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Proliferation of unstable states and their impact on stochastic out-of-equilibrium dynamics in two
coupled Kerr parametric oscillators
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Networks of nonlinear parametric resonators are promising candidates as Ising machines for annealing
and optimization. These many-body out-of-equilibrium systems host complex phase diagrams of coexisting
stationary states. The plethora of states manifest via a series of bifurcations, including bifurcations that proliferate
purely unstable solutions. Here we demonstrate that the latter take a fundamental role in the stochastic dynamics
of the system. Specifically, they determine the switching paths and the switching rates between stable solutions.
We demonstrate experimentally the impact of the added unstable states on noise-activated switching dynamics
in a network of two coupled parametric resonators.
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I. INTRODUCTION

Statistical physics has provided valuable insights into the
phenomenon of noise-induced switching between local en-
ergy minima, as exemplified by the well-known Kramers
double-well problem [1–3]. Such stochastic dynamics is
highly relevant for a wide variety of phenomena spanning
protein folding [4,5] and chemical reactions [6], as well as sta-
bility in mechanical [3,7] and electrical systems [8,9]. While
the noisy dynamics of equilibrium systems have been exten-
sively studied, that of systems driven far out of equilibrium
remains largely unexplored [10–12].

An important class of out-of-equilibrium systems are
driven systems. Such systems are characterized by stationary
oscillation states that manifest when the conserving and non-
conserving forces in the system are in balance. For nonlinear
systems, there may be several such stationary states that act
as attractors, just like potential wells do in equilibrium sys-
tems. In a rotating frame, the resulting dynamics can resemble
that of an equilibrium potential landscape [2]. Extending the
analogy, weak noise can induce stochastic switching between
the attractors, and the switching rate can be treated with the
abstract notion of a potential activation barrier [10,13–21].
However, it is important to emphasize that this activation
barrier is not related to a gap in free energy, but instead to a
“phase gap” that separates the attractors [22]. Understanding
how often the system switches between attractors, and which
path it selects during the switch, requires different methods
and can be cumbersome [2,10].

A paradigmatic example of a bistable out-of-equilibrium
system is the Kerr parametric oscillator (KPO) [22–37]. The
KPO is a resonator whose potential term is periodically modu-
lated (“pumped”) at a rate close to twice its natural frequency.
This modulation can exponentially amplify oscillations, such
that the system enters a state whose amplitude is determined
by the Kerr nonlinearity. Since the pumping occurs at twice

the resonance frequency, there are two such states with op-
posite phases. Recently, networks of coupled, driven KPOs
have been proposed as a simulation platform to solve complex
problems optimally [38–45]. Such networks typically possess
a large number of stationary states, analogous to a multiwell
potential with rich phase transitions [46–49]. Studying acti-
vated switching between states in the presence of fluctuations
is crucial for understanding their stability and lifetimes. It will
influence how these networks are operated, and it can also
provide a characterization method that is unaffected by the
danger of local trapping [50].

In this work we address the physics of stochastic activation
in a tractable system of two strongly coupled, classical KPOs.
The system possesses various stable and unstable stationary
states [48,51], and we observe stochastic switching between
two stable states in the presence of fluctuations. Surpris-
ingly, the switching rate � deviates significantly from the
exponential model expected for a single KPO [10]. Seeking
to explain this deviation, we calculate the dominant transition
paths between the states with the Onsager-Machlup func-
tion [52,53]. Our analysis shows that several unstable states
emerge in the two-KPO system. These states do not mani-
fest in the stationary deterministic dynamics of the system.
Interestingly, however, they offer new transition paths and
contribute significantly to the corresponding transition rates.
We thus identify a striking example of out-of-equilibrium
statistical physics in a nonlinear multistable system. Our work
paves the way for the exploration of larger systems, especially
in view of KPO networks as solvers for complex optimization
tasks.

