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Cascading failures in bipartite networks with directional support links
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We study the cascading failures in a system of two interdependent networks whose internetwork supply links
are directional. We will show that, by utilizing generating function formalism, the cascading process can be
modeled by a set of recursive relations. Most importantly, the functions involved in these relations are solely
dependent upon the choice of the degree distribution of ingoing links. Simulation results in the limit of very large
networks based on different choices of degree distributions for outgoing links, e.g., Kronecker delta, Poisson and
Pareto, are indeed identical and are in excellent agreement with the theory. However, for Pareto distribution with
the shape parameter 1 < α < 2, the convergence is slow. In general, directional networks can be more vulnerable
or less vulnerable than their bidirectional counterparts. For three special settings of interdependent networks, we
analytically compare their vulnerability. For practical applications it is important to predict if a system responds
to the size of the initial attack continuously or if there is catastrophic collapse of the system if the attack exceeds
a specific transition size. We analytically show that systems with lower average degrees are more resilient against
this abrupt transition. We also establish an equivalence of this transition with the liquid-gas transition in statistical
mechanics. In the last section, we derive the set of recursive relation to describe the cascading process where the
initial attack is not restricted to a single network.
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I. INTRODUCTION

Previous studies of cascading failures in a system of inter-
dependent networks [1–9] have focused on the roles played
by the settings, such as internetwork and intranetwork degree
distribution of nodes or threshold rules which dictate the con-
ditions whether a node is functional or not. However, little
attention was spent on the property of the links themselves,
e.g., the majority of the models simply considered the case of
bidirectional links which simultaneously played the roles of
both supply and demand relations.

To mitigate confusion and formalize terminology, we will
address all internetwork links as supply links and categorize
them as ingoing links and outgoing links in the same manner
as [10]. A supply link that starts at a node i and ends at a node
j is called the outgoing link of i and the ingoing link of j. Such
a supply link represents a supply-demand relation in which
node i provides some supply that node j receives to remain
functional, i.e., a debtor provides interests and principal to a
creditor and the insolvency of such an obligation may cause
the bankruptcy of the creditor.

Aforementioned studies that are based on bidirectional
internetwork supply links assume a symmetry between ingo-
ing links and outgoing links, but many real-world scenarios
of networks are directional and thus asymmetric. Many
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examples of directional networks has been proposed by [10],
i.e., World Wide Web, food webs, and citation networks,
but those are limited to a single network. The asset/liability
exposures between financial intermediaries [11] are another
example of directional network, which can be extended to a
network of networks (NON) [9].

Initially, when a loan is made, both an asset exposure
and a liability exposure are created, thus making the relation
bidirectional. However, the liability exposure can be packaged
as derivatives and sold to other financial agents, with subprime
mortgage as one of the most famous examples, and this prac-
tice will break the symmetry between the asset exposure and
the liability exposure. If the financial agents are categorized
into debtors and creditors, the interdependence between the
network of debtors and the network of creditors can be mod-
eled as directional internetwork links. The insolvency of some
debtors propagates along the directed liability relations, and
this leads to the cascading failure of both networks. Examples
of such a phenomenon occurred during the 2008 financial
crisis [12] and more recently when some major banks have
just declared or are facing bankruptcy, e.g., Silicon Valley
bank, Credit Swiss, First Republic Bank, etc.

A node i in network A may have kout,i supply links by
which an important commodity is supplied to nodes in net-
work B. In the aforementioned example of debtor and creditor
interdependent networks, a liability exposure is such a com-
modity and provides the debtors with interests and principals.
This number, kout,i is called the out-degree of the node i and
is taken from the degree distribution Pout,A(k). Some of these
supply links may head towards a node j in network B and
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become ingoing links of j. If we count the number of ingoing
links of node j in network B coming from different nodes
in network A, we define an in-degree kin, j of node j with a
degree distribution Pin,B(k). We define Pout,B(k) and Pin,A(k) in
the analogous way. In our model we assume that the network
is sparse, i.e., that the average in- and out-degrees of both
networks are much smaller than the number of nodes in both
networks and thus the probability of forming small closed
loops is very small. We also assume that, aside from satisfying
the given degree distributions, all of the links are connecting
to randomly selected nodes.

In [4] all of the links are bidirectional; consequently, the
ingoing links in network B also play the role of its outgoing
links and, hence, for each node j in network B, kin, j = kout, j

and Pin,B(k) = Pout,B(k). Analogous relations are held for net-
work A. In the directional case, kout,i is not necessarily equal
to kin,i and Pout,X (k) is not necessarily equal to Pin,X (k), where
X ∈ {A, B}. As a result. the formalism introduced in [4] must
be reviewed and revised. In principle, the in-degree and out-
degree of the nodes may be correlated or anticorrelated, as
well as the ingoing and outgoing links, but for simplicity
we assume that ingoing and outgoing links and degrees are
totally independent. It is possible to construct an analytically
tractable model with both directional and bidirectional links
in which ingoing and outgoing links are partially correlated,
but we will restrict ourselves to a totally independent case.

The first attempt to study cascading failures between two
networks connected by directional dependency links was
made in [7], but the survival condition was much simpler, i.e.,
a node in each network must have had at least one ingoing link
coming from a functional node in the other network in order
to have been functional. Following [4], we will use a more
general functionality condition. We assume that each node i in
network X with an in-degree ki has a predetermined function-
ality threshold ji � ki, such that if the number j of the ingoing
links of node i emanating from currently functional nodes is
less that ji, node i fails and becomes nonfunctional. The value
of ji for each node in the network X is a random number taken
from the cumulative distribution rX ( j, k), i.e., the probability
that ji � j′ is rX ( j′, k). For example, if rX ( j, k) = 1 for j = k
and rX ( j, k) = 0 for j < k, then for all i, ji = ki.

As in [4,7], the cascade of failures starts by an initial attack
on one of the networks, e.g., A, after which only a fraction p
of nodes in network A remains functional. After the attack,
some of the nodes in network B may become nonfunctional
because the number of their ingoing links may become less
than their functionality threshold. On the second stage of
failures even more nodes in network A become nonfunctional
because the number of their ingoing links from functional
nodes in network B becomes smaller than their functionality
threshold, and so on, until at some point no new failures occur
in both networks.

Di Muro et al. [4] introduced two different generating
functions to describe degree distribution and excess degree
distribution which are similar to the ones used in heteroge-
neous k-core percolation [13]:

WX ( f ) =
∞∑

k=0

Pin,X (k)
k∑

j=0

(
k

j

)
f j (1 − f )k− j rX ( j, k) (1)

FIG. 1. Toy examples of a bidirectional bipartite network (left)
and a directional one (right). All red nodes constitute network A,
and all blue nodes constitute network B, as implied by their labels.
Both bidirectional and directional examples have the same num-
ber of nodes and the same link connections, except that the links
are bidirecitonal in the former case and directional in the latter
case. Three nodes A1, A2, and A3 are circled with a dashed blue line
to emphasize the fact that they all provide ingoing links to node
B1 and thus are in the supply neighborhood of B1. Both bidirec-
tional and directional networks have the same supply neighborhood
for B1.

and

ZX ( f ) =
∞∑

k=1

Pin,X (k)k

〈k〉X

k−1∑
j=0

(
k − 1

j

)

× f j (1 − f )k− j−1rX ( j + 1, k), (2)

where WX stands for the degree distribution generating func-
tion, ZX stands for the excess degree distribution generating
function, 〈k〉X is the average in-degree of network X , and f is
the fraction of functional ingoing links of network X . Similar
formulas have been derived in [6] for a variant of the Watts
opinion model [14]. By utilizing such a generating function
formalism, di Muro et al. [4] described the cascading failure
in the bidirectional case by a set of recursive relations.

