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Physical limits to acceleration of enzymatic reactions inside phase-separated compartments
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We present a theoretical analysis of phase-separated compartments to facilitate enzymatic chemical reactions.
While phase separation can facilitate reactions by increasing local concentration, it can also hinder the mobility
of reactants. In particular, we find that the attractive interactions that concentrate reactants within the dense phase
can inhibit reactions by lowering the mobility of the reactants. This mobility loss severely limits the potential to
enhance reaction rates. Phase separation provides greater benefit in situations where multiple sequential reactions
occur and/or high order reactions, provided the enzymes are unsaturated, transport to the condensate is not
limiting, and the reactants are mobile. We show that mobility can be maintained if recruitment to the condensed
phase is driven by multiple attractive moieties that can bind and release independently. However, the spacers
necessary to ensure independence between stickers are prone to entangle with the dense phase scaffold. We find
an optimal sticker affinity that balances the need for rapid binding/unbinding kinetics and minimal entanglement.
Reaction rates can be accelerated by shrinking the size of the dense phase with a corresponding increase in the
number of stickers. Our results showcase the potential capabilities of phase-separated compartments to act as
biochemical reaction crucibles within living cells.
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I. INTRODUCTION

In recent years many cellular structures, including nucleoli,
Cajal bodies, stress granules, and P-bodies, have been found
that form by the spontaneous condensation of biomolecules
[1–4]. These structures, termed membraneless organelles
(MLOs) or biomolecular condensates, form via liquid-liquid
phase separation and typically contain tens to hundreds of
different molecular components that are enriched in concen-
tration relative to the surrounding environment [1–4]. Usually,
only a small subset of these components, called “scaffolds,”
are necessary to drive condensation. The remaining compo-
nents, classified as “clients,” are not essential for condensation
but are recruited by interactions with the scaffolds [2,4,5].

The biological function of MLOs remains a subject of
intense research [3]. While experiments have revealed a va-
riety of functions in well-studied systems [6–9], in most cases
the function has not been established. Proposed functions in-
clude environmental sensing [7], stress response [8], signaling
control [9], concentration buffering [10], and, in general, com-
partmentalization of biomolecular reactions in the cell [11]. In
particular, it has been noted that MLOs could assist reaction
kinetics by creating subcompartments with locally increased
reactant concentrations [12–16]. However, the increased con-
centration also has the inhibitory effect of higher viscosity due
to crowding effects [1,17,18] and reduced client mobility due
to interactions with the scaffold. It therefore remains unclear
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to what extent MLOs can act as reaction crucibles to acceler-
ate biochemical reactions.

Here, we use a simple theoretical model to explore the
effectiveness of MLOs at accelerating enzymatic reactions
between clients. We find that the attractive interactions that
recruit substrate and enzyme molecules to a MLO can im-
pair reaction dynamics by reducing diffusion. Phase-separated
condensates contribute positively to chemical reactions when
mobility is preserved within the condensed phase. This can
be achieved by recruiting client molecules to the condensed
phase through multiple independent attractive interactions,
or “stickers,” that allow for binding and release. However,
the “spacers” required to maintain independence between
these attractive interactions are susceptible to entangling with
the scaffold of the dense phase. “Stickers” are regions in
proteins or biomolecules that enable attractive interactions
essential for phase separation. “Spacers,” on the other hand,
are interspersed regions that regulate the interactions be-
tween stickers, influencing the density, size, and dynamics
of condensates without directly driving phase separation. We
identify an optimal affinity for the attractive sticker inter-
actions that strikes a balance between the need for rapid
binding and unbinding kinetics and minimal entanglement.
To accelerate reaction rates, we propose shrinking the size
of the dense phase while increasing the number of attractive
interactions, or “stickers” [19,20]. Thus it is most benefi-
cial for large reaction orders where the strong concentration
dependence can overwhelm the inhibitory effects of client
binding. These results shed light on the physical limits on how
much phase-separated compartments can affect biochemical
reactions.
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FIG. 1. Scaffolding of enzymatic reactions by biomolecular con-
densates. A system of total volume Vtot contains a condensate of
volume VI, which is formed by phase separation of a polymer scaf-
fold. The condensate coexists with a dilute phase of volume VII.
Substrate S and enzyme E undergo an enzymatic reaction and are
clients of the condensate. The scaffold-client interaction is described
in terms of sites on the scaffold that substrate and enzyme molecules
can bind to (scaffolding). Since the scaffold is highly concentrated
in the condensate, substrate and enzyme are strongly recruited to
the condensate. In addition, tethering of reactants to the scaffold
can bring substrate and enzyme in close proximity facilitating the
reaction [21].

II. MODEL CONSISTS OF A CONDENSATE
SCAFFOLD NETWORK WITH BINDING SITES

FOR ENZYMES AND SUBSTRATES

We consider a system of volume Vtot containing a
biomolecular condensate of volume VI (Fig. 1). The conden-
sate forms through phase separation of a polymer scaffold
with respect to the surrounding solution, resulting in a
scaffold-rich droplet phase I stably coexisting with a dilute
phase II of volume VII = Vtot − VI. Within this system, an
enzymatic reaction takes place, involving the formation of
product P from a substrate S and an enzyme E that are both
clients of the condensate. This means that S and E molecules
are not directly driving phase separation, but partition in phase
I or phase II depending on their relative interactions with the
condensate scaffold. We describe these interactions between
the clients and the scaffold in terms of sites on the scaffold
that clients can bind to (see Appendix A). With this model
we can describe situations where the enzymes are covalently
linked to the scaffolds with small rapidly diffusing substrates
[14,15] or the clients are recruited by specific binding modules
[22]. Moreover, in Sec. III E, we consider the situation when
substrates are produced within the condensate. The ratios
pS = SI/SII and pE = EI/EII are the partitioning degrees of
S and E molecules and, for simplicity, in the following we
assume that the enzyme and substrate are recruited to the
condensate by equivalent interactions resulting in identical
partition coefficients pS = pE = p. To characterize the rate
of the enzymatic reaction in both phases, we employ the
Michaelis-Menten-Hill equation

Ri = ki Ei Sn
i

Kn
M,i + Sn

i

, (1)

where Ei, Si are the local concentrations of enzyme and sub-
strate in phase i = I, II. The phase-dependent reaction rate
constants are denoted as ki, while n is the Hill coefficient,
describing the reaction order with respect to the substrate
concentration. We introduce a scaffold-dependent Michaelis-
Menten constant KM,i (referred to as scaffolded KM hereafter,
see Appendix B), to address the changes in molecular orga-
nization of clients caused by scaffolding [21]. The process
of binding to the scaffold brings the substrate and enzyme
in close proximity, resulting in a reduction of the Michaelis-
Menten constant (KM) compared to the homogeneous system,
i.e., the enzymes saturate at a lower substrate concentration
[21]. It is likely that scaffolding can lead to diverse organi-
zations of bound enzymes and substrates, thereby resulting in
a distribution of different KM values; thus, KM,i is an average
from this distribution [21].