II. SYSTEM

In the following we analyze noise-induced switching
dynamics using an experimental setup composed of two elec-
trical KPOs with capacitive coupling [32,48]. Each KPO

2470-0045/2024/109(6)/064308(9) 064308-1 ©2024 American Physical Society

https://orcid.org/0000-0001-6757-3442
https://ror.org/05a28rw58
https://ror.org/05a28rw58
https://ror.org/05a28rw58
https://ror.org/0546hnb39
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.109.064308&domain=pdf&date_stamp=2024-06-20
https://doi.org/10.1103/PhysRevE.109.064308


HEUGEL, CHITRA, EICHLER, AND ZILBERBERG PHYSICAL REVIEW E 109, 064308 (2024)

consists of a coil with inductance L and a diode that provides
a nonlinear capacitance C; cf. Appendix A. The resonance
frequency of each KPO can be tuned by applying a DC voltage
across the diode. We drive and measure the resonators induc-
tively through auxiliary coils. Our electrical circuits are well
described by the following coupled equations of motion:

ẍi + ω2
i [1 − λ cos(2ωdt )]xi + αix

3
i + γiẋi −

∑
j �=i

Ji jx j

= ξi(t ), (1)

where dots indicate time derivatives, xi = ui cos(ωt ) −
vi sin(ωt ) is the measured voltage with quadrature amplitudes
ui and vi, ωi = 2π fi is the angular eigenfrequency, and Ji j

(i �= j) denotes the intercircuit linear coupling strength. Each
resonator has an effective Duffing (Kerr) nonlinearity with co-
efficient αi and a damping rate γi = ωi/Qi, with Qi the quality
factor. Our resonators are constructed and tuned to be (nearly)
identical in their bare characteristics, ωi ≈ ω0 = 2π f0. The
same parametric pumping with angular modulation frequency
2ωd = 4π fd ≈ 2ω0 and modulation depth λ ∝ Ud is applied
to all resonators.

Crucially, beyond a frequency-dependent driving threshold
Uth, the KPO has exactly two stable solutions that we refer to
as “phase states,” which have identical amplitudes but differ in
phase by π [37,54,55]. These are the two attractors of a single
KPO in a frame rotating at ωd . In order to induce switching
events between the attractors, we add an artificial noise ξi

generated by a fluctuating voltage with white power spectral
density Sn. The noise ξi simulates a thermal force noise with
〈ξi(t1)ξ j (t2)〉 = ς2δi jδ(t1 − t2) and power spectral density cal-
ibrated to be ς2 = 4.93 × 10−20 Hz4Sn; see Appendix B. Note
that the applied noise lies within the so-called weak noise
limit, except in the immediate vicinity of bifurcation points
in our system [56–60].

In our experiments, we use a lock-in amplifier to measure
the quadratures (ui, vi ), which vary on timescales much longer
than 1/ω0. The evolution of these quadratures is well captured
in the rotating-frame picture obtained by applying the averag-
ing method [51,61–63] to our model. Equation (1) then leads
to the following slow-flow equations:

u̇i =−γ ui

2
−

(
3α

8ωd
X 2

i + ω2
0 − ω2

d

2ωd
+ λω2

0

4ωd

)
vi + Jv j

2ωd
+ �ui ,

v̇i =−γ vi

2
+

(
3α

8ωd
X 2

i + ω2
0 − ω2

d

2ωd
− λω2

0

4ωd

)
ui − Ju j

2ωd
+ �vi ,

(2)

with quadratures defined via

xi = XiRe[ei(ωd t+φ)] = ui cos(ωdt ) − vi sin(ωdt ), (3)

and we can use the trigonometric identity

X 2
i = u2

i + v2
i . (4)

The additive uncorrelated noise terms �ui , �vi are the co-
sine and sine components of the noise ξi filtered over one
oscillation period and have power spectral densities given by
σ 2 = ς2/2ω2

d [64,65]. For more details, please also consult
Sec. 4.2.2 of Ref. [37] for the averaging method in the case
of a stochastic driving term. As shown in previous works, the

FIG. 1. Noise-induced switching in a single KPO. (a) Time trace
of the rotating quadratures u1 and v1, showing noisy fluctuations
around and switching between the two phase states for Ud = 3 V and
Sn = 2.75 × 10−8 V2 Hz−1 at fd = 2.681 MHz. Arrows indicate the
position of the phase states. (b) Heat map of normalized measure-
ment counts c vs u1 and v1, showing two dominant attractors around
the phase states (colored dots). The data stem from a time trace mea-
surement as in (a) taken over 8 s. Counts close to the origin arise due
to interstate switching with rate �. The orange line shows the most
probable switching path through the origin (gray square) predicted
from the Onsager-Machlup formalism; cf. Eq. (5) and Appendix A.
(c) Switching rate � as a function of fd with the same parameters
as in (a) obtained from the experiment (black dots) [21]. The orange
line corresponds to the approximate analytical result from Ref. [10]
(cf. Appendix C) and the orange dots to numerical minimization of
Eq. (5).

averaging method fully captures the physics of our networks
in the regime where λ, γ /ω0, J/ω2

0, (α/ω2
0 )x2

i , and ας2/ω5
0

are all of order ε with 0 < ε � 1 [31,62,64,66]. Here and in
the following, we assume identical dissipation rates γi = γ ,
nonlinearities αi = α, and coupling Ji j = J .

