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Topological and spectral properties of random digraphs
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We investigate some topological and spectral properties of Erdős-Rényi (ER) random digraphs of size n and
connection probability p, D(n, p). In terms of topological properties, our primary focus lies in analyzing the
number of nonisolated vertices Vx (D) as well as two vertex-degree-based topological indices: the Randić index
R(D) and sum-connectivity index χ (D). First, by performing a scaling analysis, we show that the average degree
〈k〉 serves as a scaling parameter for the average values of Vx (D), R(D), and χ (D). Then, we also state expressions
relating the number of arcs, largest eigenvalue, and closed walks of length 2 to (n, p), the parameters of ER ran-
dom digraphs. Concerning spectral properties, we observe that the eigenvalue distribution converges to a circle of
radius

√
np(1 − p). Subsequently, we compute six different invariants related to the eigenvalues of D(n, p) and

observe that these quantities also scale with
√

np(1 − p). Additionally, we reformulate a set of bounds previously
reported in the literature for these invariants as a function (n, p). Finally, we phenomenologically state relations
between invariants that allow us to extend previously known bounds.

DOI: 10.1103/PhysRevE.109.064306

I. INTRODUCTION

In recent years, there has been a significant increase in the
use of graphs to represent complex systems in various fields,
including computer science, engineering, biology, and social
sciences [1–5]. This growing trend can be attributed to the
effectiveness of capturing the properties of complex systems
through graphs, where the vertices represent the agents of the
system and the edges reflect their interactions. This, in turn,
opens the door to the analysis of complex systems through
various mathematical techniques coming mainly from graph
theory.

The study of the properties of graphs covers many aspects,
focusing mainly on topological and spectral properties. One of
the ways to study and characterize these properties is through
their topological descriptors, such as degree distribution,
clustering coefficient, eigenvector centrality, and, more re-
cently, topological indices [6–9].

Although many studies have been carried out with highly
relevant results about the topological and spectral properties
of graphs, most of them focus on graphs whose edges do not
have a specific direction, in which the connection between two
vertices is symmetric and bidirectional (undirected graphs).
However, in several cases, it is mandatory to incorporate the
direction of the information flow when considering the mod-
eling of real-world systems. This is indeed the case when
considering food webs [10–12], neural networks [13–15],
genetic regulation [16], chemical networks [17,18], fluid
flows [19,20], or financial networks [21], among many other
relevant applications. In these scenarios, it is crucial to capture
the orientation of the connections so that the systems are
represented by directed networks, commonly known as di-
graphs. Consequently, there is a specific interest in exploring
the properties of directed graphs.

A digraph or directed graph is a mathematical struc-
ture denoted as D = (V, E ), where V represents a finite
set of n elements called vertices or nodes and E ⊂ V × V
comprises m directed edges (also called arcs) connecting
vertices.

Topological properties delve into the fundamental struc-
tural properties of digraphs, including connectivity, accessi-
bility, cycles, and paths. In this line, applying topological
indices based on vertex degrees to characterize and analyze
the topological properties of graphs has been a widely used
approach. The concept of an index based on vertex degrees
originates in chemical graph theory, which uses graph theory
to study the properties of chemical compounds by represent-
ing them as graphs, where atoms are vertices and bonds are
edges. The vertex-degree-based (VDB) topological indices
quantify some aspects of the topology of the graph in relation
to the degrees of its vertices. In a general formulation, a VDB
topological index can be expressed as [22]

TI = TI(G) =
∑
i∼ j

f (ki, k j ), (1)

where the summation extends over all pairs of adjacent ver-
tices, denoted as i and j, within the molecular graph G,
ki is the degree of the vertex i, and f (ki, k j ) represents a
function tailored to the specific topological property under
investigation. Since applying these indices to the study and
characterization of the topological properties of graphs has
acquired great relevance, many topological indices have been
proposed. However, extending this concept to directed graphs
is a complex task since, in digraphs, each vertex has an out-
degree, an in-degree, and a total degree. However, Monsalve
and Rada have recently presented a generalization of VDB
topological indices applied to digraphs [23]. Consequently,
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there are still few works in which the properties of these
topological indices have been explored [24–26].

However, understanding graph spectral properties becomes
fundamental when modeling real-world systems, as these
properties closely correlate with the structure of the system,
evolution, and stability [10,27–30]. The spectral properties of
a graph are investigated by studying the spectrum of a matrix
associated with it. There are several matrix representations
associated with a graph, such as the Laplacian matrix and
the adjacency matrix, among others. For a simple undirected
graph, the adjacency matrix A is defined through the matrix
elements

Ai j =
{

1 if there is an edge between vertices i and j,
0 otherwise.