III. RESULTS

A. Reaction rate enhancement by condensate is maximal
at low substrate concentrations

To evaluate the potential of condensates in enhancing reac-
tions, we quantitatively compared the average reaction rate in
the phase-separated system to that in an equivalent homoge-
neous system. In the homogeneous system, the reaction rate
Rhomo can be expressed as

Rhomo = k Ē S̄n

Kn
M + S̄n

, (2)

where S̄ = φ SI + (1 − φ) SII represents the average substrate
concentration, and Ē = φ EI + (1 − φ) EII represents the av-
erage enzyme concentration. The parameter φ = VI

Vtot
denotes

the volume fraction of the dense phase. In the phase-separated
system, the volume-averaged reaction rate is given by R̄ =
φ RI + (1 − φ) RII. Using conservation of mass in combina-
tion with Eqs. (1) and (2), we calculated the reaction rate
enhancement, defined as E = R̄/Rhomo (see Appendix E for
details). Our analysis reveals that the rate enhancement E
is dependent on six dimensionless parameters. These in-
clude the partitioning degree p and the volume fraction of
the dense phase φ, as well as four additional dimensionless
parameters: σ = S̄

KM
, κ = kI

kII
, μ = KM

KM,I
, and ω = KM,II

KM,I
. σ de-

scribes the average substrate concentration S̄ normalized by
the Michaelis-Menten constant KM , μ is the ratio between the
bulk Michaelis-Menten constant and the scaffolded KM , and
κ quantifies the difference between the rate constants in the
dense phase kI and dilute phase kII. Figure 2(a) displays the de-
pendence of the reaction rate enhancement on the condensate
volume fraction, φ, and the normalized concentration of sub-
strate, σ = S̄

KM
, while keeping client partitioning constant. We

see that the highest rate enhancement by the condensate oc-
curs for low substrate concentration, σ < 1. However, as the
substrate concentration increases, σ > 1, E decreases. Under
these circumstances, the reaction rate remains unaffected by
the presence of the condensate, and, if κ < 1, such recruitment
can even lead to inhibition of the reaction. This insensitivity
to concentration is because the enzymes saturate above σ � 1.
We further explored the dependence of the rate enhancement
E on the partitioning coefficient and substrate concentration,
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FIG. 2. Reaction rate enhancement R̄/Rhom as a function of condensate volume fraction φ and substrate concentration σ (a), partitioning
degree p and substrate concentration σ (b), condensate volume fraction φ and partitioning degree p (c). The plots are shown at constant p = 50
(a), φ = 10−2 (b), or σ = 10−2 (c), respectively. The remaining parameters are μ = 3, ω = 1, κ = 1, n = 1, equal for all three panels.

while keeping the droplet volume constant [Fig. 2(b)]. When
the substrate concentration is low, σ < 1, increasing the parti-
tion coefficient p results in a higher overall rate enhancement.
This occurs because the reacting clients are concentrated and
colocalized in the condensed phase. However, as we increase
the substrate concentration, σ > 1, client partitioning into the
condensate ceases to have an effect on the total reaction rate,
as seen above because the enzymes saturate and the reaction
becomes concentration independent.

B. Small condensates optimize overall reaction rate

Figure 2 indicates that substrates with a total concentration
that is significantly lower than the Michaelis-Menten constant
(KM) can experience enhancement when they are recruited,
along with enzymes, into condensates. On the other hand,
substrates with concentrations that are higher relative to KM

do not benefit from condensation. In fact, in some cases, such
recruitment can even lead to inhibition of the reaction. The
strongest reaction rate enhancement by the condensate occurs
in the limit when substrate concentration is low, σ → 0, and
the local rate is approximately Ri = (ki/Kn

M,i )EiSn
i . In this

limit, the rate enhancement E can be written as (see Ap-
pendix E):

E = R̄

Rhomo
=

(
μ

ω

)n 1 − φ + φωnκ pn+1

(1 − φ + φ p)n+1
. (3)

Interestingly, we find that the rate enhancement E displays a
maximum with φ [Figs. 2(a) and 2(c)]. The optimal conden-
sate volume fraction φ� can be obtained by maximising E with
respect to φ holding p constant, which yields

φ� = (ωnκ pn+1 − 1) − (n + 1)(p − 1)

n(p − 1)(ωnκ pn+1 − 1)
. (4)

The optimum φ� emerges from two opposing effects: on the
one side, the contribution of RI to the average reaction rate
R̄ decreases with decreasing φ; on the other side, lowering
the condensate volume fraction φ causes the reaction rate in
the droplet phase, RI, to increase because smaller condensates

achieve a higher local concentration. A small condensate vol-
ume ensures that the dilute phase is minimally depleted, which
for fixed p maximizes concentrations in the dense phase. As
shown in Appendix D, small condensates also help reduce
diffusive transport as a limiting factor. The optimal volume
fraction φ� decreases with increasing p and is inversely pro-
portional to the reaction order n in the limit of large p and
n. This is because large reaction orders are so sensitive to
concentration that it is more beneficial to have a small reaction
volume that is highly saturated than to have a larger reaction
volume at lower concentration.

C. The optimal sticker affinity is a tradeoff
between binding kinetics and entanglement

A necessary requirement for a reaction to occur is S and/or
E must have enough mobility for intermolecular collisions.
This mobility will be inhibited by the attractive interactions
that recruit molecules to a condensate. In Appendix D, we
show that the enhanced concentration from condensation is
not beneficial if recruitment immobilizes one of the species.
While bound molecules may retain a limited ability to explore
a local volume due to network dynamics or flexible tethers, it
is still necessary for the incoming substrates to diffuse within
the condensate. This brings the question of how to achieve the
optimal balance of recruitment and mobility.

Condensate scaffolds are not uniformly attractive and,
instead, have discrete sticky moieties responsible for con-
densation and client recruitment [19,20]. Bound clients can
remain mobile if they have the same sticker-and-spacer ar-
chitecture as the scaffolds because independent stickers allow
some parts of the molecule to move while other parts remain
bound. While the sticker/spacer structure allows the client
to move without detaching from the condensate scaffold, it
comes at a price because the spacers that allow stickers to
bind/unbind independently are prone to entangle with the
scaffold. As a result, the client molecules transition from
Stokes diffusion outside the condensate to reptation inside
[23,24]. Thus, if a certain level of recruitment is required,
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there is a tradeoff between a small number of stickers that
bind tightly or a large number of weak stickers that are highly
entangled. The optimum between these extremes can be found
from the dependence of the affinity and mobility on the num-
ber of stickers.