III. TRANSITION RATES

A switching experiment with KPO 1 (while KPO 2 is
detuned) is shown in Fig. 1(a). We tune the parametric drive
amplitude λ and frequency ωd into the region where only
the two phase states are stable [37]. There, due to the added
noise, we observe that the system resides in each phase state
for a certain dwell time before switching to the opposite
state. The average dwell time τ can be expressed as a rate
of activated switching � = τ−1. In the rotating phase space,
the same measurement data can be represented as a density
of count rates; see Fig. 1(b). As discussed in Ref. [10], the
logarithm of the switching rate is inversely proportional to
the distance between the two phase states. In Fig. 1(c) this
leads to an exponential decrease in � with decreasing fd (the
direction in f f in which � increases depends on the sign of
the nonlinearity). We measure the switching rate as discussed
in Ref. [21].

064308-2



PROLIFERATION OF UNSTABLE STATES AND THEIR … PHYSICAL REVIEW E 109, 064308 (2024)

FIG. 2. Noise-induced switching in the two-KPO system. (a) Quasistatic frequency sweep with a parametric drive Ud = 3.7 V applied to
both resonators. Full data (including the u1,2 and the stability diagram) are shown in Fig. 3. Arrows indicate the sweep direction. Vertical dashed
lines indicate the bifurcation frequencies; cf. (e). (b) Switching between the two symmetric phase states at fd = 2.37 MHz in the presence of
applied voltage noise (see Appendix B for details). (c) Switching rate � as a function of fd for a noise PSD Sn = 1.1 × 10−7 V2 Hz−1. Dark
(light) blue corresponds to experimental (simulated) data with error bars estimated from textbook Poisson statistics. A thick red line reflects
the exponential trend. (d) Switching between the two symmetric states visualized in the rotating frame in terms of vS and vA. I: 2.37 MHz,
II: 2.3675 MHz, III: 2.3625 MHz, IV: 2.36 MHz. Grayscale heat maps represent the normalized counts c from multiple switches. Circles and
squares indicate stable and unstable solutions, respectively. The ghost states are marked in yellow. The solid lines are the theoretically predicted
switching paths between the stable symmetric states using the Onsager-Machlup formalism; cf. Eq. (5). The color indicates whether a path
passes the unstable ghost state (red) or the unstable zero-amplitude state (blue-gray). (e) Schematics of the steady states and bifurcation points
as a function of fd . Solid and dashed lines are for stable and unstable solutions, respectively. Squares mark ghost bifurcations that proliferate
additional unstable states (ghost states) from an already unstable solution. Ghost states are marked in yellow; see Refs. [48,49] for a systematic
study of our model’s (1) bifurcations and their stability as a function of all tuning parameters. (f) Activation W as a function of fd . Dark (light)
blue corresponds to experimental (simulated) data with error bars estimated from textbook Poisson statistics. The solid gray and red lines
are obtained by minimizing SOM for paths via the zero-amplitude state and the antisymmetric state, respectively. The system parameters are:
Q = 265, f0 = 2.3670 MHz, α = −6.5 × 1017 V−2s−2, Uth = 1.73 V, and J = −1.28 MHz2.

We now consider the case that the two KPOs are tuned
to have the same frequency. A detailed experimental phase
diagram of the system, including a bifurcation (and stabil-
ity) analysis as a function of λ and ωp, was explored in
Refs. [48,49]. In Fig. 2(a) we show the results of a specific
measured frequency sweep passing through various regions
containing up to four different types of stable two-oscillator
states: a state with both resonators having amplitude zero;
symmetric states, i.e., the two oscillators have the same
phase; antisymmetric states where the two oscillators have
π -shifted phases; and mixed-symmetry states that are neither
symmetric nor antisymmetric. The symmetric/antisymmetric
solutions can be interpreted as the parametrically driven
symmetric/antisymmetric normal modes of the two res-
onators. See Fig. 3 for more information regarding the
stability diagram.

