not to interact with each
other, and the same is true for the monomers of the chain.

The partial partition function, assuming that the r are at
equilibrium for a given choice of R, is

Z (R) =
∫

d3r1 · · · d3rn

nb∏
i=1

exp

[
βε

NB∑
J=1

θ (|RJ − ri| < d0)

]
,

(5)
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FIG. 3. Comparison of the radius of gyration Rg obtained from the SBS and from the effective model at two different values of ε. Error
bars indicate the standard deviation.

where β is the inverse temperature and we set Boltzmann’s
constant to unity. The free energy of the polymer is F (R) =
−T log Z (R). Summing and subtracting 1 to the integrand and
realizing that the integrals factorizes over the binders, the free
energy can be written as

F (R) = −T nb log

[
V +

∫
d3r(eβε

∑
J θ (|RJ−ri|<d0 ) − 1)

]
.

(6)
Since the step function that defines the integrand is piece-wise
constant, we can integrate the equation above obtaining

F (R) = −T nb log

[
V +

∑
k

Vk (R)(eβεk − 1)

]
, (7)

where Vk (R) is the volume of the intersection of the interac-
tion volume of k-plets of beads of the polymer,

Vk (R) ≡ 1

k!

∑
R1,R2,...,Rk

∫
d3r θ (|R1 − r| < d0)

× θ (|R2 − r| < d0) · · · θ (|Rk − r| < d0). (8)

The free energy given by Eq. (7) can be regarded as an
effective energy for the polymeric chain. It depends linearly
on the number of binders, is nonadditive because of the loga-
rithm, and has a many-body character because of the sum on
k. The kth-order term is attractive if k > T/ε, otherwise it is
repulsive. This means that all terms are attractive if T < ε.

The dependence of the effective potential on the mutual
distance between the beads is in general nontrivial. For the
two-body part it is

V2(R) = π

12

∑
I<J

(4d0 + |RI − RJ |)(2d0 − |RI − RJ |)2

× θ (|RI − RJ | < d0), (9)

and other expressions that depend explicitly on the mutual
distances among beads exist up to k = 6 [23]. The resulting
effective forces

f = −∇F (R) (10)

are not two-body even neglecting in Eq. (7) the terms k > 2.

The effective energy defined by Eq. (7) has an important
drawback, namely, that the absolute value of the energetic
part encoded by the exponential grows with k, making the
higher-order terms potentially the most important. However,
the derivation done so far starting from Eq. (4) does not
include a hard-core repulsion that would make the description
of the chain more realistic. The effects of a repulsive term in
the initial potential are to decrease the volume of intersection
among the interaction spheres and to prevent the overlap of
multiple spheres. In the limit in which the hard-core radius
becomes equal to d0, only the term k = 2 is relevant. In other
words, one can truncate the sum over k not because the ener-
getic terms are a decreasing series at increasing k, but because
the Vk are exactly zero.

Due to the presence of the logarithm in Eq. (7), the effec-
tive energy cannot be written in general as the sum over pairs
of monomers, even considering only the case k = 2; thus it
does not qualify as a two-body interaction. Only in the limit
of large temperature (or large volume V ) it approximates to

F (R) = −T
nb

V

∑
k

Vk (R)(eβεk − 1), (11)

and then becomes a series over k-body interactions. Under
this approximation, the effective energy is a function of the
concentration of binders and not of their copy number.

IV. THE EFFECTIVE MODEL RECAPITULATES THE
PROPERTIES OF THE POLYMER AT EQUILIBRIUM

We compared the simulations of the dynamics of a polymer
described with the SBS model with those obtained with the
effective model in the two-body approximation, that is, ne-
glecting the terms with k > 2 in Eq. (7). We chose the radius
of interaction of the effective model d0 = 1.15, corresponding
to the distance at which the Lennard-Jones energy of the SBS
model display an energy that is 2/3 of the minimum (ε = 1.1).

