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Spectral properties of the Laplacian of temporal networks following a constant block Jacobi model
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We study the behavior of the eigenvectors associated with the smallest eigenvalues of the Laplacian matrix of
temporal networks. We consider the multilayer representation of temporal networks, i.e., a set of networks linked
through ordinal interconnected layers. We analyze the Laplacian matrix, known as supra-Laplacian, constructed
through the supraadjacency matrix associated with the multilayer formulation of temporal networks, using a
constant block Jacobi model which has closed-form solution. To do this, we assume that the interlayer weights
are perturbations of the Kronecker sum of the separate adjacency matrices forming the temporal network. Thus
we investigate the properties of the eigenvectors associated with the smallest eigenvalues (close to zero) of
the supra-Laplacian matrix. Using arguments of perturbation theory, we show that these eigenvectors can be
approximated by linear combinations of the zero eigenvectors of the individual time layers. This finding is
crucial in reconsidering and generalizing the role of the Fielder vector in supra-Laplacian matrices.
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I. INTRODUCTION

In recent years, one of the major lines of research in com-
plex network analysis is the topological changes that occur
in a network over time. A sequence of networks with such
a time-varying nature can be formalized as a temporal net-
work [1]. The multilayer formulation of temporal networks [2]
is one way to consider the interconnected topological structure
changing over time: ordinal interconnections between layers
determine how a given node in one layer and its given coun-
terparts in the previous and next time point layers are linked
and influence each other. The network analysis community
has strong traditions in using the spectral properties [3,4] of
multilayer networks for various purposes such as centrality
measures [5] or investigating diffusion processes [4].

One challenge associated with understanding the spectral
properties of the temporal networks is the lack of avail-
able tools that respect the fundamental distinction between
within-layer and interlayer edges [2,6,7] when studying the
spectral properties of the Laplacian matrix £ of temporal
networks, known as supra-Laplacian. A number of investiga-
tions were undertaken to show that the interlayer couplings
in multilayer networks distort those spectral properties and
to explain the effect of different interlayer weights over the
eigenvalues of the supra-Laplacian [3,4]. There is little work
related to the understanding of the information carried by the
eigenvectors corresponding to the smallest eignevalues of the
supra-Laplacian.

The spectral analysis on a network is nowadays understood
as studying the spectral properties of the various Lapla-
cian matrices defined on the network. In particular, for the
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so-called normalized Laplacian the most interesting are usu-
ally the smallest eigenvalues and their eigenvectors.

For a Laplacian matrix, the eigenvector corresponding to
the smallest eigenvalue, | = 0, is constant or weighted by the
node degrees if the Laplacian is normalized [8]. The eigenvec-
tor corresponding to the smallest nonzero eigenvalue, known
as the algebraic connectivity, is in practice used for partition-
ing purposes [9,10] and is known as the Fiedler vector. In this
article, we consider slowly changing temporal networks which
means that the adjacency matrices forming the different time
layers change relatively slowly [11]. The main objective of
the present paper is to draw a maximal profit of this important
property for the majority of temporal networks. In particular,
for every temporal network, for a sufficiently small interval,
we have this effect.

Further, we add interlayer weights to the temporal network
which may be considered as perturbations of the Kronecker
sum of the separate adjacency matrices forming the different
time layers, and we consider the Laplacian of the result-
ing matrix which is usually called supra-Laplacian [2]. This
point of view on the temporal networks, allows us to find an
approximate closed form solution of the eigenvectors corre-
sponding to the smallest eigenvalues of the supra-Laplacian.
In particular, by applying arguments from perturbation theory,
we are able to show that the eigenvectors corresponding to
the smallest eigenvalues (of the supra-Laplacian) are well
approximated by the space of the perturbed eigenvectors cor-
responding to all zero eigenvalues of the Laplacian matrices
corresponding to the networks of the separate time layers.