(2)
The adjacency matrix of a random graph can be viewed as
a random matrix, so it is possible to use tools from random
matrix theory (RMT) in its analysis.

Since the pioneering studies of Wigner, the behavior of
eigenvalues in random matrices has attracted considerable in-
terest due to the observation of universal characteristics across
various systems. This universality enables RMT to predict
properties of emerging spectral phenomena, regardless of the
systems microscopic intricacies. Notably, within RMT, it has
been observed that for large matrices with independent ran-
dom elements, the distribution of eigenvalues should converge
to well-known Gaussian ensembles, regardless of the precise
distribution of the matrix elements [31–33]. This universality
extends to sparse random matrices, matrices with elements
from distributions with nonzero means, and even matrices
where entries are randomly chosen from a set with only two
elements, as it is the case of the binary adjacency matrices
of random graphs [33–37]. Therefore, exploring universality
is fundamental to infer the average properties of real-world
networks.

It is important to note that the adjacency matrix is not
necessarily symmetric for digraphs, meaning that its eigen-
values can be complex. Similarly to the case of topological
indices, this difference makes the study of spectral quantities
in digraphs more significant. Even within RMT, Hermitian en-
sembles have received more attention than the non-Hermitian
ones. Therefore, in this work, we also investigate the spectral
properties of digraphs, starting with the study of the dis-
tribution of eigenvalues of digraphs in the complex plane.
We explore the connection with the circle law, an exten-
sion of Wigner’s semicircle law for non-Hermitian random
matrices [38]. Subsequently, we investigate another spectral
quantity, similar to topological indices, but related to the
eigenvalues of the graphs.

In 1978 Ivan Gutman proposed the invariant E (G) of a
finite and undirected simple graph based on Huckel’s orbital
model as [39,40]

E (G) =
n∑

i=1

|λi|, (3)

where λi are the eigenvalues of the adjacency matrix of the
graph. This invariant emerges as a spectral quantity that serves
as a descriptor of the properties of a graph and allows the char-
acterization and study of the properties of specific systems.

This concept was initially introduced using the eigenvalues of
the adjacency matrix associated with an undirected graph.

Furthermore, other invariants defined as the sum of the
absolute value of the eigenvalues associated with other graph
matrices have been proposed, among them some related to
the Laplacian matrix [41–43], the distance matrix [44], the
incidence matrix [45], and some topological indices [46–49],
etc.

Moreover, the Coulson integral is a complex integral that
allows computing the invariant E (G) of a graph without di-
rectly calculating its eigenvalues: Let φ be the characteristic
polynomial of the adjacency matrix of the graph, then φ is the
characteristic polynomial of the graph, which is defined as

φ(G, x) = det[xI − A(G)], (4)

where I is the identity matrix of order n. The Coulson integral
is defined as [50]

E (G) = 1

π

∫ ∞

−∞

(
n − ixφ′(G, ix)

φ(G, ix)

)
dx, (5)

where φ′(G, ix) is the derivative of φ(G, x) and n is the order
of the adjacency matrix.

The invariant E (G) of a graph has several applications
in various fields, such as chemistry, physics, mathematics,
biology, social networks, computer science, etc. [51–55]. It
is mainly used as an indicator of the graph structure that de-
termines specific properties of the system represented by the
graph or to optimize specific processes. Furthermore, E (G)
has been used as a criterion for graph classification. Depend-
ing on its value, graphs can be categorized as hyperenergetic if
E (G) > 2(n − 1) or nonhyperenergetic if E (G) � 2(n − 1);
the value of E (G) for a complete graph serves as a reference
in this sense [56].

Thus, the interest in the study of E (G) has grown signif-
icantly. The most notable results in this field focus mainly
on determining upper and lower bounds for this magnitude
based on various properties of the graphs, mainly of a topo-
logical nature. One of the most important bounds for E (G)
is the McClelland inequality, which establishes a relationship
between E (G) and the number of vertices and edges of the
corresponding graph [57]:

E (G) �
√

2mn. (6)

Remembering the fact that the eigenvalues of digraphs can
be complex, the definition of the invariant E (G) of Eq. (3)
cannot be straightforwardly extended. Given this, several def-
initions of this invariant for digraphs have been proposed and
studied; it will now be denoted as E (D).

Therefore, this work investigates topological and spectral
characteristics of directed random graphs, focusing on the
Erdős-Rényi model.