Our goal is to investigate the directional case of the bi-
partite network and compare it with the bidirectional case [4]
illustrated in Fig. 1. In particular, we will study how the results
depend on the in- and out-degree distributions. We will ex-
plore several distributions which are most commonly used in
the theory of complex systems: the delta distribution, in which
all nodes have the same degree k, the Poisson degree distri-
bution, which arises when the links are established between
random nodes [15], and finally the geometric distribution and
the Pareto distributions, which arise in growing economic
systems [16]. Both geometric and Pareto distributions emerge
in the process known as preferential attachment, i.e., a process
when a number of classes (e.g., cities in a country or nodes
of a network) receives a new element (a new inhabitant, or
link of a node) with a probability proportional to the existing
number of elements (total population of a city or a degree of a
node). If the total number of classes remains constant, the re-
sulting distribution of the number of elements converges to the
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geometric distribution P(k) ∼ θ k [17], but if new classes can
be created with certain probability, the resulting distribution
converges to the Pareto distribution P(k) ∼ k−α−1 [18].

In [7], the distribution of the ingoing links in both net-
works is assumed to be the Poisson distribution because
the supply nodes from where the ingoing links originate
are chosen totally at random. Here we specify the in-degree
distributions in both networks and show that the result is
independent from the particular choice of the out-degree dis-
tribution in the limit of infinitely large networks, even for
the case of scale-free distributions which are Pareto dis-
tributions with the exponent of the cumulative distribution
2 > α > 1. We will also explore the difference in vulner-
ability of the systems with directional and bidirectional
links.

This paper is organized as follows. In Sec. II we will
introduce the set of recursion equations based on generating
function formalism. In Sec. III we will solve three special
settings of directional bipartite networks analytically and
compare the results with their bidirectional counterparts. In
Sec. IV we will explore the conditions for the existence of
a catastrophic cascade of failures, which leads to the almost
complete collapse of the system if the size of the initial attack
exceeds a certain threshold. In Sec. V we will present simula-
tion results to show that the choice of the degree distribution
of the outgoing links does not affect the cascading process,
with the exception of the scale-free distributions. In Sec. VI
we will generalize initial attack on a single network to attacks
on both networks.

II. THE MODEL

A. Recursion relations

In principle, the cascade of failures may develop in many
different ways depending on a survival time of a node without
sufficient supply. However, the final result will not depend on
the details of the process, as is the case in the model of k-core
percolation [19], on which the present model is built. Indeed
we can define a j-core of the bipartite network as a subset
of the nodes in both networks at which each node i has at
least ji ingoing links. Note that, if a node is excluded from
a subset, all of its links are also excluded. j-core is thus a
topological property of the network which does not depend
on the way how it was computed given that all functionality
thresholds ji are set in advance and all of the nodes that
fail in the initial attack are excluded in advance. Thus, we
study just one of many possible realizations of the cascades
of failures in which all nodes without sufficient supply fail
simultaneously.

Accordingly, we define the initial state of the cascade as
when all nodes in networks A and B are functional and,
hence, the fraction of functional nodes in both networks
μA,0 = μB,0 = 1. At the first stage of the cascade, an initial
attack on network A takes place after which only frac-
tion p = μA,1 of nodes in network A remains functional,
while μB,1 = 1.

The process of cascading failures in the directional case
is illustrated in Fig. 2. We define a directional link to be
functional if it is an outgoing link of a functional node. We

assume that, starting from stage n = 2, each stage of the
cascade can be described in two parts, stage n-A and stage
n-B. First, in stage n-A, for every node in network B, we
check the number of its functional ingoing links, based on
the status of the nodes in network A at stage (n − 1)-B; if
a node’s threshold condition is not met, then it fails and is no
longer called functional together with all of its outgoing links.
Next, in stage n-B, we repeat the same process for network
A, checking the number of functional ingoing links of every
node in network A based on the status of the nodes in network
B at stage n-A, and the nodes in network A fail accordingly.

For the directional case, consider node b in network B
that is connected to node a in network A via a directional
link which serves as an outgoing link of node b and the
ingoing link of network A. The functionality status of node
b does not directly depend on the status of node a. Therefore,
for the directional case, the mathematical expectation of the
fraction fB,n of functional outgoing links emanating from
the functional nodes in network B at the nth stage of the
cascade simply coincides with the fraction μB,n of functional
nodes of network B at this stage of the cascade. Thus, in the
thermodynamic limit, when the number of nodes and links is
infinitely large, we can assume that fB,n = μB,n. Analogously,
fA,n = μA,n. Note that, for the Pareto distribution with α � 1,
the first moment of the degree distribution diverges, and hence
our recursion formalism is invalid.

Our goal is to relate the fraction of functional nodes in
network B to the fraction of functional nodes of network
A at the previous stage of the cascade. In Appendix A we
show that fB,n = WB( fA,n−1). For the fraction of functional
nodes in network A at the nth stage of the cascade, we must
combine the effect of the damage in the network B with the
totally independent damage due to the initial attack; hence,
fA,n = pWA( fB,n). Thus, for the case of directional links: for
stage n > 1:

fB,n = WB( fA,n−1),

fA,n = pWA( fB,n)

and

μA,n = fA,n,

μB,n = fB,n,

given that for n = 1,

fA,1 = μA,1 = p,

fB,1 = μB,1 = 1.

An implication of these equations is that the cascading failure
in the directional bipartite network does not depend on the
out-degree distributions Pout,X (k).

For bidirectional links both ends of the links are ingoing
and outgoing and the recursion relations must be modified (see
Appendix B), and the meaning of the fraction of the functional
links must be changed. We will call fB,n a conditional prob-
ability that a bidirectional link ends in a functional node in
network B, provided that its other end is a functional node in
network A at the nth stage of the cascade. This condition must
be included because, at this stage of the cascade, the nodes in
network A are assumed to be functional before we start to
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FIG. 2. An example of a cascading process in a bipartite network consisting of two finite networks, A and B. In each stage, starting at
stage 2, we first check the functionality of the nodes of network B, taking into account the threshold functionality conditions of all nodes in
network B and then those of the nodes of network A. The initial attack happens at stage 1-B and kills node A2, which is colored green in the
panel headed “Stage 1-B.” As a consequence, all outgoing links attached to it also become nonfunctional and are colored green. The threshold
in this particular example is defined as r( j, k) = 1 if j = k or r( j, k) = 0 if j < k, and thus any node that is pointed to by a single green arrow
will fail as part of the cascading process. As a result, node B1 failed in stage 2-A. In stage 2-B, node A4, which has a supplied link from the
failed node B1, fails. In stage 3-A, nodes B3 and B5, which have supply links from the failed node A4, fail. In stage 3-B, node A5, which has
a supply link from the failed node B5, fails, and, since it does not have any outgoing links, no new nodes fail in stage 4-A. Consequently, the
cascading process is finished.

compute their new statuses. Analogously, fA,n is a conditional
probability that a bidirectional link ends in a functional node
in network A provided that its other end is connected to a
functional node in network B at the nth stage of the cascade.

Accordingly (see Appendix B), the recursion relations for
the bidirectional case become the following:

For stage n > 1:

fB,n = ZB( fA,n−1),

fA,n = pZA( fB,n)

and

μB,n = WB( fA,n−1),

μA,n = pWA( fB,n)

for n > 1 given that

fA,1 = μA,1 = p,

fB,1 = μB,1 = 1.

When n → ∞ the successive iterations converge to the limits
μa ≡ μA,∞ and μb ≡ μB,∞, for both directional and bidirec-
tional cases.