Typically, when initialized in one such state, the resonator
explores the vicinity of the attractor under the influence of the

noise terms �ui and �vi [49]. Occasionally, the noise activates
the system over the quasipotential barrier to reach a different
attractor, as seen, for instance, in Fig. 2(b) [21]. The system
can switch back and forth in time and is characterized by
switching rates �i j between any two attractors i �= j. In the
following, we analyze the rate � of switching between the
two symmetric phase states along the sweep in Fig. 2(a). We
choose a drive amplitude λ > J , where for fd > 2.36 MHz,
only the symmetric solution is stable [48]. We therefore expect
�( fd ) to manifest an exponential behavior analogous to that
seen in a single KPO in Fig. 1. Motivated by this idea, we set
out to confirm the hypothesis that each normal mode has the
same activation rate scaling as a single KPO.

In Fig. 2(c) we show the measured transition rate � for
switches between the two symmetric states as a function of
fd while the parametric driving strength Ud is fixed. With
decreasing fd , the transition rate � decreases exponentially as
expected from previous single KPO studies [10,18,21,23,67].
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FIG. 3. (a) Stability diagram of the system of two coupled KPOs
in a space spanned by fd and Up. The red and blue lines mark
the instability lobes of the parametrically driven antisymmetric and
symmetric normal modes, respectively. The frequency sweep in
Fig. 2(a) and in (b) of this figure was taken at the Up value indicated
by a dashed horizontal line, with dots and squares corresponding to
the bifurcations shown in Fig. 2(e). (b) Full data of the frequency
sweep shown in Fig. 2(a). Arrows indicate the sweep direction.

This holds for a distinct range marked as I and II until fd ≈
2.365 MHz is reached. Surprisingly, below this frequency, we
observe substantial deviations from the simple exponential
model even though the symmetric state remains the only sta-
ble configuration. First, a kink manifests at fd = 2.365 MHz,
implying a relative enhancement of the switching in re-
gion III. At even lower frequencies, the slope of � changes
sign, signaling a significant increase of the switching with
decreasing frequency in region IV. This behavior is funda-
mentally at odds with the standard expectation of decreasing
rates.

To obtain deeper insights into the curious switching behav-
ior of the two-KPO system, we look at several measured tran-
sition events and systematically collect the four-quadrature
state vector Y = (u1, v1, u2, v2), cf. Appendix D. To visualize
the transitions in a two-dimensional space, we use symmet-
ric and antisymmetric coordinates, vS = (v1 + v2)/

√
2, vA =

(v1 − v2)/
√

2 (and analogous for u). By plotting several time
traces containing multiple transition events in the phase space
spanned by vS and vA, we obtain the corresponding probability
distribution.

Comparing the distributions at four representative frequen-
cies, we find striking differences; see Fig. 2(d). Regions I and
II are characterized by two attractors with high probabilities,
corresponding to the two phase states of the symmetric mode.
By contrast, for fd < 2.365 MHz in regions III and IV, we find
the emergence of a substantial probability centered around
the phase-state solutions of the antisymmetric modes. This
indicates that the appearance of the kink at fd = 2.365 MHz

follows a drastic change in the dominant transition path
chosen by the system, and of the underlying quasipotential
landscape. Such a deviation in region IV is to be expected as
the activation dynamics now involves four different attractors.
In other words, the naive model of activation between two
states is insufficient in region IV. This is confirmed by a
numerical simulation of the noisy time evolution of the EOMs,
given in Eq. (2), which is in accord with the experimental
results; see bright blue data in Fig. 2(c). Crucially, however,
we note that the antisymmetric state is not stable in region III.
This observation raises the question: why should the unstable
solutions of the system influence the transition paths? In the
following, we precisely address this question through an in-
depth theoretical study of the transition dynamics.