The most favorable case for facilitating reactions is when
there are abundant binding sites for clients, in which case
the free energy change for a client molecule with M stickers
entering the condensate is (see Appendix A)

�F/kBT = − ln(p) = −M ln(1 + e−ε ), (5)

where ε = � f /kBT is the free energy difference between the
bound and unbound states of a sticker and p is the partition-
ing degree. We note that the linear scaling of Eq. (5) with
M agrees with previous experiments [6]. The diffusion con-
stant for a polymer undergoing reptation will be proportional
to Dclient ∝ r2

g/τrep indicating that the polymer has moved a
distance proportional to its radius of gyration rg during a
reptation time τrep. The reptation time scales as τrep ∝ 
2/D‖,
where D‖ describes diffusion in the direction parallel to the
polymer length 
. This diffusion depends on the length of the
polymer D‖ ∝ 1/
, where the unknown constant describes the
diffusion of a chain subunit. In this context the repeating unit
has contributions from spacer and the adjoining sticker. We
assume that, for the sticker-spacer unit to move through the
network, the sticker must be in the unbound state. Therefore
we have

D‖ ∝ Dspacer

M(1 + e−ε )
, (6)

where we have used 
 ∝ M. Thus we find

τrep ∝ M3(1 + e−ε )

Dspacer
. (7)

After a time τrep, the polymer will move by a distance rg ∝√
M. Therefore the diffusion constant of client molecules is

Dclient ∝ Dspacer

M2(1 + e−ε )
. (8)

In Eq. (8), the diffusion coefficient scales with polymer size M
as Dclient ∝ M−γ with γ = 2, which corresponds to polymers
that are entangled by neighboring polymers and can escape
via reptation. It is important to note that such scaling expo-
nents apply to homogeneous systems consisting of a single
phase. However, biological systems, such as the cytoplasm,
are often heterogeneous and composed of various components
and condensed phases [25–28]. To address this complexity of
biological environments, we could consider varying rheology
exponents Dclient ∝ M−γ with 0.5 � γ � 2 to accommodate
scenarios involving polymer melts or microphase-separated
mixtures. In the case γ = 2 and using Eq. (5), we optimize
Dclient with respect to M holding the partitioning, p, or equiv-
alently, the total affinity, A = �F/kBT , fixed. This yields
A/M = −2 and therefore an optimal binding free energy for
a sticker � f � −1.85 kBT , which includes the sticker-sticker
interaction and the conformational entropy loss of the spacer
(see Appendix E for details). This value allows the sticker to
bind and release frequently enough for the molecule to diffuse,
but provides enough affinity the molecule does not become

too long and entangled. Therefore the partition coefficient of
a dynamically optimized client is p = e2M .

An important case that is not explicitly covered by our
calculations is that of electrostatic coacervates. We expect
that these will behave similarly to our reptation calcula-
tion, although the smooth charge distribution on molecules
like RNA violates our approximation of independent stick-
ers. Another complication is that the neutralization afforded
by complementary charged scaffolds will perturb the con-
formational ensembles and stabilize compact and/or double
stranded states [12,13,16].

D. Reaction rates are enhanced for high order reactions

Using the optimal sticker affinity, we can determine the
level of client recruitment to maximize the reaction rate. We
assume that the dense phase reaction rate is proportional to
the client diffusion constant so ωnκ = α/M2, where α is a
constant accounting for the transition between Stokes and
reptation dynamics (see Appendix E for details). Figure 3(b)
shows O(103) enhancement for n = 2. Greater enhancements
are found for larger reaction orders (see Fig. 7), which shows
why condensates are prone to the nucleation of aggregates
[29] and why they are useful for the assembly of large
complexes like viral capsids [30,31]. Conversely, for small
reaction orders it is difficult to get any rate enhancement.
Figure 8 shows that n = 1 reactions require φ < 10−3 and
M ∼ 5, which corresponds to recruitment affinities >10kBT ,
to achieve even modest enhancements (less than tenfold).
This regime may not be physically realistic because the high
concentration of clients will compete for available stickers,
voiding the independent molecule approximation of Eq. (5),
and limiting the achievable values of p.

E. Condensates make multistep reactions more efficient

Although condensates can facilitate reactions by concen-
trating reactants, the attractive interactions responsible for
localization have an inhibitory effect on reaction kinetics.
However, it is possible to achieve enhanced concentrations
without a loss in mobility if the reactants are produced within
the condensate itself. Localized production will provide a
concentration gradient that will benefit subsequent reactions
provided the reactions occur faster than the reactants dif-
fuse away. Here we show that localizing sequential reactions
within a condensate will make the later steps more efficient
in the sense that there will be lower levels of unreacted in-
termediate. However, the overall reaction rate is fixed by the
substrate production rate and, therefore, is not enhanced by
the condensate.

When substrate is produced within the condensate there
is the possibility for locally enhanced substrate concentra-
tion if diffusive transport of substrate is sufficiently slow. An
example of such a situation is the production of ribosomes
within the nucleolus requires multiple steps including RNA
transcription, splicing, folding, and assembly with ribosomal
proteins [32]. Sequential reactions can be handled by intro-
ducing a source term 
. This addition results in two kinetic
regimes. At short times, t 
 < (φSI(0) + (1 − φ)SII(0)), the
substrate generated by the source is negligible compared to
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(b)(a)

FIG. 3. Optimal sticker affinity to balance client partitioning and entanglement. (a) Increasing the number of stickers increases client
recruitment, but the clients become highly entangled with the scaffold, slowing diffusion. Optimal mobility, for fixed affinity, occurs when the
stickers have a binding free energy of � f ∼ 2 kBT . (b) Ratio of the reaction rate for a separated system to a homogeneous system (E = R̄/Rhom)
as a function of the condensate volume fraction φ and the number M of stickers with binding energy � f ∼ 2 kBT . When φ is sufficiently small
there is an optimal number of stickers M, and hence p (since p = e2M ), that maximizes the reaction rate. M = 4 corresponds to p � 3000. The
parameters are: n = 2, α = 0.1.

the substrate present at t = 0 (Fig. 4). However, at long times,
substrate production dominates and the system approaches a
steady state in which the condensate plays a beneficial role.
Since localization is achieved by substrate production, we
can understand the enhancement by neglecting the binding
terms

dSI

dt
= kdiff (SII − SI ) − kSIEI + 
, (9a)

dSII

dt
= − φ

1 − φ
kdiff (SII − SI ) − kSIIEII. (9b)

FIG. 4. When the supply of substrate is fixed (blue lines) recruit-
ment of enzymes to a condensate inhibits product formation because
the diffusive transport of substrate is limiting. When substrate is pro-
duced within the condensate (red lines) the system initially behaves
like the fixed substrate system where the condensate is detrimental
before converging to a steady state where the condensate is some-
what beneficial. (Inset) The steady-state concentrations of substrate
in the dilute phase (SI), dense phase (SII), and total system (S̄) all
converge to that of the homogeneous system (Shom) when diffusion
is very fast. EI/EII = 8, kdiff/(kĒ ) = 0.1, φ = 0.1, 
/(kĒ ) = 2, and
SI (0) = SII (0) = Ē .

where we are considering the limit where the linearized rate
constants in the dense and dilute phases are identical k′

I =
k′

II = k. The steady-state solution to these equations is

SI

S∞
=

1 + (1 − φ) kEII
kdiff φ

1 + (1 − φ) kEIIEI

kdiff Ē

, (10a)