II. TOPOLOGICAL AND SPECTRAL PROPERTIES
OF ERDŐS-RÉNYI DIGRAPHS

A. Topological properties of Erdős-Rényi digraphs

An Erdős-Rényi (ER) digraph, denoted by D(n, p), is a
directed random graph with n independent vertices connected
with probability p. Given two vertices u and v, p is the
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FIG. 1. (a) Average number of nonisolated vertices 〈Vx (D)〉,
(b) average Randić index 〈R(D)〉, and (c) average sum-connectivity
index 〈χ (D)〉 as a function of the connection probability p of Erdős-
Rényi digraphs of different sizes n ∈ [50, 400]. Each symbol was
calculated by averaging over 106/n random digraphs D(n, p).

probability that there is an arc from vertex u to vertex v, so p ∈
(0, 1). When p = 0, the graph consists of n isolated vertices;
when p = 1, it becomes a complete graph. We can obtain
graphs between these two extremes by varying the value of
p between 0 and 1. It is important to note that for 0 < p < 1,
a given pair of parameters (n, p) represents an infinity set of
random graphs. Therefore, calculating a property for a single
graph is not informative. Instead, we can obtain more relevant
information by calculating a given average property over an
ensemble of random graphs characterized by the same pair
of parameters (n, p). Although this statistical approach is a
common practice in RMT, it is not as common in graph theory;
however, it has been applied recently to several random graph
models [58–64].

Thus, below, we perform a numerical analysis of some
topological properties of ER digraphs by the use of the num-
ber of nonisolated vertices [Vx(D)] and the Randić [R(D)] and
the sum-connectivity [χ (D)] indices.

Following the generalization of the concept of VDB
topological indices of digraphs proposed by Monsalve and
Rada [23], the Randić and the sum-connectivity indices are
respectively defined as

R(D) = 1

2

∑
uv∈D

1√
ku

+kv
− (7)

and

χ (D) = 1

2

∑
uv∈D

1√
ku

+ + kv
− , (8)

where uv denotes the arc connecting vertices u and v, ku
+

denotes the out-degree of the vertex u, and kv
− denotes the

in-degree of the vertex v.
First, we compute the average values of Vx(D), R(D), and

χ (D) for ensembles of adjacency matrices of ER digraphs
characterized by different combinations of parameters (n, p).
In Fig. 1, these quantities are shown for four different graph
sizes as a function of the connection probability p. We can
observe that the curves corresponding to each quantity follow
similar shapes but are displaced in the p axis depending on the
graph size. To better appreciate the shape of these curves, we
normalize them to the size of the network and plot them again
in Fig. 2.

In Figs. 2(a) and 2(b), it can be seen that the shape of the
normalized curves of 〈Vx(D)〉 and 〈R(D)〉 are very similar.
Initially, for small values of p, both are close to zero, then
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FIG. 2. (a) 〈Vx (D)〉, (b) 〈R(D)〉, and (c) 〈χ (D)〉 normalized to n
as a function of the connection probability p of Erdős-Rényi digraphs
of different sizes n ∈ [50, 400]. Dotted lines in panels (a-c) corre-
spond to 0.5, 0.25, and 0.1, respectively. Same data sets of Fig. 1.

they increase with p until they reach their maximum values.
In the case of 〈Vx(D)〉/n, the maximum value is 1, while
for 〈R(D)〉/n it is 1/2. However, Fig. 2(c) shows a different
picture for the normalized curves of 〈χ (D)〉. That is, 〈χ (D)〉/n
is a strictly monotone increasing function and its maximum
value depends on the graph size. The maximum value of
〈χ (D)〉/n is reached at p = 1 and is equal to

√
(n − 1)/8.

Notably, in all three cases, the curves corresponding to the
same quantity exhibit a similar behavior but they are shifted
along the p axis for different graph sizes n. Now, our goal is
to identify a scaling parameter for these quantities. To achieve
this, we first need to quantify the displacement of the curves
with n. Then, without loss of generality, we characterize the
displacement by computing the value of p (that we label as
p∗) for which 〈Vx(D)〉/n, 〈R(D)〉/n and 〈χ (D)〉/n reach the
value of 0.5, 0.25, and 0.1, respectively; see the dotted lines in
Fig. 2.