The paper is organized as follows: in Sec. II, we present
the construction of the temporal network following a constant
block Jacobi model. This model appears in a natural way as a
first order approximation to the slowly changing temporal net-
work, and enjoys a closed-form solution of the eigenvectors
of the supra-Laplacian matrix. In Sec. III we investigate the
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spectral properties of the supra-Laplacian and obtain an eigen-
vector solution of the reduced system. Section IV is devoted
to identifying the smallest eigenvectors, which are obtained
by perturbation of the zero eigenvectors of the separate time
layers, and discussing the influence of density and number of
layers on these eigenvectors; finally we state the conclusions.

II. TEMPORAL NETWORK FOLLOWING CONSTANT
BLOCK JACOBI MODEL: NOTATIONS AND DEFINITIONS

A temporal network is a set of networks in which edges
and nodes vary in time. In this work, we make the assumption
that each node i is present in all layers. We use the notation
G' for a layer in an ordered sequence of T networks T =
{(G',G?, ...,G"}withG' = (V, A") wheret € {1,2, ..., T} and
the number of nodes is N, i.e., N = |V|. Here A’ is a binary
undirected and connected adjacency matrix. In order to use the
multilayer framework for representing a temporal network, we
consider the diagonal ordinal coupling of layers [2,12,13] to
define a new supranetwork 7. We define the coupling edgesby
denoting wffp € R the value of the interlayer edge weight
between node i in different time layers ¢ and p. Our main
assumption is that only neighboring layers may be connected,
ie., ;" =0 for all layers G' and G”, with p#t — 1 and
p #t + 1. No other edges between G' and G? exist for indices
t # p.

As a result, the multilayer framework of the temporal net-
work is expressed in an NT-node single adjacency matrix .4
of size NT x NT which is simply the adjacency matrix of
the network 7, referred to as supraadjacency matrix. Clearly,
the diagonal blocks of A are the adjacency matrices A’,
and the off-diagonal blocks are the interlayer weight matrices
Wr = diag(wy?, 0y?, ..., oy )if p=t —lorp=1+1.

The wusual within-layer degree of node i in layer
G' is defined as d!:= 21]\/: jA;;  while the multi-
layer node degree of node i in layer G' is ! :=
di + o'+ "t We define the degree matrix D as
D := diag(d!, 0}, ..., 0}, 03, ..., 9%, ..., 0%). The normalized
supra-Laplacian £ is defined as L : =D‘%(D — A)D_% [8].

The supraadjacency matrix A with zero interlayer weights
and its corresponding Laplacian matrix £° are directly ex-
pressed as a Kronecker sum:

A =0l A" — L"=0l_ L, (1)

where L' is the normalized Laplacian of network G'.

From spectral graph theory [8], we know that due to the
connectedness of A’, for every time point ¢ the solution to
L'v} = 0 corresponds to the first eigenvalue A} = 0 which has
multiplicity one and the corresponding eigenvector v; is the
eigenvector (D’)% 1, where 1 is the constant one vector and D’
is the degree matrix for the adjacency matrix A’.

Hence, the equation £%v = 0 has a T-dimensional sub-
space of solutions and we find its basis explicitly: namely
for every t we define the column vector V! € RN as a zero-
padded vector with v} at the position of the 7th block. Thus, all
solutions to £%v = 0 are given by v = Zth o V" for arbitrary
constants «;.

The main objective of the present paper is to consider an
ideal case of a temporal network which is slowly changing in

time, hence, is well approximated by a temporal network fol-
lowing a constant block Jacobi model. Let us consider the case
where A’ = A for all t and W-? = W for all 7, p. An important
step in our construction is to “periodize” the temporal net-
work, which will provide the existence of a nice closed-form
solution of the resulting network. This is not a very artificial
approach since the “slowly changing” of the network assumes
that the network does not vary too much from the initial to the
final layer, namely we construct a “periodic” supraadjacency
matrix A and its corresponding supra-Laplacian matrix £ for
temporal networks, by including nonzero diagonal blocks on
the upper-right and lower-left corner blocks. In other words,
we include interlayer weights between the first time layer A'
and the last time layer A”. The resulting matrix A is a periodic
constant block Jacobi matrix which gives the name of the
model. In view of the slowly changing nature of the temporal
network G', the matrix A is a perturbation of the matrix A°
and L is a perturbation of the matrix £°.