The average radius of gyration of the chain simulated with
the effective model (left panel in Fig. 3) is barely distinguish-
able (P = 0.64) from that of the SBS model in the regime in
which the beads are equilibrated, e.g., at ε = 1.1 (cf. Fig. 2).
This result suggests that not only the effective model describes
correctly the geometrical properties of the SBS system, but
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FIG. 4. Scaling of the average radius of gyration with the length of the polymer (left panel) for three different concentration cb of binders
(cf. table below the panel) at ε = 1.1. The scaling exponent ν as a function of cb (right panel).

also the approximation we did neglecting the terms with k > 2
in Eq. (7) is reasonable.

On the other hand, at larger values of ε, the radius of
gyration obtained from the effective model is very different
from that of the SBS model (P = 0.04; right panel in Fig. 3).
Not unexpectedly, in this regime the effective model fails
because the binders are not equilibrated (Fig. 2), and so the
main hypothesis underlying the effective model is not valid.

In the equilibrated regime, the polymer displays the scaling
properties of the standard coil and globule phases with both
models (Fig. 4 shows the case ε = 1.1). The scaling of the
radius of gyration with the length N of the polymer was stud-
ied at fixed values of the concentration cb = nb/V of binders,
varying the volume to accommodate polymers of different
length (V = 216 · N). The scaling exponent ν of the SBS and
that of the effective models are indistinguishable from each
other (right panel in Fig. 4).

The exponent ν starts at cb = 0 from the value ≈3/5
typical of a random coil (left panel in Fig. 4). Already

at low concentration of binders, ν drops to the ideal-chain
value ≈1/2 and makes a wide plateau that is nonapparent in
standard homopolymeric models with two-body interactions.
Finally, ν drops again to ≈1/3, corresponding to the globlar
phase.

V. CONFORMATIONAL PROPERTIES OF THE SBS
MODEL IN NONEQUILIBRIUM REGIME

Apparently, the conformational properties of the polymer
are more similar to standard homopolymers in the nonequilib-
rium regime. In fact, the scaling exponent of the SBS model
(Fig. 5) drops from the value typical of random coils ν ≈ 3/5
to that typical of globules (ν ≈ 1/3), without displaying any
plateau at the ideal-chain value (ν = 1/2). However, the ef-
fective model derived under the equilibrium hypothesis gives
values of ν that are significantly different from those of the
SBS model.

FIG. 5. The scaling of the radius of gyration with the length of the polymer (right panel) and the scaling exponent ν for ε = 2.0,
corresponding to the nonequilibrium regime.
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FIG. 6. (a) Time dependence of the fraction fb of beads participating to a blob in a sample simulation starting from a random coil with
nb = 60 and ε = 2. Three snapshots taken from the simulation and the associated number of contacts per bead are displayed on the side. The
average number of beads fB (b) and the fraction fC of consecutive beads (c) in the main cluster as a function of the number of binder nb in the
SBS model, for different values of ε. The dashed vertical lines indicate the coil-globule transition (cf. Fig. 1).

We already know that a distinctive feature of the nonequi-
librium regime is the uneven distribution of contacts in the
system (cf. Fig. 1, right panel), that corresponds to the pres-
ence of blobs. We define the relative size fB of the blob as
the fraction of beads of the polymer belonging to the largest
cluster of mutually interacting beads,

fB = 1

NB
max

γ
|γ |, (12)

where γ labels the clusters, defined as subsets of beads con-
nected in a graph by mutual distances below d0; |γ | denotes
the number of nodes of a cluster.

Simulations of the SBS model starting from a random
coil reach a stationary distribution of fB and fluctuate weakly
around it [Fig. 6(a)]. The average stationary fraction 〈 fB〉 of
beads of the polymer in the blob increases as a function of
the concentration of binders [Fig. 6(b)] from 0, reaching 1
when the chain collapses to a globule and the cluster has thus
included all beads (vertical dashed lines). The value of 〈 fB〉
increases with ε, saturating at ε ≈ 5. At these large values of
ε � kT all the binders are bound to the polymer and can only
exchange the interacting bead of the chain, moving along it;
consequently, increasing ε has no effect.
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FIG. 7. Contact probability as a function of the linear distance s along the chain, calculated for the SBS model (black circles) and for the
effective model (red triangules) under nonequilibrium conditions (ε = 5). The dashed line are power-law fits, with power −0.61 for the SBS
model and −0.68 for the effective model.