In Fig. 3 we present p∗ as a function of the graph size n and
observe a linear trend of the data sets p∗ versus n (in log-log
scale), suggesting a power-law behavior of the form

p∗ = Cn−β. (9)

Then, by performing numerical fittings, we determined the
parameters C and β which are reported in Table I. There, we
can clearly see that β ≈ 1 in all three cases. Hence, we define
the scaling parameter ξ as the ratio p/p∗,

ξ = p

p∗ ∝ p

nβ
∝ p

n−1
= np. (10)

Previous studies on undirected ER graphs have demon-
strated that topological measures can be scaled with the
average degree 〈k〉 [60–62]. Here, the average degree of ER
digraphs is given by

〈k〉 = 2(n − 1)p. (11)

10
1

10
2

10
3

10
4

n

10
-4

10
-3

10
-2

p* v x

10
1

10
2

10
3

10
4

n

10
-4

10
-3

10
-2

p* R

10
1

10
2

10
3

10
4

n

10
-4

10
-3

10
-2

p* χ

(a) (b) (c)

FIG. 3. p∗ for (a) 〈Vx (D)〉, (b) 〈R(D)〉, and (c) 〈χ (D)〉 as a func-
tion of the graph size n of Erdős-Rényi digraphs.
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TABLE I. Values of the constants C and β obtained by fittings of
Eq. (9) to the data in Fig. 3.

〈Vx (D)〉 〈R(D)〉 〈χ (D)〉
C 0.3612 0.7608 0.3271
β 1.0051 1.0026 1.005

In addition, we can observe that both 〈k〉 and ξ depend on n
and p in the same functional form. Therefore, we can express
ξ as a function of 〈k〉 and vice versa. Also, it is important to
recall that the scaling parameter is not unique; a function of
it can also serve as a scaling parameter. These observations
allow us to propose the average degree 〈k〉 as the scaling
parameter for the topological properties of ER digraphs. Then,
in Fig. 4 we present again the curves of Fig. 2 but now plotted
as a function of 〈k〉. As observed, the average degree indeed
serves as the scaling parameter of these topological quantities.

Other important quantities in the study of digraphs are the
number of arcs m, the number of closed walks of length two
c2, and the largest eigenvalue λ1 (the maximum of the absolute
values of the adjacency matrix eigenvalues). Our next goal
is to compute these quantities and examine whether they can
also be scaled with the average degree. To achieve this, we
construct ensembles of ER digraphs characterized by different
combinations of parameters and compute the average of the
quantities above. In Fig. 5 we plot 〈m〉, 〈c2〉, and 〈λ1〉 as a
function of the connection probability p. Remarkably, these
quantities exhibit a behavior similar to that reported for the
previously studied topological indices: Curves representing
the same quantity show a similar pattern but they are shifted
along the p axis for different graph sizes. This observation
strongly suggests that these quantities may also be scaled with
the average degree. Furthermore, Fig. 5 reveals noteworthy
characteristics. Specifically, in the case of 〈m〉 and 〈c2〉, we
observe a linear trend with p on a log-log scale. Numerical cal-
culations indicate that 〈m〉 follows the relationship 〈m〉 ≈ n2 p.
Similarly, for 〈c2〉 we find that 〈c2〉 ≈ n2 p2/2. Additionally,
for p > 0.01, we find that 〈λ1〉 ≈ np. These approximations,
where the average degree can be easily identified (i.e., np ≈
〈k〉/2), are indicated in each panel of Fig. 5 with dashed lines.

Then, in Fig. 6 we verify that the average degree indeed
scales 〈m〉/n, 〈c2〉, and 〈λ1〉. Therefore we can finally write
〈m〉/n ≈ 〈k〉/2, 〈c2〉 ≈ 〈k〉2/8 ≈ m2/2n2, and 〈λ1〉 ≈ 〈k〉/2
for k > 1; see the dashed lines in the corresponding panels
of Fig. 6. These findings provide highly relevant information

0.01 1 100
〈k〉

0

0.5

1

〈V
x(D

)〉
/n

0.01 1 100
〈k〉

0

0.25

0.5

〈R
(D

)〉
/n

0.01 1 100
〈k〉

0

4

8

〈χ
(D

)〉
/n

n=50
n=100
n=200
n=400

(a) (b) (c)

FIG. 4. (a) 〈Vx (D)〉, (b) 〈R(D)〉, and (c) 〈χ (D)〉 normalized to n
as a function of the average degree 〈k〉 of Erdős-Rényi digraphs of
different sizes n ∈ [50, 400]. Same data sets of Fig. 1.
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FIG. 5. (a) Average number of edges 〈m〉, (b) average number
of closed walks of length 2 〈c2〉, and (c) average largest eigenvalue
〈λ1〉 as a function of the connection probability p of Erdős-Rényi
digraphs of different sizes n ∈ [50, 400]. Dashed lines in panels
(a–c) correspond to 〈m〉 = n2 p, 〈c2〉 = n2 p2/2, and 〈λ1〉 = np, re-
spectively. Each symbol was calculated by averaging over 106/n
random digraphs.

about the relationships and scaling behavior of topological
quantities, such as m and c2, and the spectral measure λ1, in
relation to the graph parameters p, n, and 〈k〉.