B. Gap step threshold function

Before presenting the simulated results, we need to first
introduce a new kind of threshold function, which we call the
gap step threshold function. Although the choice of threshold
function depends on the nature of specific networks, such
as social networks, router networks, power grids, etc., many
previous studies have used step threshold functions, either ex-
plicitly [4] or implicitly [7]. This group of threshold functions
is very easy to study, yet it may not be very useful either
mathematically or practically. In many cases, we either are
more interested in how many links a node has lost or, in the
case of scale-free networks, do not want a hub node, i.e., a
node with a degree comparable to the number of all links in
the network, to be as resilient as a regular node. To focus on
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FIG. 3. Fraction of surviving nodes μ when the in-degree distributions follow the delta distribution Pin,X (k) = δ5(k), and the threshold
function is rX ( j, k) = G2. The blue lines represent theoretical results, and the red dots represent the average of 10 simulations.

the loss of links without losing the simplicity of step functions,
we introduce a group of threshold functions, which we call
gap step functions:

Gm( j, k) ≡
{

1 if k − j � m
0 else . (3)

One major benefit of this class of threshold function is that,
compared with simple step function, the parameter m can be
any non-negative value without causing any contradictions
with respect to initial node degrees.

C. Simulated results

We tested the recursion relations for the bipartite network
with directed links by computer simulations. All computer
simulations have been done for the networks with N = 106

nodes. The algorithm constructing a bipartite network with
given ingoing and outgoing degree distributions is described
in Appendix H. For such networks the deviations between the-
oretical results obtained in the limit N → ∞, and simulations
are expected to be approximately 1/

√
N = 0.1%, according

to the standard limit theorem, i.e., practically undetectable on
the scale of the figures.

Two different simulation results are provided alongside
their corresponding theoretical counterparts in Figs. 3 and
4. All x axes represent p, which is the fraction of surviving
nodes in network A right after the initial attack, and all y
axes represent μX , which is the fraction of surviving nodes
of network X at the end of the cascading processes. Details of
in-degree distributions and threshold functions are provided
in the figure caption of each figure, but all simulation settings
share the same Poisson out-degree distribution

Pout,X (k) = λk

k!
e−λ ≡ Pλ,

with the average degree λ = 5.
The simulations are in perfect agreement with the theory.

As one can see, the behavior is qualitatively similar to the
behavior of bipartite graphs with bidirectional links, e.g., they
demonstrate an abrupt first-order transition at p = pt for some
point pt as in many topological models [4,5,7,14].

III. COMPARISON OF THE DIRECTIONAL AND THE
BIDIRECTIONAL BIPARTITE NETWORKS

As we see, the recursive relations for the directional and
bidirectional cases are very similar, with the only difference
being that in the bidirectional case the recursive relations for
the cascade of failures use function Z while for the directional
case they use only function W . An interesting question is
whether the directional network is more vulnerable to the at-
tack than the bidirectional network when all other parameters
such as degree distributions are the same. We are able to solve
this problem analytically for the case of the delta, Poisson,
and geometric in-degree distributions and r( j, k) being a gap
step function Gm. We prove that for the delta degree distri-
bution and the gap step function the directional case is more
vulnerable than the bidirectional case, for the Poisson degree
distribution they are equivalent, and for the geometric degree
distribution the bidirectional case is more vulnerable than the
directional case.

A. Delta distribution with gap step threshold function

Let the in-degree distribution of internetwork supply links
be Kronecker delta

P(k) = δmk ≡ δm(k) =
{

1 if k = m
0 else . (4)

In this case, the degree-generating function is

WX ( f ) =
m∑

j=0

(
m

j

)
f j (1 − f )m− j rX ( j, m),

and the excess degree-generating function is

ZX ( f ) =
m−1∑
j=0

(
m − 1

j

)
f j (1 − f )m−1− j rX ( j + 1, m).

Let l denote the maximal degree loss for a node to be func-
tional. Then, for WX ( f ), rX ( j, k) = Gl ( j, k) and for ZX ( f ),
rX ( j + 1, k) = Gl ( j + 1, k). By substituting the threshold
function into the generating functions and changing the sum-
mation index j to j′ = j + 1 in the expressions for W and Z ,
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FIG. 4. Fraction of surviving nodes μ when the in-degree distributions follow a Poisson distribution Pin,X (k) = P5(k), and the threshold
function is rX ( j, k) = G2( j, k). The blue lines represent theoretical results, and the red dots represent the average of ten simulations. Note that,
for p = 0, μB �= 0 because the nodes of network B cannot lose more than two links if initially their degrees are k = 0, 1, 2. Thus, nodes in
network B that have no, one, and two links will always remain functional, as their functionality threshold according to Eq. (3) is k − 2 � 0.
The fraction of nodes in network B that survive when network A collapses entirely is expected to be P5(0) + P5(1) + P5(2) ≈ 0.125, which
matches the figure. Note that the data points shown are for the directional case, but as we explain in Sec. III, the same graphs would be produced
for the bidirectional counterpart.

we get

WX ( f ) =
m∑

j=m−l

(
m

j

)
f j (1 − f )m− j,

ZX ( f ) =
m∑

j=m−l

(
m − 1

j − 1

)
f j−1(1 − f )m− j . (5)

With details presented in Appendix C, one can show that the
difference between ZX ( f ) and WX ( f ) is

(ZX − WX )( f ) =
(

m − 1

m − l − 1

)
f m−l−1(1 − f )l+1 � 0. (6)

In the first stage of the cascading process,

fA,1 = p,

fB,1 = 1

for both directional and bidirectional systems, but for the
second stage,

fB,2 = ZB( fA,1)

for the bidirectional network and

fB,2 = WB( fA,1)

for the directional network. Thus, bidirectional fB,2 � direc-
tional fB,2. Combine this result with the facts that both W and
Z are nondecreasing functions and with that

fA,2 = pZA( fB,2)

for the bidirectional network and

fA,2 = pWA( fB,2)

for the directional network, we can arrive at the conclusion
that bidirectional fA,2 � directional fA,2.

By extending this process recursively, bidirectional fX,n �
directional fX,n for any stage n > 1 and bidirectional μX,n �

directional μX,n for any stage n > 1. As a result, directional
systems with the delta in-degree distribution are always more
vulnerable than bidirectional ones. However, for other de-
gree distributions, for example, for the geometric distribution
P(k) = θ k (1 − θ ), the opposite is true. We will show that, for
the gap step threshold with gap l equal to any value and any
geometric distribution, W ( f ) � Z ( f ).

B. Poisson distribution with gap step threshold function

A particular phenomenon arises when we are dealing with
a specific kind of Erdős-Rényi graphs, in which case the
recursive relations for the directional system is exactly the
same as for the bidirectional one.

Let the internetwork supply links follow a Poisson distribu-
tion, Pin,X (k) = Pλ, and let the threshold function rX ( j, k) =
Gl , which has a very nice property:

rX ( j, k) = rX ( j + 1, k + 1).

With details presented in Appendix D, the following result
can be deduced:

ZX ( f ) =
∞∑

k=0

λk

k!
e−λ

k∑
j=0

(
k

j

)
f j (1 − f )k− j rX ( j, k)

= WX ( f ). (7)

Utilizing the facts presented in the previous section, the cas-
cading failures of this particular setting are identical for both
directional or bidirectional cases.

Another simplification can be made in this setting. With
details presented in Appendix E, it can be shown that the func-
tion W and, consequently, also Z simplify to be the following:

W ( f ) = �(l + 1, (1 − f )λ)

�(l + 1)
, (8)
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FIG. 5. Fraction of surviving nodes μX when the in-degree distributions follow the geometric distribution Pin,X (k) = θ k (1 − θ ), where
θ = 5

6 so that the mean degree of each node will be 5, and the threshold functions are rX ( j, k) = G2. The blue and green dashed lines represent
theoretical results, and the red and orange dots represent the average of 10 simulations, respectively, for the directional and bidirectional cases.
The figures show that the bidirectional case is more vulnerable than its directional counterpart, as the former has fewer surviving nodes than
the latter. Note that the directional case happens to not have a discontinuous jump in fraction of survived nodes for the given parameters.

where �(x, y) is the upper incomplete gamma function. Hav-
ing the ability to express W in terms of already known,
albeit transcendental, functions instead of an infinite sum has
many possible theoretical and mathematical benefits. Proper-
ties such as derivatives of W are much easier to take in this
form.