SII

S∞
= 1

1 + (1 − φ) kEIIEI

kdiff Ē

, (10b)

where S∞ = 
̄/(kĒ ) is the homogeneous solution limit
(equivalent to kdiff → ∞) and 
̄ = φ 
. From this, we can
see that the outside concentration SII is always less than the
homogeneous case (i.e., SII < S∞), while inside concentration
SI is always greater (i.e., SI > S∞), see inset of Fig. 4. To
see the benefit of the condensate, we look at the average
concentration of S

S̄ = (1 − φ)SII + φ SI = S∞
1 + (1 − φ) kEII

kdiff

1 + (1 − φ) kEIIEI

kdiff Ē

, (11)

which shows that S̄ is always less than the homogeneous limit
S∞, since EI > Ē (Fig. 4, inset). Importantly, the condensate
does not affect the overall reaction rate, which is fixed by
the steady-state condition. However, the condensate ensures
that there is less unused substrate. This is particularly useful
for limiting the quantity of intermediate states in high-volume
reactions like ribosome synthesis as well as situations where
intermediate states are prone to pathogenic aggregation. The
key features of Fig. 4 are (1) there is a crossover time be-
fore which the condensate is detrimental and after which the
condensate is beneficial. After the crossover time, (2) the
volume averaged substrate concentration and concentration
of substrate outside the condensate are less than S∞, (3) the
concentration of substrate inside the condensate is greater than
S∞, and (4) all three of these values approach S∞ as kdiff →
∞. These features are all robust to the parameter values.
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IV. CONCLUSION

We have shown that the interactions that recruit reactants
to phase separated compartments necessarily impair mobility,
and hence reactivity. This mobility loss may be acceptable
in situations with multiple sequential reactions or high order
reactions, but in most cases reactions progress more rapidly
when reactants are dispersed in the homogeneous state.
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APPENDIX A: RECRUITMENT EQUILIBRIUM
AND CLIENT PARTITIONING

In this section, we compute how the microscopic charac-
teristics of the network, such as the concentration of binding
sites and their affinity, affect client recruitment. In particular,
we are interested in the partition coefficient, defined as

p = SI

SII
, (A1)

which relates the client concentrations inside and outside of
the condensate.

1. Single site binding

We first consider the situation where a client can only
interact with one scaffold binding site at a time. The client
concentration inside the condensate is the sum of soluble and
bound species. We denote the soluble fraction SIs and the
bound fraction SIb such that SI = SIs + SIb. We can relate the
concentrations of soluble and bound species by the dissocia-
tion constant

KD = (B − SIb)SII

SIb
, (A2)

where B is the concentration of binding sites in the dense
phase. If the system is in diffusive equilibrium the concen-
tration of soluble species is equal inside and outside of the
condensate. If the binding to free scaffold in the dilute phase
is negligible then SIs = SII. The probability that a given site is
occupied is given by

Pbound = SIb

SIb + (B − SIb)
= 1

1 + KD/SII
. (A3)

Therefore the total concentration of client inside the conden-
sate is

SI = SII + B

1 + KD/SII
. (A4)

The partition coefficient is then

p = 1 + B

SII + KD
. (A5)

The usefulness of the partition coefficient is that it provides
a measure of recruitment that does not depend on the con-
centration of client. From Eq. (A5), we can see that the
concentration independence is only valid when SII < KD. Be-
low this threshold p � 1 + B/KD and the concentration of

client in the condensate rises linearly with the total concentra-
tion. However, when SII approaches or exceeds KD the binding
sites begin to saturate and the partition coefficient declines
because the soluble concentration rises faster than the bound
fraction.

2. Sticker-and-spacer binding

a. Binding equilibrium

Next we calculate the concentration of polymer-like clients
within a scaffold network. The extent of recruitment is de-
termined by the condition that the chemical potential of the
clients must be the same in the dilute and concentrated phases.
The partition function for N clients is given by QN = QN

1 /N!.
This expression is valid in the dilute phase, but not necessarily
in the dense phase. If recruitment to the dense phase is strong
enough, it is necessary to account for interactions between
the clients. These interactions will result in a competition for
scaffold binding sites. As shown in the calculation for single
site binding, this competition leads to a decline in the partition
coefficient [Eq. (A5)] at large concentration. Therefore the
calculation below represents an upper limit on the ability of
a condensate to recruit clients and, hence, facilitate reactions.
Our focus on optimized systems is to highlight the limited
capacity of condensates to facilitate reaction kinetics.

The chemical potential of the clients is

μ = −kBT
∂ ln(QN )

∂N
= −kBT (ln(Q1) − ln N ), (A6)

where we used Stirling’s approximation ln(N!) = N ln(N ) −
N for N 
 1. The next step is to evaluate Q1 which we
write as a product of position and conformation states Q1 =
QposQconf . To evaluate the position partition function we
choose one end of the polymer as a reference point and sum
over all possible positions for this point of the polymer. Ne-
glecting boundary effects, this integration yields the volume of
the relevant phase divided by a microscopic parameter V1 that
sets the volume per state (similar to the Debye wavelength)

Qpos = V/V1. (A7)

Inserting this into the expression for chemical potential,
Eq. (A6), we have

μ = −kBT (ln(Qconf ) − ln(cV1)), (A8)

where c = N/V is the client concentration.
To evaluate Qconf we assume that the client molecule con-

sists of M stickers and M + 1 spacers (i.e., both ends of the
molecule terminate with a spacer). We further assume that
each spacer is long enough, and that the number of scaffold
binding sites is large enough, that each spacer is statistically
independent. Each spacer has a fixed starting point that is
determined by either the state in the position integration (for
the first spacer) or the end point of the previous spacer (for
the next M spacers). The partition function for each spacer
consists of a sum over all possible end points given the fixed
starting point. In the dilute phase, where we can neglect bind-
ing, each spacer is identical so

Qconf = QM+1
spacer. (A9)
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(b)(a)

FIG. 5. Schematic of the geometry in the calculation of the client free energy. (a) The calculation describes a polymerlike client (blue)
entangled with a scaffold matrix (black lines). Stickers on the client (dark blue dots) can interact with attractive patches (green dots) on the
scaffold. The spacers are long enough, and the binding patches abundant enough, that the binding states of adjacent stickers are approximately
independent. The figure shows a client with M = 5 stickers. Four of these stickers are bound to the scaffold but the middle one is unbound
(red arrow). This independence allows the client to gradually move through the network. (b) The partition function for each spacer involves
an integration over the end to end vector r. This integration will include states where the sticker at the end is unbound (as shown) and states
with it bound to the scaffold binding sites (green dots). Each binding site is surrounded by a volume Vb within which the sticker is considered
bound.

Qspacer accounts for the Gaussian distribution of polymer
states for fixed starting and ending points

Qspacer = 1

V1

∫
e−r2/r2

g d3r, (A10)

where r and rg are the end-to-end vector and the radius of
gyration of the spacer, respectively.