As the beads participating to the blob becomes stationary
in number, they also tend to group along the chain [Fig. 6(a),
left insets]. We quantified this effect counting the fraction of
beads that are consecutive in the largest cluster γ ∗:

fC = 1

|γ ∗|
NB−1∑
I=1

θ (I ∈ γ ∗) θ (I + 1 ∈ γ ∗). (13)

The average 〈 fC〉 is always larger than 0.95 [Fig. 6(c)], indi-
cating that the blobs are typically made of consecutive beads.
This fact suggests that the entropy of the polymer is largest
when they constrain as few beads as possible, so they rapidly
come to form a blob in which few beads share as many binders
as possible, compatibly with the mutual hard-core repulsion.

Moreover, although the number of beads of the polymer
participating to the blob is quite constant, its position can shift
along the chain [Fig. 6(a), left inset]. This is a consequence of
the fact that the appearance of the blob is a spontaneous break-
ing of the translational symmetry of the potential function of
the system that fluctuations tend to compensate.

The contact probability pc as a function of the linear
distance s along the chain (black dots in Fig. 7) displays a
scaling law pc ≈ s−0.61s that cannot be observed in standard
homopolymers under equilibrium conditions. Such a low ex-
ponent was observed in chromatin [24,25] and was already
explained in the context of a crumpled globule [15,26].

VI. EXTENSION OF THE EFFECTIVE MODEL TO THE
NONEQUILIBRIUM REGIME

The effective model introduced in Sec. III fails at large
values of ε because it is no longer true that the binders can be
regarded as in equilibrium. We then looked for the simplest
modification of the effective forces of Eq. (15) to reproduce
the phenomenology described in Sec. V.

For this purpose, we maintained the definition of the effec-
tive energy of Eq. (7), but we rescaled the force acting on each

bead of the chain by an effective local number of free binders

ñb(I ) ≡
⎡
⎣α nb − β

∑
K,J �∈γ (I )

θ (|RK − RJ | < d0)

⎤
⎦

+

, (14)

where γ (I ) labels the clusters of mutually interacting beads
containing bead I (i.e., a subset of beads connected by dis-
tances below d0 to bead I), and α and β are two parameters of
the effective model, describing the effective number of binders
per nominal binder and the average number of binders per
contact, respectively; the square brackets indicate a rectifying
function. Consequently, the force acting on the Ith bead is

fI = − ñb(I )

nb
∇IF (R). (15)

The goal of this renormalization is to account for the fact
that if many contacts are formed elsewhere, and thus binders
are effectively sequestered, fewer of them are available to
strengthen the interactions of a given bead. Note that we have
modified the forces, and not the effective potential, with a
conformational-dependent parameter. This is a way to intro-
duce non-Markovianity in the system, because nb(I ) accounts
for the slowly varying state of the system and is not differ-
entiated as if it reweighted the effective energy. The fact that
the reweighting is the same for all beads of the same cluster
enforces the third Newton’s law.

Simulations of this model with ε = 5, nb = 2500, α =
0.02, and β = 0.5 show that the effective number of free
binders

∑
I ñb(I ) goes rapidly to zero while blobs get formed

[Fig. 8(b)]. The average size 〈 fb〉 of the blob and its degree
of locality 〈 fC〉 along the chain of this effective model are
similar to those of the SBS model [Figs. 8(c) and 8(d)] for this
choice of the parameters α and β. Also the radius of gyration
is similar in the two models [Fig. 8(e)].