C. Geometric distribution with gap step threshold function

Let the internetwork supply links follows a geometric dis-
tribution: Pin,X (k) = θ k (1 − θ ), where θ is a number between
0 and 1, and let the threshold function rX ( j, k) = Gl . With
details presented in Appendix F, the following result can be
deduced:

W ( f ) − Z ( f ) =
∞∑

k=0

(k + 1)θ k+1(1 − θ )

×
(

k

k − m

)
f k−m(1 − f )m+1, (9)

or, more simply,

W ( f ) − Z ( f ) = −θ (1 − θ )
∂W

∂θ
. (10)

Upon inspection of Eq. (9), it is clear that each factor in
our sum is positive or 0, as both θ and f range between 0 and
1. We therefore find that W ( f ) � Z ( f ). By utilizing the facts
presented in the previous sections, for this case bidirectional
systems are always more vulnerable than directional ones.

Just as with the Poisson distribution, another simplification
can be made in this setting. With details presented in Ap-
pendix G, it can be shown that the functions W and Z simplify
to be the following:

W ( f ) = 1 −
(

θ (1 − f )

1 − θ f

)m+1

, (11)

Z ( f ) = 1 −
(

θ (1 − f )

1 − θ f

)m+1[
1 + (m + 1)(1 − θ )

1 − f θ

]
. (12)

Figures 4–6 display results that support these mathemati-
cal findings. For the Poisson distribution, our results showed

complete agreement between the directional case and bidi-
rectional case, and therefore their corresponding data points
completely overlap. We recycle Fig. 4 to display how these
overlapping results look.

IV. CONTINUOUS VERSUS
DISCONTINUOUS TRANSITION

The discontinuous transition from an almost intact system
to a completely collapsed one at a transitional value of p as the
strength of the initial attack, 1 − p, increases is a hallmark of
the models of interdependent networks. It is known, however,
that the existence of a discontinuous transition is not always
the case [4]. The recurrent equations for both directional and
bidirectional cases in the limit n → ∞ must converge to a
stable fixed point satisfying the following equation:

fA,∞ = pWA[WB( fA,∞)], (13)

for the directional case and the following equation:

fA,∞ = pZA[ZB( fA,∞)], (14)

for the bidirectional case. These are equations of the type f =
pF ( f ), where f plays the role of fA,∞ and F ( f ) is a nonlinear
function. These equations can be graphically solved by finding
the crossing of a straight line representing the left-hand side
and a curve representing the right-hand side (Fig. 7). Note that
F ( f ) monotonically increases and F (1) = 1.

Usually, F ( f ) has an inflection point corresponding to the
maximum of the first derivative. Accordingly, for large p,
y = pF ( f ) crosses y = f near f = 1. At intermediate values
of p, it may cross y = f three times, but at a certain value
of p, the larger root to which the iterations converge may
disappear. At this value of p, the graph of pF ( f ) becomes
tangential to the straight line y = f . We now have f = pF ( f )
and its derivative with respect to f , 1 = pF ′( f ). The system of
these two equations will determine the transition point f = ft ,

p = pt .
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FIG. 6. Fraction of surviving nodes μX when the in-degree distributions follow the delta distribution Pin,X (k) = δ5(k) and the threshold
function is rX ( j, k) = G2. The blue and green dashed lines represent theoretical results and the red and orange dots represent the average of
10 simulations, respectively, for the directional and bidirectional cases. The figures show that the directional case is more vulnerable than its
bidirectional counterpart, as the former has fewer surviving nodes than the latter.

If the inflection point fi of the function F ( f ) is less than
ft , then the maximum of the derivative of pF ( f ) is at fi < ft .
Exactly at f = ft , pF ′( ft ) = 1. Thus, in the entire region fi �
f < ft , pF ′( f ) > 1, and hence in this region pF ( f ) < f , so
any smaller root f2 < ft of the equation p f ( f ) = f must be
below fi, f2 < fi < ft . Therefore, we observe a discontinuous
jump in the solution from ft to f2 by infinitesimal decrease

FIG. 7. Graphical solution of the recursive Eq. (13) for the case
when networks A and B are identical and the degree distributions in
both networks are PX,in (k) = P5(k) and the threshold functions are
rX ( j, k) = G2( j, k). Different curves correspond to different values
of p. All of the curves have the same inflection point fi. For a given
value of p, when its corresponding curve intersects the straight line
f = f , at possibly more than one place, a solution to the equa-
tion is found. We call solutions f > fi upper branch solutions and
solutions f < fi lower branch solutions. There may be one, two, or
three mathematical solutions. For p > pt , the curves representing the
right-hand side of Eq. (13) cross the straight line at values of f > fi,
giving the upper branch solutions of the equations (black circles). At
p = pt = 0.752, the straight line becomes tangential to the curve. At
p < pt , the upper branch solution disappears, and only a low branch
solution emerges at f < fi.

in p, which is a characteristic of the discontinuous first order
phase transition [20,21].

Let us assume that we have a family of functions F ( f , λ),
characterized by a parameter λ, for example, the average
degree. For a certain λ the function F ( f , λ) may have an
inflection point at the transition point. Then pF ′( f ) < 1 for
f < ft , which means that by decreasing p below pt , the cross-
ing point will not jump but rather will continuously decrease.
Thus, the condition of the disappearance of the discontinuity
gives the third equation F ′′( ft , λ) = 0, from which the critical
value λc can be found.

The entire phase diagram in the parameter space f , p, λ
(Fig. 8) resembles the phase diagram of a liquid [20–22],
characterized by its density ρ, pressure, P, and temperature,
T , near its critical point ρc, Pc, Tc, where the line of the first
order transition between liquid and gas disappears. In order to
find the critical point from the equation of state P = P(ρ, T )
one needs to solve the system of three equations:

P = P(ρ, T ),

∂P(ρ, T )

∂ρ
= 0, (15)

∂2P(ρ, T )

∂ρ2
= 0.

Similarly, for the bipartite networks the equations are

f = pF ( f , λ),

p
∂F ( f , λ)

∂ f
= 1, (16)

∂2F ( f , λ)

∂ f 2
= 0.

Here f plays the role of the order parameter, density, p the
role of pressure, and λ the role of temperature. See Fig. 8 for
a graphical comparison of these two phase diagrams, where
we demonstrate this phenomenon for the Poisson in-degree
distribution and the gap step function described above. In
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FIG. 8. Figure on the left shows the surviving fraction of nodes as the initial attack on network A varies when the degree distributions of
both networks follow the Poisson distribution Pin,X (k) = Pλ and the threshold function is rX ( j, k) = G4. The dotted lines represent theoretical
results, and the dashed lines follow the discontinuous jumps. The black dots plot the μa values before and after the discontinuous jump for
many values of λ. The red star indicates the critical point. For all sets of data, the parameter λ varies as presented in the legend. When λ

increases until about 7.32395, the graph reaches the breaking point of its continuity, such as when λ exceeds about 7.32395 the continuity in
the graph ceases, as seen by the curve created by the black dots. The critical value of continuity is found using derivatives of the W function,
as referenced at the end of Sec. IV. Figure on the right plots pressure of a substance as a function of the volume near the vapor-liquid phase
transition [20]. Both pressure and volume have been divided by their critical values such that the break in continuity of the graph takes place
at the point (1,1). The horizontal straight lines show the collapse of the vapor sample at constant temperature when the increasing pressure
reaches the stability limit (vapor-liquid spinodal) and the supersaturated vapor spontaneously condenses into liquid, which occupies a much
smaller volume. The red star indicates the critical point. Note that if the diagram for the network stability is rotated 90◦ clockwise it becomes
equivalent to the phase diagram of liquid-vapor phase transitions.

this case, the recurrent equations for the directional and bidi-
rectional cases are identical and in the limit n → ∞ must
converge to a stable fixed point satisfying the equation

fA,∞ = pWA[WB( fA,∞)]. (17)

Figure 9 shows the dependence of the critical parameters
of the model as functions of the survival threshold m. One
can see that as m increases the discontinuous phase transition
emerges for larger values of average degree λ > λc, while
at this point the networks become more and more resilient

FIG. 9. Critical point parameters fc, pc, and λc as functions of
the survival threshold m when the degree distributions all follow
the Poisson distribution Pin,X (k) = Pλ and the threshold function is
rX ( j, k) = Gm. Note that fc and pc follow the vertical axis on the
left and that λc follows the axis on the right. All values change with
respect to the horizontal axis. The critical values are found using
derivatives of the W function, as referenced at the end of Sec. IV. The
graph shows that fc and pc decrease and λc increases as m increases.

as can be seen by the decrease of pc. Interestingly, λc is
approximately proportional to 1.35m for large m, while pc and
fc appear to be inversely proportional to

√
m. The rationale for

this behavior is given at the end of Sec. VI.