In the dense phase, we need to account for the fact that
the first M spacers will have their conformational statistics
perturbed by binding to the scaffold. However, the (M + 1)th
spacer, which does not contain a sticker is unperturbed by the
scaffold (we neglect crowding effects). Therefore, in the dense
phase, we have

Qconf = QM
denseQspacer. (A11)

The sum over states for the M spacers with stickers is similar
to the dilute phase in that the starting point is fixed by either
the position integration or the previous spacer. We account for
the effect of the scaffold by splitting the integration into terms
that result in either a free end or sticker-scaffold binding

Qdense = 1

V1

∫
e−r2/r2

g d3r+
binding sites∑

i

e−R2
i /r2

g

(
e−εb/kBT − Vb

V1

)

= e− funbound + e− fbound . (A12)

In the second term εb is the affinity of the sticker-scaffold
binding interaction and Ri is the distance between the ith scaf-
fold binding site and the beginning of the spacer. In writing the
unbound integral, we have overcounted the volume accessible
to the end of the spacer because each binding site on the
scaffold will be surrounded by a volume Vb that results in a
bound state. This overcounting is corrected by the Vb/V1 term
of the sum over binding states, which assumes that the Vb is

small enough that Ri does not change appreciably within this
volume (Fig. 5).

At equilibrium we have μdilute = μdense, which gives

ln
(
QM+1

spacer

) − ln (cdiluteV1)

= ln
(
QM

denseQspacer
) − ln (cdenseV1). (A13)

This expression can be rearranged as follows:

ln

(
cdense

cdilute

)
= ln

(
QM

denseQspacer

QM+1
spacer

)
(A14)

or

cdense

cdilute
=

(
Qdense

Qspacer

)M

=
(

e− funbound/kBT + e− fbound/kBT

e− funbound/kBT

)M

= (1 + e−� f /kBT )M, (A15)

where � f = fbound − funbound.
Our next task is to connect these free energies to the

enrichment/depletion due to condensate formation. As de-
fined in the text, the partition coefficient is given by

p = cdense

cdilute
= (1 + e−� f /kBT )M, (A16)

Note that the binomial on the right hand side includes the
unbound state so it is not necessary to include a SII term as
in Eqs. (A4) and (A5). Equation (A16) translates into a free
energy change for a client molecule with M stickers entering
the condensate

�F/kBT = − ln(p) = −M ln(1 + e−� f /kBT ), (A17)

which is Eq. (5).
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b. Sticker and spacer diffusion

Our next task is the optimize the mobility of the bound
clients. To do this we start with the diffusion constant of the
clients [Eq. (8)]

Dclient ∝ Dspacer

M2(1 + e−� f /kBT )
(A18)

and maximize with respect to M by keeping affinity
�F/kBT = A (or, equivalently, the partitioning p) constant.
Using (A17), we write

1 + e−� f /kBT = e−A/M , (A19)

which gives

Dclient ∝ eA/M

M2
⇒ ∂Dclient

∂M

= −eA/M

M3

(
2 + A

M

)
= 0 ⇒ A

M
= −2. (A20)

Therefore

1 + e−� f /kBT = e2 ⇒
� f = − ln(e2 − 1) kBT � −1.85 kBT, (A21)

which is about 2 kBT . The partitioning of dynamically opti-
mized clients is then

p = (1 + e−� f /kBT )M = e2M . (A22)

APPENDIX B: MICHAELIS-MENTEN ANALYSIS

1. Solution Michaelis-Menten

The basic Michaelis-Menten reaction scheme is

n S + Efree � ISE → P + Efree, (B1)

where Efree is the unbound enzyme, ISE is the substrate-
enzyme intermediate, such that Efree + ISE = E with E
denoting the total concentration of enzymes. In the remainder
of this section, we focus on n = 1, which is sufficient to show
that saturating kinetics only diminish any benefit coming from
a condensed phase. This motivates our decision to use the limit
of unsaturated enzymes beginning in Sec. B. With n = 1 the
reaction (B1) is governed by the kinetic equations

dS

dt
= −k+S (E − ISE ) + k−ISE , (B2a)

dISE

dt
= k+S (E − ISE ) − (k− + kcat )ISE , (B2b)

dEfree

dt
= −k+S (E − ISE ) + (k− + kcat )ISE , (B2c)

dP

dt
= kcatISE , (B2d)

where k+ is the rate of substrate binding to the enzyme, k− is
the rate of substrate unbinding from the enzyme before react-
ing, E is the total concentration of enzymes (free and bound),
and Efree = E − ISE is the concentration of enzymes in the un-
bound state. In the steady-state approximation, dISE/dt = 0,
which allows us to rearrange Eq. (B2b) to obtain

ISE = k+SE

k+S + k− + kcat
. (B3)

Inserting this into Eq. (B2d), we recover the Michaelis-
Menten result

dP

dt
= kcatE

S
kcat+k−

k+
+ S

= vmax
S

KM + S
, (B4)

where vmax = kcatE and KM = (kcat + k−)/k+ is the
Michaelis-Menten constant. We can gain some further
physical intuition by rearranging this result as follows:

dP

dt
= Ek+S · kcat + k−

kcat + k− + k+S
· kcat

kcat + k−
= E · k+S · Pfree · Pcat. (B5)

This expression gives the turnover rate for each enzyme as
the product of three terms. The first term k+S describes the
attempt rate for enzyme-substrate binding. These attempts are
successful if the enzyme is not already in the bound state,
which is given by Pfree = (kcat + k−)/(kcat + k− + k+S). The
last factor describes the success of bound enzyme-substrate
complexes, of which only a fraction Pcat = kcat/(kcat + k−)
proceed to catalysis without unbinding first.

2. Condensate Michaelis-Menten

Next we generalize the Michaelis-Menten scheme to
account for reactions occurring within a condensate. The re-
action scheme takes the form

S + B � ISB, (B6a)

ISB + E � ISBE → P + E + B. (B6b)

The two intermediates are the substrate bound to the scaf-
fold ISB and the substrate-scaffold-enzyme ternary complex
ISBE . This scheme allows for two steps that can saturate,
condensate recruitment and catalysis, each of which will have
a Michaelis-Menton constant. The Michaelis-Menton con-
stant KM,i appearing in the manuscript will be determined by
the step that is limiting at a lower concentration. Note that
this scheme neglects direct enzyme-substrate binding, which
provides another pathway for substrate turnover. However,
if the condensate provides a kinetic benefit, the pathway in
Eqs. (B6b) will dominate. This allows us to gain intuition
despite neglecting the solution pathway. We will return to this
approximation later.