Further, the resulting supra-Laplacian matrix £ is given
by the following 7' x T block matrix, which may be easily
proved to be an infinite periodic block Jacobi matrix [14]:

L Ly Ly
Iw L Ly
L= Lw L )
oo Ly
Lw Iw L

T

We have to note that if we have the same w for all matrices
W, then the blocks of the block-diagonal matrix D contain
the matrices D' 4 2wl. Since for every ¢ holds equation L' =
[ —D7'2AD™'/2 and since the matrix D~'/2AD~"/* has en-
tries d;l/zd;l/zaij, we see that L is a perturbation of L
which has just the elements —(d; + Zw)’l/z(dj + Zw)’l/za,-j
and not —di_'/ 2dj_l/ za,- ;- Hence, written formally, we have the
equality

L=1— D+ 2wl "?AD + 201)" 2.

On the other hand, the matrix ZW is equal to —w(D + 2wI)~!
in Eq. (2).

The big advantage of the constant block Jacobi model is
that we can find “explicitly” its spectrum which we discuss in
the next sections.

III. SMALLEST EIGENVALUES AND PAIRED
EIGENVECTORS OF THE SUPRA-LAPLACIAN L OF
TEMPORAL NETWORKS FOLLOWING CONSTANT

BLOCK JACOBI MODEL

As we know from spectral graph theory [8], the eigenvalues
of the Laplacian L and of the supra-Laplacian £ are nonnega-
tive, and the minimal eigenvalue is zero, as mentioned above.
As usual, in the applications the small eigenvalues and the
corresponding eigenvectors are of particular importance. By
perturbation theory, some of those eigenvalues which are very
close to zero are obtained as a direct perturbation of the zero
eigenvalues of all separate time layer Laplacian matrices L',
and the same holds about their paired eigenvectors. On the
other hand, the eigenvectors paired to the bigger eigenvalues
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are obtained as perturbations not only of the zero eigenvectors
of the separate matrices L' but also of the Fielder (and the
higher) eigenvectors of the separate matrices L.

The solution for the Laplacian £ in Eq. (2) is defined by

LYy =y, 3)

and for finding it we apply a classical technique based on
discrete Fourier transforms (DFTs), see, e.g., [14]. To do
this we represent each vector ¥ € RV as the sequence of
vectors [y, Y2, ..., ¥r] where each vector v; is the portion
of eigenvector i corresponding to the jth time block. Then
Eq. (3) splits into the equations
LwWj1 + LY+ Ly yrjp1 = Ay

forj=1,2,...,.T, (4)

where for the sake of notation simplicity we have put

Yo=1vr, VYry1 = Y1

For k = 0, 1, 2,. — 1, we denote the DFT of vector ¢ at
value k by 1//(k) € RN and put
T-1 .
Yk) =Y e FT . (5)
j=0

It is important that from the set of DFT vectors {fh\ (k)},{:_o1
we may recover the whole vector ¥ € RN using the Fourier
inversion formula:

1 =l -~ a7 27
¥ = ) BT, 6)
k=0

Now by applying the DFT (5) to Eq. (4) (i.e., by multiplying
by exponents and summing up the equations), we obtain the
fundamental equations satisfied by the DFT of the vector y
defined in formula (5):

~ 27\~ |~ ~
|:L + 2 cos (k?>LWi|¢(k) = My (k)
for k=0,1,...T—1. (7)

The following theorem justifies the application of the DFTs
for solving the system (3).

Theorem 1. The spectrum (with multiplicities) of the
supra-Laplacian £ in Eq. (2) of a temporal network following
a periodic constant block Jacobi model coincides with the
union of the spectra of the matrices L + 2 cos(ks- Zx )LW, ie.,

~ 2 ~
spec(L) = U,{_‘Jspec(L + 2 cos <k?n)LW). (8)
Proof. First, we prove the inclusion
spec(L) € U spec(L + 2 cos (k—)LW>

Indeed, by the above arguments, if we have an eigenvalue A
with eigenvector i solving system (4), then for every k with

0 <k <T —1wehave Eq. (7), i.e.,

~ 27\~ |~ —~
|:L +2cos (kT>LW:|1//(k) = Ay (k).