V. EFFECTS OF OUT-DEGREE DISTRIBUTION

A major point of interest in our theoretical model is the
fact that the out-degree distribution does not appear anywhere
in the formula. This means that, if our theory is correct, the
cascading process is solely determined by the choice of the
in-degree distribution. In other words, if the in-degree distri-
bution is fixed, the same cascading process will occur even
if the out-degree distributions are different. This is a strong
result and should be studied carefully.

The analysis can be categorized into two scenarios, de-
pending on whether the out-degree distribution does or does
not have nodes that function as hubs and provide outgoing
supply links to a great portion of nodes in the other network.
In the case of the Pareto degree distribution, Pout,x(k) ∼ k−α−1

with α � 2, the second moment of the distribution diverges,
and, hence, hubs start to emerge. In random realizations of the
cascading process, the death of a hub will produce much larger
damage than the death of a node with a small degree. For
non-scale-free networks, the statistical error of the fraction
of survived nodes at the end of the cascade is expected to
decrease according to the central limit theorem as 1/

√
N ,

where N is the number of nodes. Thus, for non-scale-free
networks of the size of a million nodes, the deviation of the
theoretical and simulated result is expected to be about 0.1%.
In a scale-free network, with the diverging second moment but
the converging first moment (1 < α � 2), according to our
preliminary numerical results the error decreases as N1/α−1.
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FIG. 10. Fraction of surviving nodes when the in-degree distributions follow a Poisson distribution Pin,X (k) = P5 and the threshold
function is rX ( j, k) = G2. The out-degrees correspond to four different distributions, as shown in the legend. The simulation results from
delta (RR) and Poisson out-degrees are averages of 10 samples at each p value, while those from Pareto distributions are the average of 100
samples at each p values. As one can see, all simulations apart from the one that is sampled from the Pareto distribution with a power of 1.1
agree with the theoretical values.

The heuristic justification of this formula is that for α = 2
the exponent 1/α − 1 = −1/2 and we recover the Gaussian
behavior of the error ∼1/

√
N for α > 2, while for α = 1,

1/α − 1 = 0, and indeed for α � 1, we find that the error does
not decrease with N at all.

As an example, we provide the simulations with the same
in-degree distribution Pin,X (k) = P5 and the same threshold
function rX ( j, k) = G2, but with different out degree distri-
butions: Poisson, delta, and the scale-free with α = 1.5 and
α = 1.1. We see that the difference in the fraction of survived
nodes at the end of the cascade, μX,∞ between the simulations
with Poisson and delta out-degree distribution (Fig. 10) are
invisible on the scale of the graph, while for scale-free out-
degree distribution with N = 106 (Fig. 11) the error is quite

visible and constitutes about 10% of the predicted result. The
error is especially big near the point of the abrupt transition
p = 0.77. The above referenced figures all share the same
in-degree distribution.

The discrepancy between the theory and simulations for
the Pareto out-degree distribution with α = 1.1 near the tran-
sition point is because for p close to pt some cascades stop
before the network complete collapse while others proceed
to the complete destruction of the network. Accordingly,
when the results are averaged over 100 realizations, we av-
erage the results from these two cases, the fraction of which
changes with the distance from the transition points. Figure 11
shows the results for all 100 realizations as clouds of points.
One can see that the clouds for α = 1.5 and for α = 1.1

FIG. 11. Fraction of surviving nodes when the in-degree distributions follow a Poisson distribution Pin,X (k) = P5, and the threshold
function is rX ( j, k) = G2. The out-degrees follow two different Pareto distributions with shape parameters α = 1.1 and α = 1.5, as shown in
the legend. The simulation results are scatter plots with 100 samples at each of the p values. As one can see, the scatter plot of Pareto 1.5 agrees
with the theoretical values with a very narrow spread, while that of Pareto 1.1 has a large spread. This fact does not mean the theory has failed
at this point, as the scatter points of Pareto 1.1 still follow the trend as predicted by the theory and the spread gets narrower when p values are
close to both ends.
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FIG. 12. Surviving fraction of nodes when the in- and out-degree distributions all follow the Poisson distribution Pin,X (k) = P5 and the
threshold function is rX ( j, k) = G2. The dashed lines represent theoretical results, and the dots represent the average of ten simulations. The x
axis for both networks shows the fraction pA of survived nodes in network A after the initial attack. The three different curves correspond to
three different fractions pB of nodes survived the initial attack on network B: pB = 1, pB = 0.8, and pB = 0.6, respectively, corresponding to
blue (theory) and red (simulation), yellow (theory) and purple (simulation), and orange (theory) and green (simulation).

follow the theoretical predictions but with a large spread
which increases as α → 1+ when the first moment of the
Pareto distribution diverges.

VI. ATTACKS ON BOTH NETWORKS

So far, we have discussed only the directional bipartite
network with the initial attack limited to a single network. It
is not difficult to generalize our model to the case when the
initial attacks are made on both networks, such that a fraction
of nodes pA remains functional in network A and a fraction
of nodes pB remains fractional in network B. In this case, the
original recursive relations must be modified, as follows.

For stage n > 1:

fA,n = pAWA( fB,n),

fB,n = pBWB( fA,n−1).

The fraction of surviving nodes at stage n of the cascade are

μA,n = fA,n,

μB,n = fB,n,

where

fA,1 = pA,

fB,1 = pB.

See Fig. 12 for how changing pB can change the fraction of
surviving nodes.

If the networks are identical and pA = pB = p, the recur-
rent equations dramatically simplify and become just fn =
pW ( fn−1) for both networks, with odd values of n represent-
ing network A end even values of n representing network B.
Moreover, networks A and B can be understood as the same
network because, due to a low degree of dependency links,
the chance that a node will become dependent on itself is
practically zero. This case is equivalent to the Watts opinion
model [14] with directional links. In the case of a Poisson
degree distribution and r( j, k) = Gm, the equations (16) for

the critical point λc (such that for λ > λc, the catastrophic
cascade of of failures emerges) reduce to simple algebraic
equations which yield

λc = m + em�(1 + m, m)

mm
,

fc = 1 − m/λc, (18)

pc = emm!

mmλc
.

For example, for m = 1, λc = 3, fc = 2/3, and pc = e/3,
while for m = 2, λc = 9/2, fc = 5/9, and pc = e2/9. Asymp-
totically, when m → ∞, λ = m + √

2π/m + O(m−1/2), and
pc ≈ fc = √

2π/m + O(1/m), where
√

2π/m, comes from
Stirling approximation of the factorial. These results qualita-
tively resemble the behavior of the critical parameters for the
bipartite network, when only one network is attacked (Fig. 9).