The rate equations for this scheme are
dSIs

dt
= −konSIs (B − ISB − ISBE ) + koff ISB, (B7a)

dISB

dt
= konSIs (B − ISB − ISBE )

− koff ISB − k+ISB (E − ISBE ) + k−ISBE , (B7b)

dISBE

dt
= k+ISB (E − ISBE ) − (k− + kcat )ISBE , (B7c)

dP

dt
= kcatISBE , (B7d)

where k+ is the rate that scaffold-bound substrates bind to the
enzyme, k− is the rate the ISBE ternary complex breaks into a
scaffold-bound substrate and an enzyme prior to reacting, B
is the concentration of nonenzyme substrate binding sites on
the condensate scaffold, the quantity (B − ISB − ISBE ) is the
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concentration of free substrate-binding sites on the scaffold,
and (E − ISBE ) is the concentration of unbound enzyme. In the
steady-state approximation we have dISB/dt = dISBE/dt = 0.
From Eq. (B7c), we have

ISBE = E
ISBk+

k+ISB + k− + kcat
= E

ISB

ISB + KMrxn
, (B8)

where KMrxn = (k− + kcat )/k+ is a Michaelis-Menten param-
eter describing the reaction catalysis step within a condensate.
Inserting Eq. (B8) into Eq. (B7d), we obtain a useful
relationship

dP

dt
= kcatE

ISB

ISB + KMrxn
. (B9)

The advantage of condensates in facilitating reactions is the
increased concentrations they enable. In Eq. (B9), ISB is
the enhanced substrate concentration that is enabled by the
condensate. However, Eq. (B9) shows there are diminishing
returns to the increased concentration because if ISB > KMrxn

the reaction rate saturates at vmax = Ekcat. Therefore, for the
condensate to be beneficial, it is necessary that KMrxn > ISB.
This conclusion can also be obtained from the small σ limit
of Figs. 2(a) and 2(b), which corresponds to the unsaturated

limit. Furthermore, reduced mobility within the condensate
will reduce k+ relative to the dilute phase, which will increase
KMrxn. This reduces the reaction rate for a given substrate
concentration, but allows for higher substrate concentrations
before the enzymes saturate.

To make further progress, we use the steady-state condition
dISB/dt = 0 in combination with Eq. (B7b) to obtain

0 = konSIs(Bi − ISB − ISBE ) − ISB(koff

+ k+(E − ISBE )) + k−ISBE , (B10)

which can be used with Eq. (B8) to obtain a quadratic equa-
tion for ISB

0 = BKMrxn − ISB(ψKMrxn + Eη − B) + I2
SB

(
k+

konSIs
E − ψ

)
,

(B11)
where

ψ = 1 + koff

konSIs
+ k+

konSIs
E , (B12)

η = 1 − k−
konSIs

. (B13)

The solution is

ISB = −1

2
(
1 + koff

konSis

)
⎡
⎣(ψKMrxn + Eη − B) −

√
(ψKMrxn + Eη − B)2 + 4BKMrxn

(
1 + koff

konSIs

)⎤
⎦, (B14)

where we have chosen the solution that gives the limit ISB � B
when SIs → ∞. As discussed above, the interesting regime is
large KMrxn because condensates are not helpful unless ISB <

KMrxn [Eq. (B9)]. That means we are interested in the regime
where B/KMrxn � 1, which allows us to Taylor expand the
square root

ISB � B(
1 + koff

konSIs
+ k+

konSIs
E + E−B

KMrxn
− E k−

konSIsKMrxn

) , (B15)

ISB � B(
1 + KMcond

SIs

) , (B16)

where the last step comes from neglecting terms of or-
der K−1

Mrxn and KMcond = (koff + k+E )/kon is the Michaelis-
Menten constant that describes the saturation of condensate
binding sites. When available binding sites are not limiting
(SIs < KMcond), the intermediate concentration is approxi-
mately ISB � BSIs/KMcond, which can be combined with
Eq. (B9) to give an equation in the form of Eq. (1) with
K1

M,I = KMcondKMrxn/B and kI = kcat. However, this equa-
tion describes the case of saturating enzyme kinetics where
the condensate is not beneficial. A more interesting limit is in
the unsaturated regime where KMrxn 
 ISB.

The reaction rate in the limit of unsaturated enzymes is
obtained by inserting Eq. (B16) into Eq. (B7d)

dP

dt
= kcatE

ISB

ISB + KMrxn
(B17)

� kcatE
1

KMrxn

B(
1 + KMcond

SIs

) , (B18)

where again, we have used KMrxn 
 ISB. Inserting the defini-
tions of KMrxn, KMcond, and rearranging, we find

dP

dt
� kcatE · B

KMrxn
· SIs

(SIs + KMcond )

� BSIskon· kcat

k− + kcat
· k+E

koff + k+E
· koff + k+E

(SIskon + koff + k+E )

� B(SIskon) · Pcat · Penz · Pfree.

Just as we found that the solution Michaelis-Menten case
can be written as a product of probabilities (Eq. (B5)), we
see that the condensate-mediated reaction rate can be written
as the product of a binding attempt rate (SIskon), the prob-
ability that the binding site is free Pfree, the probability the
substrate transfers to the enzyme before unbinding Penz, and
the probability that catalysis occurs before detaching from the
enzyme Pcat. This product does not capture events where the
substrate binds to the enzyme multiple times before catalysis
ISB � ISBE . The terms describing these events were lost in the
Taylor expansion and subsequent neglect of terms of order
K−1

Mrxn.

APPENDIX C: REACTION RATE ENHANCEMENT
BY CONDENSATES

In this Appendix, we provide the mathematical details for
the calculation of the reaction rate enhancement, defined as
E = R̄/Rhomo. Here we assume that clients maintain mobil-
ity and we do not distinguish between bound and unbound
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fractions [see Eq. (A16) and related discussion to justify this
simplification]. From the conservation of mass condition, it
follows:

S̄ = SI φ + SII(1 − φ) = SII

(
1 − φ + SI

SII
φ

)

= SII(1 − φ + pS φ), (C1)

i.e.,

SII = S̄

1 − φ + pS φ
, SI = pS S̄

1 − φ + pS φ
, pS = SI

SII
.

(C2)

Similarly, we obtain for the enzyme E :

EII = Ē

1 − φ + pE φ
, EI = pE Ē

1 − φ + pE φ
, pE = EI

EII
.

(C3)

The reaction rate in the homogeneous system is given by the
Michaelis-Menten-Hill equation

Rhomo = kII Ē S̄n

Kn
M + S̄n

, (C4)

where n is the Hill coefficient, KM is the unscaffolded
Michaelis-Menten constant, and we have assumed that the rate
constant in the homogeneous state equals that of the dilute
phase, i.e., kII. The reaction rate inside the condensate is

RI = kI EI Sn
I

Kn
M,I + Sn

I

= kI
pE Ē

(1 − φ + pE φ)

pn
S S̄n[

Kn
M,I(1 − φ + pS φ)n + pn

S S̄n
] ,

(C5)

where KMrxn is the scaffolded Michaelis-Menten constant. The
rate outside the condensate is

RII = kII EII Sn
II

Kn
M,II + Sn

II

= kII
Ē

(1 − φ + pE φ)

S̄n[
Kn

M,II(1 − φ + pS φ)n + S̄n
] .