Hence, A is an eigenvalue for all matrices L +2 cos(sz”)ZW
with eigenvector 1 (k). Now, we prove the opposite inclusion:

~ 2 ~
UZ;()]spec(L + 2cos (k%)Lw> C spec(L).

Assume that ™ is an eigenvalue with eigenvector v* for the
matrix L + 2 cos(k=r IV, ie.,

~ 2 ~
|:L + 2 cos (k%)Lw}v* = A"

We define the vector ¢ € R¥T by putting

*
Pk+1 =V

Oon=0 form#k+1,m=1,2,...,T

By the inversion formula (6) we define the vector

Vi =T forj=1,2,...T
We show that it satisfies the eigenvalue equation (4) since
Lyrj + Ly + Ly Wrjn = A"y,
i.e.,
ei(jA)k%,iZWv* + eijkz,%zv* + ei(j+1)k2,,4zwv* — A*e ijkZ v,
But the last is equivalent to equation
e”'kz%zwv* + Lot + eikz%zwv* = A*v¥,

hence, to equation Lv* +2 cos(sz”)ZW v* = A*v*, which was
our assumption. This completes the proof. ]

In Fig. 1 we have dlsplayed the first 100 eigenvalues of
the matrix L = L + 2 cos(k )LW from Eq. (7), where we see

that for every j > 1, the jth eigenvalue A( ) of all matrices

L+2 cos(sz”)Lw is monotonically increasing with k for

T-1 . .
nggT—lllesodd

and
T o s
Oékga—llleseven.

The following proposition explains the behavior of the eigen-
values.

Proposition 1. Without loss of generality assume that
T is odd. Then the jth eigenvalues of the matrices L+
2 cos(k= Zx )LW satisfy

)6'0) < )‘;1) << )\5%71)

Proof. The proof of this proposition is a direct consequence
of Theorem 8.1.5. in [15] which states that for symmetric
matrices V and E of size N x N, and for all eigenvalues A;,
for j = 1,2, ..., N, hold the inequalities

AV + Amin(E) < A;(V +E) < Aj(V) 4+ Anax(E). (9)
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100 Smallest eigenvalues of L + 2 cos ( k? )Lyfork=01,.,T-1

1.0

A value

--- k=14,15
--- k=13,16
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--- k=11,18
--- k=10,19
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0.0

FIG. 1. The 100 smallest eigenvalues of matrices L + 2cos(k27”)I:W foreachk =0,1,2, ...,
a temporal benchmark network composed of 7' = 30 Erdos-Renyi random graphs each with N =

A index

29. The matrices L and Ly are obtained from
100 nodes and edge probability p = 0.3.

Each layer ¢ is simulated from the previous layer # — 1 by perturbation aiming to preserve correlation between layers of 0.98. The interlayer
weights w are fixed at one. We include the additional plot of cos(kZT”) which determines the monotonically increasing behavior of eigenvalues
corresponding to 0 < k < 14 and monotonically decreasing behavior of eigenvalues corresponding to 15 < k < 29.

We take into account the fact that the eigenvalues of the
diagonal matrix Ly are nonnegative since they coincide with
all nonnegative weights a);’p . In particular, if they are all equal
to a constant w, then we see that

~ 2
)L.’; = Aj(L) + 2cos (k%r)w

This completes the proof. ]
Now, by means of Theorem 1, we show how to construct a
solution to eigenvalue Eq. (3) by using equality (7): Fixa k =
k and consider an eigenvector v with eigenvalue i solving the
eigenvalue problem (7) for k = k. We assume that A is among
the smallest eigenvalues, close to zero. We are seeking for a
block vector W = (Y1, ¥2, ..., ¥7) € R¥T for which W (k) =
¢r, where the block Vector ® = (g1, ....,07) € RM s
defined as
]
Pk = 0

Now we apply the inversion formula (6) to the vector &, and
obtain the block vector ¥ € CNT with components

fork =k
for k # k.