VII. CONCLUSION

Our paper generalizes previous studies on bidirectional
bipartite networks to directional ones. We have provided a
set of recursion relations that can precisely describe the cas-
cading process for large networks, and we have compared the
theoretical results with simulations to show that they are in
accordance with each other in most of the cases. Analytic
proofs have been provided for the special cases of the gap
functionality threshold, Eq. (3), and delta ingoing link distri-
butions that the fraction of survived nodes at the end of each
stage of the cascading process μX,n is greater for bidirectional
systems than for directional systems, i.e., bidirectional μX,n

� directional μX,n for any stage n > 1; we did the same for
the case of a geometric distribution with the gap threshold
function, where we found the opposite behavior with regard to
directional and bidirectional systems. We also study another
interesting setting when the ingoing links follow a Poisson
distribution and show that, in the case of the gap threshold
function that we have introduced, a directional system behaves
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exactly the same way as a bidirectional system, WX = ZX ,
and both generating functions can be described using the
incomplete gamma functions as

W ( f ) = Z ( f ) = �(l + 1, (1 − f )λ)

�(l + 1)
.

We found similar simplifications for the W and Z functions
for the geometric distribution and gap threshold function.

The most prominent finding of our paper is the fact that
the choice of out-degree distribution has no effect on the cas-
cading process of directional interdependent networks, such
as when they are Kronecker delta or Poisson. Even in the
case of scale-free distributions, in which hub nodes can dom-
inate survival of the entire network, we can still find high
consistency between the theory and the simulations, although
discrepancies exist, especially when close to the transition
points.

We also presented the condition when the behavior of the
network is continuous with respect to the change of the size
of the initial attack versus where there is a transition point
above which a catastrophic cascade of failures reduces the
fraction of survived nodes to almost zero. We show that the
phase diagram of this system is similar to the phase diagram
of liquid and gas, for which the first-order transition ends at a
critical point.

In the last section, we generalize our model to the case
where random attacks are not isolated to a single network but
are presented in both networks. We also show there that the
simulation results are in agreement with the theoretical ones.
Additionally, the case of two identical networks with equal
initial attacks on the two interdependent networks becomes
equivalent to a single network with supply links.
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APPENDIX A: PROOF OF RECURSION RELATIONS
FOR THE CASCADE OF FAILURES IN

THE DIRECTIONAL CASE

The probability that node b in network B originally had
k ingoing links is PB,in(k), In order to be functional, node b
must have at least jb ingoing functional links. The probabil-
ity that an ingoing link is functional is f = fA,n−1 = μA,n−1.
Accordingly, the probability that exactly j out of k links are
functional is given by the binomial formula

p j =
(

k

j

)
f j (1 − f )k− j . (A1)

The probability that at least jb links out of k links are func-
tional is the sum

p( j � jb) =
k∑

j= jb

p j . (A2)

The probability that jb = j is by definition rB( j, k) − rB( j −
1, k), where rB(−1, k) ≡ 0. Accordingly, the probability that
the number of functional ingoing links is greater than or equal
to the functional threshold for randomly selected node b of
degree k is

Pk =
k∑

jb=0

[rB( jb, k) − rB( jb − 1, k)]
k∑

j= jb

p j . (A3)

Changing the order of summation, we get

Pk =
k∑

j=0

p j

j∑
jb=0

[rB( jb, k) − rB( jb − 1, k)] =
k∑

j=0

p jrB( j, k).

(A4)

Summing up the contributions from all k, we get

fB,n =
∞∑

k=0

PB,in(k)Pk = WB( fA,n−1). (A5)

.

APPENDIX B: PROOF OF RECURSION RELATIONS
FOR THE CASCADE OF FAILURES IN

THE BIDIRECTIONAL CASE

The problem arises if we want to apply a similar strategy
to describe the cascading process when all of the links are
bidirectional. If we select a random ingoing link of a node b
in network B at the nth stage of the cascade in the bidirectional
case, it also serves as an ingoing link of a node a in network
A at the other end, and hence the functionality of a affects
the functionality of b. Thus, it is not necessarily the case that
fB,n = μB,n and may instead be the case that fB,n �= μB,n.

Hence, in order to derive the recursion relations for the
bidirectional case, we must change the definition of functional
links. We will call fB,n a conditional probability that a bidirec-
tional link ends in a functional node in network B, provided
that its other end is a functional node in network A at the
nth stage of the cascade. This condition must be included
because, at this stage of the cascade, the nodes in network
A are assumed to be functional before we start to compute
their new status. Analogously, fA,n is a conditional probability
that a bidirectional link ends in a functional node in network A
provided that its other end is connected to a functional node in
network B at the nth stage of the cascade. Applying the same
logic as in the directional case, we can say for the bidirectional
case that μA,n = pWA( fB,n) and μB,n = WB( fA,n−1).

Now let us take a look at a randomly selected bidirectional
link, assuming that the end of this link in network A is a
functional node at the nth stage of the cascade. It connects
with a node b in network B with a probability proportional to
the in-degree of node b, which coincides in the bidirectional
case with its out-degree, PB,in(k) = PB,out (k) ≡ PB(k). This
probability is given by the excess degree distribution [10]
PB(k)k/〈k〉B, where 〈k〉B is the average degree distribution of
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network B. Thus, to find a recursive relation to represent fB,
the probability Pin,B(k) in the expression for WB( f ) must be
replaced by the excess degree distribution.

We now need to determine the probability that the node b
is functional. By construction, the link by which we arrive at
node b is functional, and hence the minimal number of other
functional links coming to node b in order to keep it functional
must be at least jb − 1. The number of other functional links
j in the sum over j in the expression for W ( f ) must now
go from j = 0 to k − 1, while the threshold function must
be changed from rB( j, k), to rB( j + 1, k), because the actual
number of functional links coming to node b is not j but
j + 1. Additionally, k must be replaced by k − 1, as we are
now dealing with the excess degree of b, or the degree in
excess of the one link that we take to be functional. Note
that these j links are functional with probability fA,n−1 at the
previous stage of the cascade. Combining all the changes in
the function W , we conclude that

fB,n =
∞∑

k=1

PB(k)k

〈k〉B

k−1∑
j=0

(
k − 1

j

)

× rB( j + 1, k) f j
A,n−1(1 − fA,n−1)k−1− j . (B1)

The right-hand side of Eq. (B1) coincides with the definition
Eq. (2) function. Thus, fB,n = ZB( fA,n−1). Analogously,

fA,n = pZA( fB,n). (B2)

APPENDIX C: PROOF OF EQ. (6)

Starting with Eq. (5) and introducing the index n = m − l ,

Z ( f ) − W ( f ) =
m∑

j=n

(
m − 1

j − 1

)
f j−1(1 − f )m− j

−
m∑

j=n

(
m

j

)
f j (1 − f )m− j .

Utilizing Pascal’s Triangle in the second line(
m

j

)
=

(
m − 1

j

)
+

(
m − 1

j − 1

)

and joining the terms with
(m−1

j−1

)
, we get

Z ( f ) − W ( f ) =
m∑

j=n

(
m − 1

j − 1

)
f j−1(1 − f )m− j+1

−
m∑

j=n

(
m − 1

j

)
f j (1 − f )m− j .

Replacing the summation index j − 1 in the first line by j′,
we get

(Z − W )( f ) =
m−1∑

j=n−1

(
m − 1

j

)
f j (1 − f )m− j

−
m∑

j=n

(
m − 1

j

)
f j (1 − f )m− j .

We notice that all of the terms except for the first one in the
first line and the last one in the second line cancel and that(m−1

m

) = 0. Hence,

(Z − W )( f ) =
(

m − 1

n − 1

)
f n−1(1 − f )m−n+1

=
(

m − 1

m − l − 1

)
f m−l−1(1 − f )l+1.

Q.E.D.

APPENDIX D: PROOF OF EQ. (7)

Given a Poisson distribution

P(k) = λk

k!
e−λ,

then

〈k〉 = λ.