(C6)

The volume averaged reaction rate is then

R̄ = RI φ + RII(1 − φ)

= kII
Ē S̄n

(1 − φ + pE φ)

(
kI

kII

φ pE pn
S

Kn
M,I(1 − φ + pS φ)n + pn

S S̄n
+ 1 − φ

Kn
M,II(1 − φ + pS φ)n + S̄n

)
. (C7)

Assuming equal partitioning for substrate and enzyme, i.e., pS = pE = p, we find

E = R̄

Rhomo
= μn(1 + σ n)

(1 − φ + pφ)

⎛
⎜⎝κ

φ p(
1−φ

p + φ
)n

+ σ nμn
+ 1 − φ

ωn (1 − φ + pφ)n + σ nμn

⎞
⎟⎠, (C8)

where

σ = S̄

KM
, κ = kI

kII
, μ = KM

KM,I
, ω = KM,II

KM,I
. (C9)

The reaction rate enhancement E is a function of 6 dimen-
sionless parameters: φ, p, σ , κ , μ and ω. We now study the
behavior of this function in dependence of these parameters
(see Fig. 2 of the main text for details).

(i) Dependence on κ. The rate enhancement function in-
creases linearly with κ . The dependence of E on κ is therefore
straight forward.

(ii) Dependence on μ. The rate enhancement function in-
creases monotonically with μ. The dependence of E on μ

is of the form μn/(1 + αμn), which is always an increasing
function of μ.

(iii) Dependence on ω. E decreases with increasing ω.
Therefore the dependence of E on the parameters κ , μ

and ω is trivial. The dependence of E on σ exhibits more
interesting behavior.

(i) Dependence on σ. When the substrate concentration
is very large, σ → ∞, the condensate provides little or no

enhancement. The rate enhancement in this case becomes

lim
σ→∞ E = 1 − φ + κ pE φ

1 − φ + pE φ
= 1 + (κ − 1) pE φ

1 − φ + pE φ
. (C10)

From this formula, we see that if κ � 1, then limσ→∞ ρ �
1, with equality when κ = 1. Significant rate enhancement is
obtained in the opposite limit of low substrate concentration
σ → 0. In this limit

lim
σ→0

E =
(μ

ω

)n 1 − φ + ωnκ φ pn+1

(1 − φ + pφ)n+1
. (C11)

This is Eq. (3) from the main text.
(ii) Dependence on φ. As discussed above, condensates

are beneficial for the reaction rate at low substrate concentra-
tion. Therefore we focus on the behavior of the enhancement
function E in the limit σ → 0, Eq. (C11). This function dis-
plays a maximum as a function of condensate volume fraction
φ. We find the maximum of E by setting ∂E/∂φ = 0 using
Eq. (C11), which yields

φ� = (ωnκ pn+1 − 1) − (n + 1)(p − 1)

n(p − 1)(ωnκ pn+1 − 1)
. (C12)
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APPENDIX D: MOBILITY LOSS UPON BINDING IMPAIRS
REACTION RATES

Consider the situation where the species bound to the con-
densate are immobile. This means that reactions are limited
to collisions with soluble species. This is known as the Eley-
Rideal mechanism [33]. This mechanism describes situations
where the enzymes are covalently bound to the scaffolds
[14,15] or the clients are recruited by specific binding modules
[22].

1. Instantaneous reaction rates

In the unsaturated limit, the reaction rate in the dilute phase
is RII = k′

IIS
n
IIEII, where k′

II = kcat/Kn
M,II is the linearized rate

constant. Inside the condensate we impose the requirement
that, at most, only one species can be bound for the reaction to
proceed. To enforce this requirement we separate the enzyme
and substrate concentrations into bound and soluble fractions.
This gives the reaction rate

RI = k′
I

(
Sn

IsEIs + Sn
IsEIb + SIbSn−1

Is EIs
)
, (D1)

where k′
I is the linearized rate constant in the dense phase.

The volume averaged rate is R̄ = (1 − φ)RII + φRI, where
φ = VI/Vtot is the volume fraction of the dense phase. If
the reaction rate constants are equal in the two phases, k′

I =
k′

II = k, and the system is in diffusive equilibrium across the
condensate interface so that SII = SIs and EII = EIs (both ap-
proximations are strongly favorable for condensate reactions),
then the average reaction rate in the two-phase system is

R̄ = kSn−1
II [SIIEII + φ(SIIEIb + SIbEII )]. (D2)

This should be compared to the system with homogeneous
concentrations S̄ = (1 − φ)SII + φSI = SII + φSIb, Ē = (1 −
φ)EII + φEI = EII + φEIb and total rate

Rhom = kS̄nĒ (D3)

= kS̄n−1[SIIEII + φ(SIIEIb + SIbEII ) + φ2SIbEIb]. (D4)

The rate Rhom is clearly greater than the total rate R̄ in the
phase-separated system since S̄ > SII and R̄ lacks the φ2 term.
The missing term is due to the fact that molecule pairs that
were immobilized in the phase-separated system are able to
react in the homogeneous system. The most favorable case
is n = 1 and SIb = 0, which describes a condensed enzyme
and a substrate that does not bind the scaffold [14,15]. In this
case, R̄ = Rhom, so the reaction rate is identical to that of a
well-mixed system in the absence of condensate. Therefore,
in the Eley-Rideal limit, condensates are either neutral or
detrimental to reaction kinetics.

2. Numerical solution of rate equations when bound reactants
are immobile

Depletion of substrate within the condensate further inhibits
reactions. The above analysis only considers the instanta-
neous rate at the beginning of the reaction. After the reaction
begins there will be additional limitations due to diffusive
transport between VI and VII and the exchange between bound
and unbound states in the condensate. To understand these
kinetic factors we consider the case where the enzyme is

covalently linked to the scaffold, so EIs = 0, and allow the
S concentrations to vary with time. The kinetic equations for
n = 1 are

dSIs

dt
= kdiff (SII − SIs ) − kon[SIs(B − SIb) − KDSIb] − kSIsEI,

(D5a)

dSIb

dt
= kon[SIs(B − SIb) − KDSIb], (D5b)

dSII

dt
= − φ

1 − φ
kdiff (SII − SIs ) − kSIIEII. (D5c)

The concentration of soluble S particles within the condensate
can change via three processes. The first term kdiff (SII − SIs )
describes the diffusive flux between the dense and dilute
phases. The exchange between the inner and outer volumes
is modeled by the Smoluchowski flux 4πDRcond(SII − SIs )
divided by the volume of the condensate 4πR3

cond/3. Therefore
kdiff = 3D/R2

cond, where D is the diffusion constant of the S
species and Rcond is the condensate radius. The second term
kon[SIs(B − SIb) − KDSIb] describes the binding and unbind-
ing of S molecules to binding sites on the scaffolds in the
condensate. We assume the scaffold matrix provides binding
sites at a concentration B of which B − SIb are available to
bind S at a rate constant kon. The rate at which S are released
from the scaffold, koff , is expressed in terms of the dissociation
constant KD = koff/kon. The third term in Eq. (D5a) describes
S particles reacting with E , where again we have made the
optimistic approximation that the rate constants in the dilute
and dense phases are identical k′

I = k′
II = k. Equation (D5b)

describes the concentration of S particles that are bound to
the condensate. Equation (D5c) describes the concentration
of S particles outside of the condensate, which can change
by either diffusive exchange with the condensate or reactions
with E with rate RII. The diffusion term in Eq. (D5c) depends
on φ reflecting the unequal volumes of the phases.