In realistic networks, the largest eigenvalue λ1 plays an
important role since it is useful to determine the stability
of the system [28]. We have observed that this eigenvalue
scales with the average degree, which coincides with other
related studies on undirected graphs of the ER type [29,30].
However, these same studies have revealed that the rest of
the spectrum behaves differently. Therefore, we proceed to
investigate whether the same occurs in the case of directed
graphs, analyzing the rest of the spectrum and other spectral
magnitudes in the next section.

B. Distribution of the adjacency matrix eigenvalues
in the complex plane

The adjacency matrix of ER digraphs corresponds to a
Bernoulli random matrix. This matrix is an n × n matrix with
independent Bernoulli entries, where each entry has a prob-
ability p of being equal to one and a probability (1 − p) of
being equal to zero. When p = 0 the adjacency matrix of
the corresponding digraph is null therefore its eigenvalues
are zero, however, when p = 1 the adjacency matrix cor-
responds to a matrix with zeros on the main diagonal and
all off-diagonal elements are equal to one. In this case, all
the eigenvalues are real: λ = −1 with degeneracy n − 1 and
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FIG. 6. (a) 〈m〉/n, (b) 〈c2〉, and (c) 〈λ1〉 as a function of the
average degree 〈k〉 of Erdős-Rényi digraphs of different sizes n ∈
[50, 400]. Dashed lines in panels (a–c) correspond to 〈m〉/n = 〈k〉/2,
〈c2〉 = 〈k〉2/8 = m2/2n2, and 〈λ1〉 = 〈k〉/2, respectively. Same data
sets of Fig. 5.
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FIG. 7. Eigenvalues λ of Erdős-Rényi digraphs of several com-
binations of p and n. (a) p = 0.05 and n = 100, (b) p = 0.25 and
n = 100, (c) p = 0.5 and n = 100, (d) p = 0.9 and n = 100, (e)
p = 0.4 and n = 100, (f) p = 0.4 and n = 200, (g) p = 0.4 and
n = 400, (h) p = 0.4 and n = 800. Single random graph realizations
were used. The red dashed line corresponds to np. λ1 indicates the
largest eigenvalue.

λ = n. For intermediate values of p we observe a more inter-
esting picture.

In Fig. 7 we plot the eigenvalues of directed ER digraphs in
the complex plane for different combinations of parameters.
In Figs. 7(a)–7(d), we keep the network size n = 100 fixed
and use different values of p; in Figs. 7(e)–7(h), we fix the
value of p = 0.4 and vary the size of the graph.

In general, we observe that the largest eigenvalue λ1 of the
digraph is separated from the bulk of the spectrum; moreover,
it is real and can be well approximated by λ1 ≈ np (red dashed
lines in Fig. 7), as already anticipated in the previous section.
The bulk of the spectrum is mostly contained into a circular
section whose area appears to be determined by the values of
the parameters n and p.

Within RMT, these observations pertain to the circular
law, which is the counterpart to Wigner’s semicircle law
for non-Hermitian matrices [65]. The circular law states that
the distribution of appropriately normalized eigenvalues from
large non-Hermitian random matrices converges to the unit
circle. Initially, Girko demonstrated the circular law for ma-
trices with complex Gaussian entries [66], while Edelman
later established its validity for real Gaussian matrices [67].
The circular law has attracted significant attention from re-
searchers such as Bai, Tao, and Vu, among others [68–75].
While early investigations predominantly focused on matrices
filled with random numbers possessing zero mean and unit
variance, later studies have shown similar results for sparse
matrices and variances different from one [76,77]. Notably, in
Ref. [76], the circular law is proven for a sparse matrix A with
zero mean and bounded variance σ 2, as well as bounded (2 +
η)th moment with η > 0. This law states that the eigenvalues
of A/σ

√
n converge to the unit disk as n → ∞. In the case

of Bernoulli matrices, σ 2 = p(1 − p) and the nth moment is
p. However, the mean μ = p is not zero. Nonetheless, Basak
and Rudelson established in Theorem 1.7 of Ref. [78] that if
An is the adjacency matrix of an ER digraph with connectivity
p (i.e., a Bernoulli matrix), the distribution of the eigenvalues
of An/

√
np(1 − p) converges weakly to the circular law as

n → ∞. This is the specific case of this work and the one we
decided to explore numerically below.
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FIG. 8. Eigenvalues λ [normalized to
√

np(1 − p)] of Erdős-
Rényi digraphs of several combinations of p and n. (a) p = 0.05
and n = 100, (b) p = 0.25 and n = 100, (c) p = 0.5 and n = 100,
(d) p = 0.9 and n = 100, (e) p = 0.4 and n = 50, (f) p = 0.4 and
n = 100, (g) p = 0.4 and n = 200, (h) p = 0.4 and n = 400. Single
random graph realizations were used.