Also, as we have noticed in the main text, if rX ( j, k) = Gm,
then rX ( j + 1, k) = rX ( j, k − 1). Taking all of this into ac-
count in expression (2) for ZX , we get

ZX ( f ) =
∞∑

k=1

λk−1

(k − 1)!
e−λ

k−1∑
j=0

(
k − 1

j

)

× f j (1 − f )k−1− j rX ( j, k − 1). (D1)

Changing index of summation k − 1 to k′ we see that this
equation is identical to Eq. (7). Q.E.D.

APPENDIX E: PROOF OF EQ. (8)

We have stated that

W ( f ) =
∞∑

k=0

Pin(k)
k∑

j=0

(
k

j

)
f j (1 − f )k− j r( j, k) (E1)

can be written as

W ( f ) = �(m + 1, (1 − f )λ)

�(m + 1)
(E2)

if Pin(k) = Pλ(k) is a Poisson distribution and r( j, k) =
Gm( j, k) is a gap step function. For integer values of m, using
the definitions of the Gamma and incomplete Gamma func-
tions, Eq. (E2) can be rewritten as

W ( f ) =
∫ ∞
λ(1− f ) e−t tm dt

m!
.

Integrating by parts (by integrating the first factor and differ-
entiating the second factor), we get

1

m!

(
− e−t tm

∣∣∣∣∣
∞

λ(1− f )

+ m
∫ ∞

λ(1− f )
e−t tm−1 dt

)

= 1

m!

(
e−λ(1− f )(λ(1 − f ))m + m

∫ ∞

λ(1− f )
e−t tm−1 dt

)
.
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Repeating the integration by parts until the integral vanishes
leaves us with a finite amount of terms:

W ( f ) = e−λ(1− f )
m∑

l=0

[λ(1 − f )]l

l!
. (E3)

Going back to the formula in Eq. (E1), we can rewrite it
to replace the threshold function, which is a gap step function
of gap m, with a change in index, along with plugging in the
Poisson distribution of mean λ into the degree distribution:

∞∑
k=0

e−λλk

k!

k∑
j=max(0,k−m)

(
k

j

)
f j (1 − f )k− j,

where max(x, y) denotes the maximum value of x and y. Using
the replacements of k − j = l and k − l = n, and noting that
the minimum and maximum values of k − l are, by definition,
0 and ∞, we get

∞∑
k=0

m∑
l=0

e−λλk

k!

k!

l!(k − l )!
f k−l (1 − f )l

= e−λ

∞∑
k=0

m∑
l=0

λk f k−l

(k − l )!

(1 − f )l

l!

= e−λ

m∑
l=0

∞∑
n=0

λn+l f n

(n)!

(1 − f )l

l!
,

= e−λ

m∑
l=0

[λ(1 − f )]l

l!

∞∑
n=0

λn f n

(n)!

= e−λ

m∑
l=0

[λ(1 − f )]l

l!
eλ f

= e−λ(1− f )
m∑

l=0

[λ(1 − f )]l

l!
. (E4)

Recognizing that Eqs. (E3) and (E4) are equivalent completes
the proof. Q.E.D.

APPENDIX F: PROOF OF EQ. (9)

To begin the proof, let us write out both functions:

W ( f ) =
∞∑

k=0

θ k (1 − θ )
k∑

j=0

(
k

j

)
f j (1 − f )k− j rX ( j, k)

and

Z ( f ) =
∞∑

k=1

θ k (1 − θ )k

〈k〉
k−1∑
j=0

(
k − 1

j

)

× f j (1 − f )k− j−1rX ( j + 1, k)

=
∞∑

k=1

θ k (1 − θ )k
θ

(1−θ )

k−1∑
j=0

(
k − 1

j

)

× f j (1 − f )k− j−1rX ( j + 1, k)

=
∞∑

k=1

θ kk
(1 − θ )2

θ

k−1∑
j=0

(
k − 1

j

)

× f j (1 − f )k− j−1rX ( j + 1, k),

where we took into account that 〈k〉 = θ
1−θ

.
Using the fact that for the gap step function rX ( j, k) =

rX ( j + 1, k + 1) and replacing k − 1 with k′ (and then rewrit-
ing k′ as k), we can rewrite Z ( f ) as

(1 − θ )2
∞∑

k=0

θ k (k + 1)
k∑

j=0

(
k

j

)
f j (1 − f )k− j rX ( j, k).

Noting that ∂
∂θ

θ k+1 = θ k (k + 1), we can rewrite Z ( f ) as

(1 − θ )2
∞∑

k=0

∂

∂θ
θ k+1S(k),

where we made the substitution

S(k) =
k∑

j=0

(
k

j

)
f j (1 − f )k− j rX ( j, k).

Exchanging the partial derivative with the infinite sum, we
get

(1 − θ )2 ∂

∂θ

∞∑
k=0

θ k+1S(k)

= (1 − θ )2 ∂

∂θ

[
θ

1 − θ
W ( f )

]

= (1 − θ )2

[
1

(1 − θ )2
W ( f ) + θ

1 − θ

∂W

∂θ

]

= W ( f ) + θ (1 − θ )
∂W

∂θ
.

Solving for W ( f ) − Z ( f ), we get

W ( f ) − Z ( f ) = −θ (1 − θ )
∂W

∂θ
.

Solving for ∂W
∂θ

, we get

∂

∂θ

∞∑
k=0

θ k (1 − θ )S(k)

= ∂

∂θ

∞∑
k=0

(θ k − θ k+1)S(k)

=
∞∑

k=0

∂

∂θ
[(θ k − θ k+1)S(k)]

=
∞∑

k=0

(kθ k−1 − (k + 1)θ k )S(k).

Splitting this sum into two parts, we get

=
∞∑

k=0

kθ k−1S(k) −
∞∑

k=0

(k + 1)θ kS(k)

= 0 +
∞∑

k=1

kθ k−1S(k) −
∞∑

k=0

(k + 1)θ kS(k).
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Shifting k in the first sum by 1, we get

∞∑
k=0

(k + 1)θ kS(k + 1) −
∞∑

k=0

(k + 1)θ kS(k)

=
∞∑

k=0

(k + 1)θ k[S(k + 1) − S(k)].

Plugging this back into our formula for W ( f ) − Z ( f ), we get
∞∑

k=0

(k + 1)θ k+1(1 − θ )[S(k) − S(k + 1)].

Let us simplify the factor S(k) − S(k + 1) and rewrite the
function rX ( j, k) as changing the index of j by spanning from
k − m to k:

k∑
j=k−m

(
k

j

)
f j (1 − f )k− j −

k+1∑
j=k−m+1

(
k + 1

j

)
f j (1 − f )k− j+1.

Replacing in the second sum j with j + 1 and appropriately
shifting the index gives us

k∑
j=k−m

(
k

j

)
f j (1 − f )k− j −

k∑
j=k−m

(
k + 1

j + 1

)
f j+1(1 − f )k− j .

Utilizing Pascal’s Triangle in the second sum(
k + 1

j + 1

)
=

(
k

j + 1

)
+

(
k

j

)

and joining the terms with
(k

j

)
, we get

k∑
j=k−m

(
k

j

)
f j (1 − f )k− j+1 −

k∑
j=k−m

(
k

j + 1

)
f j+1(1 − f )k− j .

Replacing in the first sum j with j + 1 and appropriately
shifting the index gives us

k−1∑
j=k−m−1

(
k

j + 1

)
f j+1(1 − f )k− j

−
k∑

j=k−m

(
k

j + 1

)
f j+1(1 − f )k− j .

We notice that all of the terms except for the first one in the
first sum and the last one in the second sum cancel and that( k

k+1

) = 0. Hence

S(k) − S(k + 1) =
(

k

k − m

)
f k−m(1 − f )m+1.

Plugging this back into our formula, we get

W ( f ) − Z ( f ) =
∞∑

k=0

(k + 1)θ k+1

× (1 − θ )

(
k

k − m

)
f k−m(1 − f )m+1.