IV. TRANSITION PATHS

The weak noise-induced switching between stable oscil-
lation states is analogous to noise-activated jumping over a
barrier W studied in an equilibrium system [2,67]. The prin-
cipal difference is that in our driven system, the barrier W
between two attractors resides in a quasipotential structure in
a rotating frame. We use the Onsager-Machlup formalism to
identify the optimal transition paths in phase space between
two attractors, whose corresponding action then provides an
estimation for the barrier W . We first define the Onsager-
Machlup function [52,53]

SOM[Y] =
∫ t f

ti

1

4
(Ẏ − f (Y))2dt, (5)

where ti (t f ) is the initial (final) time of the trajectory of a
system composed of N resonators, Y = (u1, v1, . . . , uN , vN )T ,
and f (Y) is the right-hand side of Eq. (2) without noise terms
written as a column vector. The switching probability density
between two stable states connected by a path Y(t ) is given
by e−2SOM[Y]/σ 2

. The total switching probability Pi f from an
attractor at Yi to one at Y f is obtained by integration over all
allowed trajectories connecting them. From this probability
one can derive the switching rate � [52], which in the weak-
noise limit scales as � ∝ exp(−2W/σ 2) with barrier W [67].

At low noise, the switching rate � is dominated by the
path Ymin that minimizes SOM [52]. Hence, we can neglect
the integration over all possible paths, and the switching rate
is approximately given by

� ≈ �min ≡ �0e−2SOM[Ymin]/σ 2
, (6)

where �0 is an overall prefactor and we identify the effective
activation barrier Weff = SOM[Ymin] [52]. If SOM has multiple
local minima, one needs to find the contribution from all rele-
vant minimizing paths and weigh their relative contributions.

The landscape of SOM is characterized by a bifurca-
tion diagram of the system equations, which categorize
both stable and unstable solutions as effective minima and
saddles/maxima, respectively. In Fig. 2(e) we schematically
show this bifurcation diagram along the frequency sweep in
Fig. 2(a). Various pitchfork bifurcations lead to the emergence
of stable and unstable states. Commonly, we are used to
dealing with bifurcations in a two-dimensional phase space,
where new stable states appear through bifurcations. Moving
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to N coupled resonators, we have a 2N-dimensional phase
space; this larger phase space can exhibit similar bifurcations
in each two-dimensional subspace but on top of the “land-
scape” of the orthogonal phase-space manifold. When these
bifurcations occur on top of an unstable (concave) region
of the orthogonal manifold, they will not lead to new stable
solutions. This is the reason why some of the bifurcations in
our case involve purely unstable states. Crucially, the added
unstable states do not manifest in the deterministic dynamics
of the system and are commonly ignored. We therefore dub
the added (proliferating) unstable states “ghost states,” and
the bifurcations that spawn them “ghost bifurcations.” For a
comprehensive study of the bifurcation map plus the solutions
stability as a function of all model parameters, we refer to
Refs. [37,48,49].

In our stochastic study, ghost states play an important role.
In Fig. 2(e) ghost bifurcations separate regions I and II, as well
as II and III. From comparing Figs. 2(c) and 2(e), it becomes
clear that the emergence of the ghost states is accompanied
by new switching paths, and that these changes impact �.
Specifically, rather than acting as additional obstacles in the
switching paths, the ghost states appear to favor an increase
in �. To elucidate the surprising role of the ghost states,
we study the transition paths Ymin and the corresponding
barriers W for the different representative frequencies along
the sweep shown in Fig. 2(a). To this end, we need to mini-
mize Eq. (5), which is a complex task. A simple variational
scheme with equal time steps gives inconsistent results and
more advanced methods such as the sgMAM method [68] are
necessary to obtain the correct physical paths (see details in
Appendix C).

In Fig. 2(d) we show the calculated switching paths
corresponding to the experimental parameters, which are
representative for the regions (I–IV). In region I where
the symmetric states are the only attractors, we find only
one switching path, which passes through the intermediate
zero-amplitude state in agreement with our experimentally
observed distributions. As expected, this is equivalent to the
single KPO case in Fig. 1, confirming that we should expect a
monotonic decrease in the transition rate �( fd ) with decreas-
ing frequency as the attractors move apart [10,18].

In region II we find two additional switching paths that
avoid the zero-amplitude state and instead pass through emer-
gent unstable antisymmetric states. This is in line with the
experimental data that exhibit a broader distribution around
the zero-amplitude state, extending to the two unstable anti-
symmetric states. Similar paths also arise in regions III and IV,
where the unstable states provide transient ledges where the
system can hover during switching events; cf. Appendix D.
The additional switching paths are visible in the experiment
and seem to be the dominant paths in regions III and IV. These
alternative switching paths bring forth a complexity to the sys-
tem dynamics, a feature intrinsically related to the existence of
multiple normal modes in KPO networks. In our system, we
observe that the minimal path, Ymin, connects the stable states
always via an unstable one; see Fig. 2(d) [69,70], although
exceptions have been observed [13,71]. This underscores the
importance of investigating stable as well as unstable states of
the system in order to understand the stochastic dynamics of
Ising networks.