Subsequently, in Fig. 8, we present the bulk eigenvalues
reported in Fig. 7, now normalized to

√
np(1 − p) = σ

√
n.

It is clear that the bulk eigenvalues are mostly contained
into the unit circle in the complex plane. While an overall
good correspondence is observed, it is notable that the case
of n = 100 and p = 0.9 [see Fig. 8(d)] exhibits poor corre-
spondence. Moreover, in Figs. 8(c) and 8(d), we can see that
the eigenvalues are not centered around zero; this is more
pronounced in Fig. 8(d).

From Fig. 8 we can conclude that
√

np(1 − p) may serve
as a scaling parameter for spectral properties, specifically for
the bulk eigenvalues. Also, since the largest eigenvalue λ1 is
the only eigenvalue located far from the bulk of the spectrum,
we expect the second-largest eigenvalue, λ2, to be well ap-
proximated by

√
np(1 − p) which determines the radius of

convergence of the bulk eigenvalues.
So, we now explore some properties of the second-largest

eigenvalue λ2. For this, we fix the value of
√

np(1 − p) and
plot the distribution of λ2 for different combinations of n
and p, as shown in Fig. 9. Taking Fig. 8 as a reference, we
choose (a)

√
np(1 − p) ≈ 2.18, (b)

√
np(1 − p) ≈ 4.33, (c)√

np(1 − p) = 5, and (d)
√

np(1 − p) = 3, which correspond
to the digraphs used in Figs. 8(a)–8(d), respectively. In black
dashed lines, we indicate the values of

√
np(1 − p).

We can notice that as the size of the graph increases, the
peak of the distribution of the second-largest eigenvalue ap-
proaches the value of

√
np(1 − p); as expected from Ref. [78].
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FIG. 9. Distribution of the second-largest eigenvalue λ2 of
Erdős-Rényi graphs for different parameter combinations such that
the variance is fixed to (a)

√
np(1 − p) = 2.18, (b)

√
np(1 − p) =

4.33, (c)
√

np(1 − p) = 5, and (d)
√

np(1 − p) = 3. Black dashed
lines corresponds to

√
np(1 − p).
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However, we notice that for
√

np(1 − p) = 5 a large deviation
is observed, especially for the case n = 100 which corre-
sponds to p = 0.5. Despite of this, in general,

√
np(1 − p) can

be used as the scaling parameter for the bulk of eigenvalues.

III. THE INVARIANT E(D) OF ERDŐS-RÉNYI DIGRAPHS

A. Short review of the invariant E(D)

As mentioned in the Introduction, the definition of the
invariant E (G) proposed by Gutman [see Eq. (3)] cannot be
directly applied to digraphs since, in this case, the eigenvalues
can be complex. In the case of digraphs, the invariant is
denoted as E (D). However, by examining Eq. (3), a straight-
forward generalization can be done by replacing the absolute
value of the real eigenvalues with the module of the complex
eigenvalues of the adjacency matrix of a digraph, here denoted
as Zk . In fact, this definition,

S (D) =
n∑

k=1

|Zk|, (12)

has been reported in Ref. [79]. Interestingly, this definition is
not the most widely studied. Instead of opting for this direct
generalization, other definitions have received more attention.

In Ref. [80], Peña and Rada, motivated by Coulson’s for-
mula, generalized the concept of E (D) of a digraph as

e(D) =
n∑

k=1

| Re(Zk )|. (13)

e(D) has been extensively studied; see for example
Refs. [81–85]. Also, this definition has been extended to other
graph invariants [86,87]. Bounds have also been established
for e(D). For example, in Ref. [85] Rada generalized McClel-
land’s inequality for directed graphs with n vertices, m edges,
and c2 closed walks of length 2 as

e(D) �
√

1

2
n(m + c2). (14)

Also, a lower bound for e(D) was established [81,82]:

e(D) �
√

2c2. (15)

It is important to note that the definition of Peña and Rada,
although it satisfies the Coulson integral, does not consider
the imaginary part of the eigenvalues.