Upon inspection, it is clear that each factor in our sum is
positive, as both θ and f range between 0 and 1. We therefore
find that W ( f ) � Z ( f ). Q.E.D.

APPENDIX G: PROOF OF EQUATIONS (11) AND (12)

Continuing our notation from Appendix F, and noting that
S(0) = 1, we can split W into two parts, shift the index in the
first sum, and recombine them, as follows:

W ( f ) =
∞∑

k=0

(θ k − θ k+1)S(k)

=
∞∑

k=0

θ kS(k) −
∞∑

k=0

θ k+1S(k)

= 1 +
∞∑

k=1

θ kS(k) −
∞∑

k=0

θ k+1S(k)

= 1 +
∞∑

k=0

θ k+1S(k + 1) −
∞∑

k=0

θ k+1S(k)

= 1 +
∞∑

k=0

θ k+1[S(k + 1) − S(k)]

= 1 −
∞∑

k=0

θ k+1[S(k) − S(k + 1)].

Plugging in our previous result for S(k) − S(k + 1), we get

1 −
∞∑

k=0

θ k+1

(
k

k − m

)
f k−m(1 − f )m+1.

Since k cannot be less than m, we can start the sum at k = m,
and then replace k − m with k′ (and rewrite k′ as k):

1 −
∞∑

k=0

θ k+m+1

(
k + m

k

)
f k (1 − f )m+1

= 1 − (θ (1 − f ))m+1
∞∑

k=0

(k + m)!

k!m!
(θ f )k.

To solve for the infinite sum, note that we can express
( 1

1−θ f )m+1 through a Taylor series around θ = 0:

(
1

1 − θ f

)m+1

= 1 + (m + 1)θ f

+ (m + 2)(m + 1)

2!
θ2 f 2 + · · · ,

which is exactly the same as our infinite sum. Therefore, we
can express W ( f ) as a very simple expression:

W ( f ) = 1 −
(

θ (1 − f )

1 − θ f

)m+1

.

Solving for Z ( f ) in Eq. (10), we get

Z ( f ) = 1 −
(

θ (1 − f )

1 − θ f

)m+1(
1 + (m + 1)(1 − θ )

1 − f θ

)
.

APPENDIX H: GRAPH-GENERATING ALGORITHM

Let the bipartite graph consist of networks A and B with
number of nodes NA and NB, respectively. In the directional
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case each in-link supporting a node in network A is an out-
link of a node in network B. Hence, the number of in-links
supporting nodes in network A must be equal to the number of
out-links emanating out of nodes of network B: nA,in = nB,out

and vice versa nA,out = nB,in. Moreover,

NA∑
i=1

ki,in =
NB∑
j=1

k j,out = nA,in (H1)

and

NA∑
i=1

ki,out =
NB∑
j=1

k j,in = nB,in, (H2)

where ki,in and ki,out are respectively in and out-degrees of
node i in network A, and k j,in and k j,out are respectively in
and out-degrees of node j in network B.

Let NA,out (k) be the number of nodes with out-degree k
in network A. We analogously introduce notations NA,in(k),
NB,out (k) and NB,in(k). If we want to construct a graph
with given degree distributions PX,out (k) and PX,in(k), where
X = A or X = B, we must assume that NX,in(k)/NX →
PX,in(k) and NX,out (k)/NX → PX,out (k) for NX → ∞. Thus,
the distributions must satisfy conditions: NA

∑
k kPA,in(k) =

NB
∑

k kPB,out (k) for NA → ∞, NB → ∞ or∑
k

NA〈k〉A,in =
∑

k

NB〈k〉B,out (H3)

and ∑
k

NA〈k〉A,out =
∑

kNB〈k〉B,in. (H4)

It is obvious that it is impossible to satisfy these conditions
with arbitrary degree distributions, even if NA/NB is a free
parameter.

If our goal is to demonstrate that the results of the
cascade of failures are independent of the out-degree distri-
bution, we must find the number of nodes N (k) with degree
k = 0, 1, 2, . . . such that

∑
k N (k) = N ,

∑
k kN (k) = n and

N (k)/N ≈ P(k), where P(k) is a given distribution. The sign
≈ means that the error is comparable with the value pre-
dicted by the central limit theorem: |N (k)/[P(k)N] − 1| <√

P(k) − P2(k)/
√

N < 1/
√

N (k). This condition is always
satisfied if one changes N (k) by 1.

To achieve our goal, we first generate N ′(k) =
int(NP(k) + 0.5), where int(x) is the integer part of real
value x. Then we find a preliminary number of links based on
our choice of N ′(k), n′ = ∑

k kN ′(k). This number may not
be exactly equal to the desired value of n, so the values N ′(k)
must be slightly modified in order to satisfy the condition
n′ = n exactly. If n′ > n, we find the value of k for which
N ′(k) is maximal and change N ′(k − 1) = N ′(k − 1) + 1 and
N ′(k) = N ′(k) − 1. This operation reduces n′ by one. Then

we repeat this process until
∑

k N (k) = n. If n′ < n then we
do the opposite operation.

Once N (k) is known, we assign degree k for N (k)
randomly selected nodes. We repeat these procedure for
both networks A and B using their in-degree and out-
degree distributions, and for both networks we assign the
degree 1 to nodes 1, 2, . . . , N (1), degree 2 to the next
N (2) nodes 1 + N (1), 2 + N (1), . . . , N (2) + N (1), and so
on. Then for both networks we construct a sequence of n num-
bers 1, 1, . . . , 1, 2, 2, . . . , 2, . . . , i, i, . . . , i, . . . , N, N, . . . , N
in which the number of repeating elements i is the degree of
node i. Finally, one of these sequences is randomly shuffled,
and the corresponding elements in both sequences, represent-
ing nodes in networks A and B, are connected.

The difficulty comes for the Pareto, or scale-free, distribu-
tion, which is characterized with the exponent α and whose
minimal degree and maximal degree cutoffs are such that it
will have a given 〈k〉. In principle, for demonstration of the
effect, any distribution with Pareto tail: P(k) ∼ 1/kα+1 for
k → ∞ will work. However, for finite networks consisting of
N nodes, k has a natural cutoff k � N1/α [8]. Accordingly, at
the beginning, we generate a preliminary sequence of degrees
k′

i = int[(N/k)1/α], for i = 1, 2, . . . , N . The degree distribu-
tion of such a sequence P(k) scales as C(1/k)α+1 where C is
a normalization constant.

First, we find the number of bonds that this degree distribu-
tion would produce: n′ = ∑N

i=1 k′
i . Then we define the desired

number of bonds: n = 〈k〉N , and define the new degree distri-
bution as k′′

i = int[(1 − ε)(n/n′)(N/k)1/α], where ε is a small
number selected in a such a way that n′′ = ∑N

i=0 k′′
i is slightly

less than n. One can select ε = 0.1. Note that k′′
i is a monoton-

ically decreasing function of i, so that if we keep assigning the
degrees of nodes according to our preliminary choice, the sum
of all the degrees will be less than n, so at certain j, instead of
k′′

j we select a constant value, which can be found, knowing
the current sum the degrees, and the number of nodes left
unassigned. Thus, the final degrees for all N nodes starting
from node j = 1 can be chosen as k j = max(k′′

j , mj ), where
mj is the estimate of the degree needed to satisfy the condition

N∑
i=1

ki = n, (H5)

assuming that the rest of the degrees are equal to

mj = int

⎡
⎣

⎛
⎝n −

j−1∑
i=1

ki

⎞
⎠

/
(N − j + 1)

⎤
⎦. (H6)

This method guarantees that the condition of Eq. (35) is satis-
fied and the major part of the degree distribution follows the
Pareto tail, while only very small degrees depending on the
value of ε are replaced by the larger value mj .
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