Figure 6 plots the condensate enhancement factor, which
we define as the time required for the reaction to consume
half of the S particles in the homogeneous system divided
by the separated system. The former quantity is computed
from k−1Ē−1 ln 2, while the latter quantity is determined by
numerical solution of Eqs. (D5a)–(D4c). In all cases the en-
hancement factor is less than one, indicating that the presence
of the condensate has an inhibitory effect on the reaction rate.
This is true whether the system is initialized from a homoge-
neous state, SII = SIs = S̄ and SIb = 0 (Fig. 6), or if the system
is started from a state where the S particles have reached
an equilibrium binding to the condensate before reaction is
started (data not shown).

Fast reactions. When the reaction rate is faster than
the binding or diffusion timescales (Fig. 6, left panel) the
condensed system most closely approaches the rate of the ho-
mogeneous system when kdiff is large and kon is small. Large
kdiff minimizes the inhibitory effect of transporting substrate
to the enzymes in the condensate, while small kon allows the
substrate to react with immobile enzymes before it binds to
the condensate.

Fast binding. When binding to the network is very fast
(Fig. 6, center panel), the way to keep substrate in the
unbound, reactive state is to keep the soluble substrate
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FIG. 6. Plot of the condensate enhancement factor as a function of the rate constants in Eq. (4). The enhancement factor compares the time
to consume half of the reactant in the homogenous system to the separated system. Ratios less than one, which is the case in all conditions in the
figure, indicate that it takes longer for the reaction to proceed in the separated system. In each panel, the fastest rate constant is held fixed (k in
the left panel, kon in the middle panel, and kdiff in the right panel) and the other two are varied over three orders of magnitude. See text for a brief
description of each panel. Parameters as in Eq. (D5): φ = 0.1, BI/Ē = 8, B̄/Ē = 1, kdiff = 0.1, and S̄t=0 = 2. Here, B̄ = φ BI + (1 − φ) BII

denotes the average B concentration.

concentration low (below KD). This occurs when k 
 kdiff so
that the reaction consumes substrate as soon as it enters the
condensate.

Fast diffusion. When the diffusion rate is much faster
than the reaction or binding rates (Fig. 6, right panel), the
inhibitory effect of substrate transport is negligible and the
system approaches the reaction rate of the homogeneous sys-
tem, provided the reaction consumes the incoming substrate
faster than it can bind. If the reaction rate is too fast, however,
diffusion can become limiting again. The optimal reaction rate
in the right panel of Fig. 6, where the reaction proceeds at
∼80% of the rate of the homogeneous system, occurs when k
is large enough to out-compete binding, but not so large that
diffusion becomes limiting.

APPENDIX E: OPTIMAL PARTITIONING AFFINITY

Increasing the affinity of a client to the condensate comes
at the cost of mobility. Here we determine the optimal affinity
that balances the increase in concentration with the loss in
mobility.

Increasing the affinity of clients to the network has three
effects on the reaction rate enhancement E . First, it reduces
the dilute phase concentration, which reduces the reaction
rate. Second, it increases the dense phase concentration, which
increases the rate. Third, it decreases the mobility of reactants
in the dense phase, which reduces the reaction rate. The first
two effects are captured by the p dependencies in Eq. (C11),
but the calculation in the main text shows that the optimal
sticker affinity is given by ln(1 + e−� f /kBT ) = 2, so p = e2M

in the best case scenario.
The mobility effect is captured in the ωnκ = k′

I/k′
II factor

in Eq. (C11), where k′
I and k′

II are the linearized rate constants.
In the subsaturated regime, these constants include the effects

of both catalytic turnover and diffusion. Therefore we assume
that the reaction rate inside the condensate kI is proportional
to the diffusion constant of the clients. The diffusion constant
is proportional to M−2(1 + e−� f /kBT )−1 [Eq. (8) of main text,
Eq. (A18)], but the term in parentheses is just another factor
of e2 that can be absorbed into the constant of proportionality.
Therefore we write

kI

kII
= α

M2
, (E1)

where α is a constant of proportionality (that will have mini-
mal effect on the results).

Now we insert Eq. (E1) and partition coefficient p = e2M

into Eq. (C11) and obtain

E = (μn/ωn)

(1 − φ + φ e2M )n+1

(
1 − φ + α

M2
e2M(n+1)φ

)
. (E2)

This expression has a (nonphysical) divergence at M = 0 and
monotonically decreases at large M. There are two possible
behaviors in-between, it can monotonically decrease, or there
can be a local minima followed by a local maximum (Fig. 7).

To determine if there is an enhancement due to recruitment,
we set ∂E

∂M = 0 and find that the reaction rate is greatest when
the number of stickers is equal to the largest root of

M2 = α e2Mn

[
1 − 1

M(n + 1)

(
1 + φ

1 − φ
e2M

)]
. (E3)

This is a transcendental equation that can be solved numer-
ically to yield the optimal sticker number M� [Fig. 7(d)]. If
n is small or φ is large there are no solutions to Eq. (E3)
indicating that recruitment to the condensate is detrimental to
the reaction rate. However, large n and small φ favour highly
partitioned systems as discussed in the text.
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FIG. 7. (a) The reaction rate can have a pair of local extremes in terms of sticker number M (b) and volume fraction φ (c). (d) Small volume
fractions and/or large reaction orders promote the appearance of the local maximum. Parameters: α = 0.05.

Analysis of the asymptotics of Eq. (E3) reveals physical
insights. We are looking for intersections between the left side
and the right side. The physically relevant region is M > 1 but
mathematical intuition can be gained by starting at M = 0.

(i) The left side starts at 0 at M = 0 and diverges to +∞
as M → +∞.

(ii) The right side tends to −∞ at M = 0 (dominated by
the 1/M term) and also tends to −∞ as M → +∞ (dominated
by the e2M term).

(iii) The right side can only intersect the left side if the
term in square brackets is positive. Despite the fact that the
left side increases rapidly with M, the right side diverges even
faster due to the e2Mn prefactor. Therefore even a slightly
positive value in the square bracket is likely to give a root.

(iv) The biggest unknown in this equation is the constant
α. While this parameter has a strong effect on the maximum
rate within the dense phase, it has a very weak effect on the

presence or location of the maximum. That is because the right
side of the equation will be nearly vertical at the two roots,
meaning that even an order of magnitude change in α will
only change the location of the roots by M ± 1.

(v) The interesting root, representing the rate maximum,
is close to the largest value of M for which the term in the
round parentheses is less than 1 (including the prefactor)

1

M(n + 1)

(
1 + φ

1 − φ
e2M

)
= 1. (E4)

We see that the left hand side of Eq. (E4) increases very
rapidly with M. Therefore no root of Eq. (E4) exists for M � 2
unless φ is sufficiently small and/or n is large. This explains
why there is no solution for M� when φ is above a certain
threshold (see Fig. 7).
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FIG. 8. Reaction rate enhancement as a function of the volume fraction φ and the number of stickers M. Varying the reaction n order makes
a big difference to the reaction rate; however, changing α, the constant of proportionality between Stokes and reptation diffusion, has a limited
effect on reaction rate.
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