Another definition that does consider the imaginary part of
the eigenvalues was proposed by Khan, Farooq, and Rada in
Ref. [88]. This is the iota invariant and is defined as

Eι(D) =
n∑

k=1

| Im(Zk )|. (16)

Eι(D) can be defined from the Coulson integral formula using
the characteristic polynomial of the complex adjacency matrix
Ac. Which is defined as

Acuv
=

{−ı if u → v,

0 otherwise. (17)

Eι(D) has been extensively studied in digraphs with spe-
cific characteristics such as bicyclic, tricyclic, and signed
digraphs [89–93].

More recently, Khan proposed another definition incorpo-
rating both real and imaginary parts of the adjacency matrix
eigenvalues. This invariant is defined as [94,95]

Ep(D) =
n∑

k=1

| Re(Zk ) Im(Zk )|. (18)

To represent Ep(D) in an integral way with Coulson’s for-
mula, it is necessary to use the characteristic polynomial of
the squared adjacency matrix A2 instead of the characteristic
polynomial of A.

Moreover, Nikiforov [96] proposed a similar invariant but
using the corresponding singular values. The singular values
of a matrix are a set of nonnegative elements that are calcu-
lated from a matrix A ∈ Rm×n. They are defined as the square
root of the eigenvalues of the AT A ∈ Rn×n matrix. Given the
singular values of a matrix A, σk , the Nikiforov invariant is
defined as

N (A) =
n∑

k=1

σk . (19)

This concept has been widely studied for different types
of matrices, such as nonsquare matrices [97] and for di-
graphs [98,99]. Its importance lies in the fact that it can be
computed for any matrix and, in the case of a square symmet-
ric matrix, it reproduces Eq. (3). For the Nikiforov invariant,
some bounds have been reported in terms of the properties of
the matrix. Particularly, an upper bound for N (D) has been
reported as [81,97]

N (D) � m

n
+

√
(n − 1)

(
m − m2

n2

)
, (20)

while Agudelo and Rada proposed the lower bound [98]

N (D) �
√

m. (21)

Another definition of invariant reported in the literature is
the Hermitian invariant [100–102]. In contrast to the previous
definitions, this invariant is not directly linked to the adjacency
matrix of the digraph. To calculate this invariant, it is neces-
sary to construct the Hermitian adjacency matrix, denoted as
H, which is defined as follows:

Huv =

⎧⎪⎪⎨
⎪⎪⎩

1 if u ↔ v,

−ı if u → v,

ı if v → u,

0 otherwise.

(22)

Since H is a Hermitian matrix by construction, its eigenvalues
are real. Then, the Hermitian invariant, denoted as EH (G), can
be computed using Eq. (3) with the eigenvalues of H. Bounds
have also been established for EH (G). Considering q as the
determinant of H and � the maximum degree of the graph,
the following bounds were derived [100]:√

2m + n(n − 1)q2/n � EH (G) � n
√

�. (23)

Additionally, when considering solely the number of arcs,
an alternative bound for the Hermitian invariant is expressed
as [100]

2
√

m � EH (G) � 2m. (24)
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FIG. 10. Average invariants E (D) as a function of the connection
probability p of Erdős-Rényi digraphs of size n = 100. The dashed
lines indicate the limits defined by Eqs. (14) (brown color), (20)
(maroon color), (21) (green color), and the upper and lower bounds
given by Eq. (25) (violet and cyan, respectively). The black dotted
line indicates the hyperenergetic limit. The vertical red-dotted line is
p = 1

2 (1 + 1√
n ) with n = 100. The yellow solid line corresponds to√

np(1 − p). Each symbol was calculated by averaging over 106/n
random digraphs.

Particularly for ER digraphs, considering the relationships of
m, n, and p found in the previous section, this bound can be
expressed as

2n
√

p � EH (G) � 2n2 p. (25)

Although all these invariants have been extensively studied
to determine minimum and maximum bounds and have also
been computed for specific graphs, no numerical study has
yet been performed to compare them. To fill this gap, we have
undertaken the task of numerically and statistically evaluating
these invariants for ensembles of ER random digraphs.

B. Invariant E(D) of ER digraphs

Here we compute the invariants S (D), e(D), Eι(D), Ep(D),
N (D), and EH (D) for ensembles of ER digraphs characterized
by the parameter pair (n, p).

Then, in Fig. 10, we plot the average invariants of ER
digraphs of size n = 100 as a function of the connection
probability p. In Fig. 10 we also indicate the bounds given
by Eqs. (14), (20), (21), and (25), and the hyperenergetic limit
2n − 2.