Based on our theoretical analysis of optimal switching
paths, we can now obtain W and compare it with that ex-
tracted from the experimental data; cf. Appendix C. From
this, we identify the dominant transition path; see Fig. 2(d).
Within regions I–III, we find good qualitative and approxi-
mate quantitative agreement (save for a small overall shift).
Interestingly, in region II both paths contribute equally to
the activation: one via the antisymmetric ghost states and the
other via the origin. However, this effect is not sufficiently
strong to be observed in Fig. 2(c). In region III the former
overtakes the latter, which manifests as the observed kink
in Fig. 2(c). This indicates that the ghost states support the
antisymmetric switching, and markedly participate and mod-
ify the expected stochastic dynamics of the system. In region
IV, both symmetric and antisymmetric phase states are stable.
Here the analytical calculation deviates from the experimental
and numerical results. This deviation is likely due to the fact
that the Onsager-Machlup method considers only switches
that connect the two symmetrical states, while the counting
algorithm that we used for the experimental and numerical
data includes all possible switches between states. The latter
includes repeated switches between a symmetric and an anti-
symmetric state as individual events.

V. DISCUSSION

At a fundamental level, our results demonstrate unam-
biguously the existence of an unusual type of bifurcation
arising from the coupling between the individual resonators.
Although these ghost bifurcations remain undetected in a de-
terministic system characterization [48,49], they impact the
interstate switching path, switching rate �, and the relative
dwell times in the symmetric and antisymmetric states. This
inevitably affects the stochastic switching processes in KPO
networks and their characterization via stochastic sampling
[50]. Our findings are facilitated by the fact that we have
a complete knowledge of all fixed points in the system, as
facilitated by HarmonicBalance.jl [72]. Thus, we can identify
all unstable points in the system, and calculate the various
optimal activation paths using the variational sgMAM method
[68]. This poses a significant step forward beyond studies that
rely on numerical exploration [73,74].

All of our observations have important consequences for
logic networks built from KPOs and nonlinear resonators in
general, because they impact the solution that a network will
choose after a finite transition time. With proper modeling
and calibration of the ghost bifurcations, a network can be
operated at a position in fd − λ space where the many-body
character of the network is preserved and the annealing speed
is optimized. It becomes clear from our work that large net-
works bear very complex switching dynamics and a careful
analysis of the bifurcation topology is very important. Future
work might find ways to use this complexity in an advanta-
geous manner to perform faster calculations.

VI. SUMMARY AND OUTLOOK

In summary, we experimentally and theoretically investi-
gated the noise-induced dynamics of a system of two coupled
nonlinear Kerr parametric oscillators (KPOs). Our study im-
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plements the smallest form of a KPO network and tests the
switching behavior in so-called Ising machines. We found that
ghost bifurcations play an important role, with consequences
for the switching dynamics of the system as it progresses
towards its most stable configuration. A better understanding
of such effects can be very helpful for the calibration of
stochastic logic protocols, such as simulated annealing. As
coupled networks of parametric resonators are one of the
main candidates for future parallel computation architectures,
our study provides crucial input for a growing subcommunity
working towards classical and quantum analog computation
[34,38–40,42,43,75,76]. Furthermore, it provides additional
incentives for the fundamental exploration of complex driven-
dissipative nonlinear networks in a multitude of fields [36,37].
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APPENDIX A: SINGLE KPO

For J = 0, each resonator can be driven into parametric
resonance when Ud � Uth [55,77]. We characterize each res-
onator using frequency sweeps as described in [27,32,51] and
obtain the values Q1 = 295, f0 = 2.6784 MHz, α1 = −9 ×
1017 V−2s−2, and Uth = 1.21 V. Using Eqs. (2), we can de-
scribe the steady state of the single KPO by applying the
condition (u̇1 = v̇1 = 0) [27,37,62,72]. This yields a quintic
characteristic polynomial with up to three different stable so-
lutions (attractors) in phase space; cf. Fig. 4(b). As a function
of fd , the number of stable solutions changes at specific bifur-
cation points. In the single KPO, we observe only pitchfork
bifurcations, which involve at least one stable solution; cf.
Fig. 4(c). In Fig. 4(d) we show the characteristic parametric
instability lobe. Region (i) accommodates only one stable
state with amplitude 0. Inside the region marked as (ii), the
linear resonator becomes unstable, bifurcates, and settles into
one of the two steady states that are stabilized by α [55].
These phase states have the same amplitude but are π -shifted
in phase; cf. Fig. 4(b). In region (iii), the phase states coexist
with the amplitude 0 solution.