yj=eT 'y forj=0,1,..,T - 1. (10)

Thus we have ¢, =0 for k # k, and W is a solution to
the eigenvalue equation (3) with the same . Since the vec-
tor W is complex valued, we obtain two real-valued Vectors
(€ RMT) by taking the real and imaginary parts of e7 ik,

namely

27 .
Wf 1= COS (%jk) xv forj=0,1,..,.T — 1,

7 N S .
Tﬂj 1= sin T]k xv forj=0,1,...,T —1. (11)

In Fig. 2 we visualize solutions (11) fork = 1,2, 3, accompa-
nied by the corresponding plots of cos(zT’r jk) and sin(z% jk)
forj=0,1,...,T — 1.

Every eigenvalue in Eq. (7) has even multiplicity due to the
equality of the two matrices as indicated below:

~ 27\ ~ ~ 27\ ~
L+ 2cos kT Lw =L+ 2cos (T—k)? Lw
T-1
for 0<k< — - I;
the double multiplicity of the eigenvalues is clearly observed

in Fig. 1. In the case of odd T there are unique eigenvalues

just for k = T — 1; for even T all eigenvalues have even

multiplicity. For k = 0 we have one solution ¥ with ¥; = =0
corresponding to the zero eigenvalue, A = 0.

By using the results of perturbation theory for invari-
ant subspaces [10,15] we see that for every eigenvalue with
even multiplicity, we may estimate the perturbation of its
eigenspace, i.e., the space of its eigenvectors. Thus we obtain
the solutions which look like “block sinusoids” of cos and
sin type, Fig. 2. The perturbation of the two-dimensional
space spanned by cos and sin type solutions results in a
two-dimensional space corresponding to the perturbed
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FIG. 2. Eigenvector estimations for supra-Laplacian matrix £. This figure visualizes eigenvectors from Eq. (11) for £ = 1,2, 3, each
accompanied by the corresponding graph of the cos and sin functions. The eigenvector v corresponds to the eigenvalue A = 0 which is a
solution to the eigenvalue problem (7). The matrices L and Ly are obtained from a temporal network following the constant block Jacobi
model composed of T = 30 Erdos-Renyi random graphs each with N = 100 nodes and edge probability p = 0.3. Each layer ¢ is simulated
from the previous layer ¢+ — 1 by perturbation aiming to preserve correlation between layers of 0.98. The interlayer weights w are fixed at one.
The x axis corresponds to the t = 1, ..., T time layer, and in between the jth 4 1 and jth 4 2 number, the interval is filled with the components

of the N nodes corresponding to the jth 4 1 layer.

eigenvalue of the matrix £. These eigenvectors may differ
from cos or sin type solutions.

The above theoretical results have a direct impact on
the eigenvectors of the supra-Laplacian £, Fig. 3. We show
that the eigenvectors corresponding to the eigenvalues of the
supra-Laplacian £, which are close to zero, are obtained by
perturbation of the eigenvectors corresponding to the zero

eigenvalues of the separate layers L', derived as (D' )% 1. Thus,
they do not carry any information about the finer description
of that layer as does the Fiedler vector. These eigenvectors
of L give us only information about all 7 time layers being
separate from each other. The bigger eigenvalues of £ have
eigenvectors which are perturbations of mixtures of higher
eigenvectors for networks L', i.e., they contain information
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FIG. 3. Eigenvalues and eigenvectors for an Erdos-Renyi benchmark temporal network. The Erdos-Renyi temporal benchmark network
is composed of 7' = 30 random Erdos-Renyi graphs with N = 100 nodes and p = 0.1 edge probability. Each layer ¢ is simulated from
the previous layer + — 1 by perturbation aiming to preserve correlation of 0.98 between adjacency matrices of neighboring layers. The
interlayer weights are set to w = 0.01. We plot the 100 smallest eigenvalues of the corresponding supra-Laplacian matrix, the six eigenvectors
corresponding to the six smallest eigenvalues and the 35th eigenvector. The jump of the eigenvalue graph indicates precisely the position of A*
for index 31 and all following eigenvectors look as the 35th eigenvector plotted which captures local variability. The x axis corresponds to the

t=1,..,

T time layer, and in between the jth + 1 and jth + 2 number, the interval is filled with the components of the N nodes corresponding

to the jth + 1 layer. To highlight this, we color differently the values for the N nodes corresponding to the jth 4 1 layer.