Another property that is well captured by the effective
model is the contact probability as a function of the linear dis-
tance s along the chain (Fig. 7). The nonequilibrium effective
model gives a power law with exponent −0.68, which is quite
similar to the exponent −0.61 obtained from the SBS model.
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FIG. 8. (a) Sketch of the out-of-equilibrium effective model that penalizes the strength of the interactions in a cluster when other clusters
are present. (b) The effective number of free binders

∑
I ñb(I ) along a sample trajectory for the effective model with ε = 5, ε = 5, α = 0.02,

and β = 0.5. (c) The average fraction of beads in the blob, (d) the average fraction of consecutive beads in the blob, and (e) the radius of
gyration for the effective model (in red) and for the SBS model (in black).

Thus, this model is able to reproduce the behavior of the
SBS model in the nonequilibrium regime for a choice of
the parameters α and β that define it, taking implicitly into
account the nonequilibrium dynamics of the binders and their
finite number.

We also tested other models, like a Markovian one in
which Eq. (7) is modified substituting the effctive number of
free binders nb − ϑ

∑
IJ θ (|RI − RJ | < d0) to nb, or another in

which the effective number of free binders is evaluated at the
time at which a contact is formed, and then kept fixed, thus
giving rise to a non-Markovian dynamics. With none of these
models did we observe the stabilization of blobs as described
in Sec. V.

VII. DISCUSSION AND CONCLUSIONS

The simulation of a polymeric model whose interaction
is mediated by fast-diffusing binders shows two different
regimes as a function of the interaction strength of the binders.
When this quantity is small, the binders can be regarded as
in equilibrium and the polymer displays three phases similar
to standard homopolymers, namely, coil, ideal, and globule.
However, the phase diagram (Fig. 9) seems more complex

than the standard one. For example, there is a wide range of
binder concentration in which the polymers display the same
scaling law of the ideal polymer, but with varying gyration
radii.

FIG. 9. Sketch of the phase diagram of the system.
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When the interaction strength is large, the binders can-
not be regarded as in equilibrium within the simulation time
as the polymer moves. Since the model does not break the
principle of detailed balance, one expects that eventually
the system is able to reach thermodynamic equilibrium, and
thus the phenomenology we observe cannot but be related to
metastable states. However, the simulations we run describe
the dynamic of the chain for approximately 102 h, a time
which is much longer than that of the cell cycle of eukary-
ots, and consequently the equilibrium that can be eventually
reached after this period is not relevant for biologically related
problems. Only the inclusion in the model of ATP-consuming
active molecules like cohesin can produce a truly everlasting
nonequilibrium state.

An important result of our study when applied to the
specific case of chromatin is that it points to the existence
of metastable effects that may be difficult to separate from
effects due to ATP consumption (e.g., in the case of cohesin)
when studying the conformational properties of chromosomes
experimentally. For example, the structuring of topological
associating domains (TADs [27]) or other chromosomal do-
mains [28] could arise due to either the concomitant or to the
competing effect of cohesin [5] and of the nonequilibrium
effect of other binding proteins, following the mechanism
described above. This could be the reason why in some cases
domains survive the depletion of cohesin [29].

Now the polymer can populate phases that display the sizes
typical of coils, ideal chains, and globules, but display local-
ized blobs that cannot be stable in a standard homopolymer.
Being the beads of the polymer model indistinguishable from
each other, the blobs reflect a spontaneous breaking of the
translational symmetry of the interaction potential along the
chain. The observed motion of the blob along the chain seems
thus to play the role of a Goldstone mode associated with such
a symmetry breaking; in fact, it is very costly to break inter-
actions when ε is large, and thus binders can slide along the
chain only maintaining constant the total number of contacts
(i.e., moving at essentially constant energy) and under the
constraints given by the other binders through their excluded
volume. Our simulations indicate that this motion occurs on
a timescale which is comparable to that of the motion of the
polymer, and thus is biologically relevant. However, in a more
realistic description of chromatin, different loci can display
varying propensities for binding proteins, the interaction can-
not be translationally symmetric and the Goldstone modes can
disappear.