In Fig. 1 we inspect the noise-induced switching of a
single KPO, whose properties are well known [10,18,23,43].
As expected, we find that � decreases monotonically with
increasing separation between the phase states, which we con-
trol here through fd [10]. Similar results have been previously
measured in other KPO implementations [18].

The monotonic decrease of � in Fig. 1(c) is derived us-
ing the Onsager-Machlup approach [10]. Specifically, at low
noise, the switching rate � is dominated by the path Ymin

that minimizes SOM [52]. Repeating this estimation as a func-
tion of fd and calculating �min yields good agreement with
the experimentally observed �; cf. Fig. 1(c). Note that the
prefactor �0 is not obtained by this method but reused from
Ref. [10], leading to a slight overall shift towards larger �. The

FIG. 4. (a) Schematics of a parametric RLC resonator with resis-
tance R, inductance L, nonlinear capacitance C, and tuning voltage
U1. (b) Schematic representation of the parametric phase states (wine
red, orange), and the zero-amplitude state (gray) in phase space.
(c) Schematics of the steady states and bifurcation points as a
function of fd . Solid (dashed) lines correspond to stable (unstable)
solutions. (d) Stability phase diagram: (i) White: only the zero-
amplitude solution is stable; (ii) orange: only the phase states are
stable; (iii) light orange: zero-amplitude and phase states are both
stable.

analytical formula derived in Ref. [10] produces a similarly
good agreement; cf. Eq. (C1) in Appendix C.

APPENDIX B: FLUCTUATING VERSUS COHERENT
SIGNAL AMPLITUDE

To obtain an optimal agreement between the measured
switching rates and the theoretical predictions, we consis-
tently found that the noise power spectral density in the model
had to be a factor ≈4.2 smaller than the value applied in the
experiment. This discrepancy is likely due to an additional
attenuation of a factor 2 in the path of the fluctuating voltage,
for instance, a voltage division at a 50 � matched input port.
The fluctuating signal with power spectral density Sn was
provided by two dedicated voltage sources with the same
output intensity and added to the coherent signal via the ADD
channel of the Zurich Instruments HF2LI lock-in amplifier.
The resulting noise process ξi acting on our system has a
power spectral density ς2 = CinSn, where the coefficient for
the signal in-coupling efficiency is Cin = 4.93 × 10−20 Hz4

for the single-KPO experiment. For the two-KPO experiment,
we find best agreement for a slightly lower value for Cin,
which is probably due to differences in the coil geometry
between the devices or between the experimental runs.

APPENDIX C: DETAILS OF THE CALCULATIONS
FOR NOISE-INDUCED SWITCHING

1. Determination of the switching rate

The experimental determination of the switching rate �

in Fig. 2(c) was performed with a lock-in amplifier (Zurich
Instruments HF2LI). We used a sampling rate of 450 Hz and
a total measurement time of 300 s for fd � 2.3696 Hz and
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FIG. 5. Switching rate � between the symmetric states of
the two-KPO system as a function of inverse noise strength,
1/σ 2, obtained from simulation (black) for Ud = 3.7 V and fd =
2.3725 MHz. The optimal fit (gray) corresponds to Eq. (6) for the
fitting parameters �0 = 2 × 104 Hz and W = 0.024 HzV2.

60 s for fd > 2.3696 Hz. Counting of the switching events
was done with a numerical algorithm that compared the am-
plitudes and phases of successive measurement points for an
entire time trace measurement. Concretely, the program in-
creased the switching counter by one if the phase difference of
two successive points was above a “phase threshold” (130 ◦)
while at least one of the points was above an “amplitude
threshold” (0.5 mV), or if exactly one out of two successive
points was above the amplitude threshold. The same algorithm
was used to evaluate the switching rate in numerical simula-
tions that emulated the measurements (including the effective
sampling rate). Similar results were obtained by finding the
maximal turning point of Allan deviations of the phase [21].