from the Fiedler eigenvectors for the separate networks L'.
We can conclude that only after the block nature of the
constant block Jacobi model in the temporal network is cap-
tured the eigenvectors start capturing variability introduced by
some certain within-layer patterns, which is clearly seen from
Fig. 3.

IV. PROPERTIES OF THE EIGENVECTORS
CORRESPONDING TO SMALL EIGENVALUES
OF THE SUPRA-LAPLACIAN L

In this section we empirically showcase the theoretical re-
sults that eigenvectors corresponding to the small eigenvalues

of £ are well approximated by linear combinations of the
eigenvectors (paired to the zero eigenvalue) of the separate
layers. We investigate their behavior with respect to the edge
density of the layers and the interlayer weights.

A. Evaluating the approximation of the eigenvectors of £ using
the eigenvectors of the separate time layers

Let A be the set of smallest eigenvalues with paired eigen-
vectors well approximated by the subspace of eigenvectors
corresponding to the zero eigenvalues for the separate layers.
The theoretical results from Sec. III guarantee that the eigen-
vectors v corresponding to A € A satisfy (see Sec. II for V’
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Error ¢; of approximating supra—Laplacian eigenvectors
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FIG. 4. Error ¢; of approximating supra-Laplacian eigenvectors (corresponding to eigenvalue A; for i = 1, 2, 3, ...., TN) by their separate

time layers eigenvectors for the benchmark temporal network. All of the benchmark temporal networks were simulated using 7 = 30 random
Erdos-Renyi graphs with N = 100 nodes and varying edge probabilities p = 0.03, 0.04, 0.05, 0.08, 0.1, 0.3. Each layer ¢ is simulated from
the previous layer + — 1 by perturbation aiming to preserve correlation between layers of 0.98. Each of the four plots captures the results
for different interlayer weights set to w = 0.01, 0.05, 1, 5. For each parameter combination (p, ®) we simulate 100 networks and show
their average error €; with 1 st.dev. intervals. The obtained approximation average errors and st.dev. intervals are visualized for the first
100 eigenvectors although at most 7' + 1 regressions are needed to capture all 7' layers as separate layers.

definition)
T
min |v — aV'| <e 12
mir ; V< (12)

for a small ¢ > 0, not true for the rest of the eigenvalues.

We evaluate the approximation of each L£’s eigenvector v
using the eigenvectors of each time layer corresponding to the
zero eigenvalue, V', by solving a linear regression problem
(without intercept) where ¢; is the NT x 1 vector of residuals,
and we denote the error at i to be €; := |&;||. We denote by A*
the first eigenvalue A; for which ¢; > €;_;.

B. Discussion on the relation between edge density, interlayer
weights, and eigenvectors corresponding to the smallest
eigenvalues

The present experimental results, in accordance with
the developed theory, show that for a small eigenvalue of
the supra-Laplacian £, the eigenvectors ¥® and v/ are
approximations to the corresponding eigenvectors of the
supra-Laplacian £. In Fig. 3 we observe the eigenvectors

of the supra-Laplacian of a temporal network composed of
random Erdos-Renyi graphs, [16]. The first few eigenvectors
follow the same sin and cos functions as seen in Fig. 2, and
thus can be used to identify the first order approximation by
the constant block Jacobi model structure of the temporal
network.

We investigate how the approximation of these eigenvec-
tors is affected by the interlayer weights and the density of
the edge weights within each time layer. To showcase this, we
simulate various benchmark temporal networks composed of
random Erdos-Renyi networks with a varying degree of edge
probability p = 0.03, 0.04, 0.05, 0.08, 0.1, 0.3 and interlayer
weights w = 0.01, 0.05, 1, 5, which are two factors that af-
fect the approximation of the eigenvectors of the investigated
supra-Laplacians £, Fig. 4.