A property that received much attention in the case of
chromatin is the contact probability as a function of genomic
distance. Experiments [24] reported a power law with expo-
nent −1, which was explained in terms of a crumpled globule,
that is, an out-of-equilibrium effect due to a rapid collapse of
the polymeric chain [15,26]. Later, other anomalously large
exponents (> −1) were observed [25], which display a high
variability [30] and cannot be explained straightforwardly by
the crumpled globule. We observe this power law in the sim-
ulations in an out-of-equilibrium situation as well, but here it
is not due to the suddenness of the collapse but to the strong
binding of the binders.

Structure factors of chromatin like Hp1 have residence
times that range from 0.2 s in weak binding sites of

euchromatin to 2 min in heterochromatin [31]. This range
coincides with the typical times associated with the mo-
tion of chromosomes, which ranges from t = �2/D ∼ 1 s on
the scale of chromosomal domains (� = 102 nm, D = 3 ×
10−3 µm2/s [19]) to minutes for the whole chromosome (� ∼
1 µm). As a consequence, there is no separation of timescales
between the motion of the binders and that of the polymer,
and the binders can be either in the equilibrium or in the
nonequilibrium regime according to the details of the specific
loci of interest. Both regimes found in the present model study
are then relevant for chromatin.

In the original description of the SBS homopolymeric
model [8], the authors describe a phase diagram displaying
a coil-globule transition and a transition between ordered and
disordered binders. Now we can add some new elements to
this description. First, the high-ε branch of the coil-globule
transition and all the order-disorder transition occur in the
out-of-equilibrium regime and thus cannot be described by
equilibrium statistical mechanics. Moreover, some nontrivial
behavior that leads to the appearance of blobs occurs when
the number of binders is small, smaller than that explored
in the original work (starting around nb ≈ 200 for a polymer
of N = 103). This range is biologically relevant because the
copy number of architectural proteins in chromosomal do-
mains regarded at kbp resolution is variable and can be much
smaller [32] than that regarded in that work.

A limitation of our model is that we can observe only one
cluster in the nonequilibrium regime, as a coarsening mech-
anism makes smaller cluster coalesce on a short timescale
[cf. Fig. 6(a)], preventing a microphase separation. This is the
reason why a internal binary variable was used in Ref. [12]
to account for the epigenetic state of each bead and to
control the number of distinct clusters. An interesting per-
spective can be that of extending the effective model in the
nonequilibrium regime by taking into account the epigenetic
state.

The development of effective models that average out the
degrees of freedom associated with binders can be helpful not
only for computational convenience, but also because they can
show the physical mechanisms responsible for the observed
phenomenology. We chose to study a homopolymeric model
to better highlight the complexity induced by binder-mediated
interactions. However, this simple model can be regarded as
a starting point, adding specific interactions to recapitulate
the empirical data available for a given biological systems.
For example, one can use different types of binders [33] or
introduce effectively active interactions to mimic the effect of
cohesin [34] in order to reproduce TADs.

Even in the simpler effective model that regards binders
at equilibrium, the effective interaction is not two-body. This
is the main reason why this system displays a phase diagram
that is more complex than that predicted by the Flory theory
of standard homopolymers.

Increasing the interaction strength or decreasing the num-
ber of the binders, these cannot be regarded as in equilibrium
because the timescale associated with their motion is not
smaller than that associated with the motion of the polymer.
According to the Mori-Zwanzig theory [35], a dimensional
reduction gives rise to a dynamics controlled by thermal noise,
and the effective energy is the negative gradient of the free
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energy only if the discarded degrees of freedom are fast with
respect to those which are retained. This is not the case for
the nonequilibrium regime, and in this case the Mori-Zwanzig
theory predicts a non-Markovian dynamics of the reduced

system. This is the reason why we could reproduce the phe-
nomenology of the SBS model only by modifying the forces
in a non-Markovian way. The appearance of stable blobs is
then a consequence of such non-Markovianity.
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