Note that we report on an effective two-state switching rate
also in the case that we have transitions four states (region
IV in Fig. 2). Here we define an aggregate rate of moving
between the two symmetric parametric oscillation states in
order to compare with the case where these are the only two
attractors. Specifically, let us define the two states as S1, S2.

In the case where these are the only two states, �S1,S2 is
readily defined, where we assume that the rates are the same
in both direction (valid in our case). In the case of additional
stationary states S j with j ∈ {3, . . . , N}, we expect Marko-
vian dynamics with rates between any pair of states �Si,Sk

with i, k ∈ {1, . . . , N}. We evaluate the aggregate rate �̃S1,S2

by counting how often a state leaves S1 and ends up in S2

(and vice versa) within the whole time of the experimental
trace; transitions here can go over other stable states along the
Markovian chain. We stress once more that this is used only
for comparison reasons: to show that there is a region where
the two-state scaling break altogether, when more stable states
appear. The main result of this work focuses on the region
where there are only two-stable states, but a transition in �S1,S2

occurs.

2. Determination of the activation barrier W

We simulate the coupled KPO system at different noise
strengths (see Fig. 5), and we verify that our analysis is in the
low-noise limit by showing that Eq. (6) is obeyed. The optimal
fit (gray) yields �0 = 2 × 104 Hz and W = 0.024 HzV2. In
this limit, �0 and W are independent of the noise and purely
depend on the properties of the deterministic system, and on
the switching paths in phase space. This procedure allows us
to extract �0 and W for the experimental and the numerical
data in Fig. 2(d), as well as calculate � at different noise
strengths. For the numerical switching rate in Fig. 2(c), we
used this scaling law to convert the numerical data, simulated
at 1.3 times stronger noise, to the experimentally applied
noise.

3. Analytic expression for a single KPO

For a single parametric Kerr oscillator, the switching rate
was calculated in [10] and is given by

� =

(
γ

√
λ2ω4

0
γ 2ω2 − 4 − 4ω + 4ω0

)√∣∣∣1 − λ2ω4
0

4γ 2ω2

∣∣∣ exp

⎛
⎝− γ 2ω3

(
γ

√
λ2ω4

0
γ 2ω2 −4−4ω+4ω0

)2
√∣∣1− λ2ω4

0
4γ 2ω2

∣∣
3αλ2σ 2ω4

0

⎞
⎠

2
√

2π
. (C1)

4. Details of the path optimization

The switching rate � can be described by SOM[Ymin].
Obtaining the minimal path Ymin is a complex task for coupled
parametric resonators. As a simple variation of a discretized
path with equal time steps fails to obtain correct results, we
use the sgMAM method [68]. It is an improved path opti-
mization scheme based on scaled time, leading to consistent
converged results. We start with a guessed initial path that
connects two stable states via an unstable solution. Then we
perform numerical minimization of SOM by varying the path
in phase space between the chosen end points. For the single
KPO, we choose the two phase states as initial and final state;
see Fig. 1(b). In the coupled system with Y=(u1, v1, u2, v2)T ,
we choose one of the symmetric states as the initial point and
the other one as the final point, and try different unstable states

as intermediate points. We thus obtain the corresponding
locally minimizing switching paths Ymin; see Fig. 2(d).

APPENDIX D: SWITCHING VIA
THE ANTISYMMETRIC STATE

In Fig. 6 we show examples of time traces during noise-
induced switching between symmetric states. Figure 6(a)
corresponds to fd = 2.37 MHz in region I of Fig. 2(c), where
switches occur via the unstable zero-amplitude state because
both resonators switch synchronously. In Fig. 6(b) we show
an example for fd = 2.36 MHz in region IV, where the two
resonators switch with a finite delay. In the short time interval
between the two switches, the system dwells in the antisym-
metric state.
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FIG. 6. Examples of switching events in the two-KPO system. (a) For Ud = 3.7 V and fd = 2.37 MHz [marked as I in Fig. 2(c)], all
four measured coordinates (u1, v1, u2, v2) switch simultaneously on our sampling timescale. The system switches from one symmetric (S)
configuration to the opposite one via the zero-amplitude (0) state. (b) For Ud = 3.7 V and fd = 2.36 MHz [marked as IV in Fig. 2(c)], the
coordinates (u1, v1) switch first, followed by (u2, v2) after a delay of roughly 0.5 ms. In the time span between the jumps, the system occupies
the antisymmetric (A) state.
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