Recall that we have denoted by A* the smallest nonzero
eigenvalue sensitive to within-layer connectivity patterns, i.e.,
breaking (12). Then for all benchmark networks types it is
true that the value A* is increasing with a decreasing w
value: Smaller interlayer weights @ lead to greater separa-
tion between time layers, thus more eigenvectors behave as
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FIG. 5. The 100 smallest eigenvalues of matrices L + 2 cos(k 2 )Ly for each k = 0, 1,2, ..., 32. The matrices L and Ly are obtained from
a temporal network composed of 7 = 33 Sales-Pardo graphs each with N = 640 nodes. The interlayer weights w are fixed at one. We include
the additional plot of cos(k%”) which determines the monotonically increasing behavior for eigenvalues for 0 < k£ < 15 and monotonically

decreasing behavior for eigenvalues for 17 < k < 32.

predicted by perturbation theory. More eigenvectors are
needed to explain each layer as separate. Higher interlayer
weights influence more the resulting eigenvectors, and fewer
behave in a way as predicted by perturbation theory.

When the probability p increases, the density within layers
A" increases. Since w is fixed it cannot reflect on the increasing
density of A" and the perturbation effect resulting from inter-
layer matrices W’ 4+l s smaller. Thus, for increasing p, i.e.,
for increasing density, the behavior of more eigenvectors re-
sembles closely the behavior of the eigenvectors as predicted
by perturbation theory.

When p is decreasing, the eigenvalue A* indicates that less
eigenvectors resemble closely the behavior of eigenvectors
as predicted by perturbation theory. The denser layers are
(high p) with smaller interlayer weights (low w), the more
eigenvectors resemble closely the predicted eigenvector be-
havior. This is a result of the sparseness of the time layers and
the corresponding lower interlayer weights a)ﬁ"“. The above
observations need further rigorous theoretical justification.

C. Relation between the multi-scale community structure of the
layers of a supra-Laplacian network and its eigenvalues.

It is important to note that in Fig. 1 the first few eigen-
values capture the block structure of the temporal network
following the constant block Jacobi model, thus close to
zero, however, after they start monotonically increasing with-
out any clear cuts. From spectral graph partitioning [17] we
know that this is indicative of the lack of structure within
the networks, which is the case in here where each layer
is a densely connected Erdos-Renyi random graph with no
community structure. In Fig. 5, we demonstrate the behavior
of the supra-Laplacian eigenvalues when each of the lay-
ers has multiscale community structure simulated using the

Sales-Pardo model [18]. Again, the smallest eigenvalues cap-
ture the block structure of the temporal network, however,
there are clear eigenvalue cuts where a new multiscale com-
munity structure within the layers is captured.

V. CONCLUSIONS

The above results are crucial in interpreting spectral clus-
tering properties of the supra-Laplacian matrix of all slowly
changing temporal networks that can be represented using
a constant block Jacobi model. We have provided experi-
mental results with Erdos-Renyi (unstructured) networks and
Sales-Pardo hierarchical networks. Further investigation in
these theoretical results will lead to more insights of the
spectral properties of supra-Laplacian matrices for more gen-
eral temporal networks. As presented in the paper, the above
findings provide a fundamental understanding of the spec-
tral properties of temporal networks on time periods where
they are slowly changing which can significantly improve all
spectral-based methods applied on temporal networks such
as partitioning, node ranking, community detection, cluster-
ing, etc. The above results were successfully used to extend
a multiscale community detection method [19], based on a
spectral graph wavelets approach [20], to temporal networks.
The extended method [21], takes advantage of the devel-
oped theory to automatically detect the different scales at
which communities exist across layers, which is an advantage
over the multilayer modularity maximization approach [13]
used for similar purposes. The above experimental results
have been also replicated on temporal Sales-Pardo hierarchi-
cal benchmark networks, which are suitable for multiscale
community detection. There is also a detailed investigation
of using interlayer weights that account for the sparsity and
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similarity across layers, [22], including a real life application
example to social networks data.
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