From Fig. 10, we can see that all invariants exhibit a similar
pattern as a function of p: As p increases, the invariants
increase until reaching a maximum value at p close to 1; then,
its decrease displaying a bell-like shape that is better observed
in a semilogarithmic scale. However, the maximum values for
different invariants are different. We numerically computed
the maximum values reached by the different invariants for
ensembles of digraphs of different sizes (not shown here).
We found that all invariants reach their maximum at p ≈ 0.5.
Moreover, we can see in Fig. 10 that the curve corresponding
to Eq. (20) also reaches its maximum at p ≈ 0.5, in agreement
with all the numerically computed invariants. Then, to get an
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FIG. 11. Average invariants (a) 〈S(D)〉, (b) 〈e(D)〉, (c) 〈Eι(D)〉,
(d) 〈Ep(D)〉, (e) 〈N (D)〉, and (f) 〈EH (D)〉 as a function of the
connection probability p of Erdős-Rényi digraphs of sizes n ∈
[50, 400]. Each symbol was calculated by averaging over 106/n
random digraphs.

estimation of the value of p producing the invariant maxima
we rewrite Eq. (20) in terms of n and p using m ≈ n2 p, then
we see that

N (D) � np +
√

(n − 1)(n2 p − n2 p2)

= np + n
√

(n − 1)p(1 − p). (26)

So we find that the maximum of Eq. (26) occurs at p = 1
2 (1 +

1√
n

), which is consistent with the numerical observation. From
Eq. (26) we also observe that we can relate the Nikiforov
invariant to

√
np(1 − p), as

N (D) � np + n
√

np(1 − p). (27)

Given that
√

np(1 − p) > p, in general, in Fig. 10, we include√
np(1 − p) (see the yellow line) and observe that this quan-

tity has the shape of the invariant curves and can also be used
as an upper bound for most of the invariants (except for the
Hermitian).

We recall that in Fig. 10 we used ER digraphs of size
n = 100 so, to see the effect of the graph size on the average
invariants; in Fig. 11, we plot them as a function of p for
different values of n. From this figure, we can observe that
the curves for a given invariant definition exhibit a similar
functional dependence of p, but they are shifted on both axes
for increasing n. This effect of n on the invariants is equivalent
to that observed in the previous Section for the topological
and spectral properties of ER digraphs, see Figs. 1 and 5.
Considering that

√
np(p − 1) fixes the distribution of the bulk

of the eigenvalues, we now plot the invariants (normalized
to n) as a function of

√
np(p − 1). Indeed, we observe that√

np(p − 1) works well as the scaling parameter of the nor-
malized invariants, mainly above the percolation threshold
〈k〉 > 1.

In the panels of Fig. 12, we also include
√

np(p − 1) for
n = 400 (red dashed lines) and observe that it effectively
works as a bound for the invariants, except for the Her-
mitian. Moreover, remarkably,

√
np(p − 1) perfectly scales

the normalized Nikiforov invariant as well as the normal-
ized Hermitian invariant over the entire range of connection
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FIG. 12. (a) 〈S(D)〉, (b) 〈e(D)〉, (c) 〈Eι(D)〉, (d) 〈Ep(D)〉,
(e) 〈N (D)〉, and (f) 〈EH (D)〉 normalized to n as a function of√

np(1 − p) of Erdős-Rényi digraphs of sizes n ∈ [50, 400]. Same
data sets of Fig. 11. The red dashed line corresponds to

√
np(1 − p)

for n = 400.

probabilities, see Figs. 12(e) and 12(f). We can notice that the
worst scaling is given for the invariants S (D) and e(D), which
is attributable to the contribution of the largest eigenvalue
which is quite far from the bulk eigenvalues and it scales with
the average degree: λ1 ≈ 〈k〉/2.

In addition, in Fig. 12 we can see that certain invariants
pairs depend on

√
np(p − 1) in a very similar way and, con-

sequently, they should be strongly correlated. Specifically,
we observe strong similarities between S (D) and e(D), see
Figs. 12(a) and 12(b), and between N (D) and EH (D), see
Figs. 12(e) and 12(f). So, in Fig. 13, we present scatter plots
of these pairs of invariants and report the corresponding Pear-
son correlation coefficients. Moreover, the strong correlations
reported in Fig. 13 allowed us to state the following relations:

√
2 e(D) ≈ S (D), (28)

EH (D) ≈ 8
5 N (D), (29)

see the black-dashed lines Fig. 13.
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FIG. 13. Scatter plots of (a) 〈S(D)〉 vs 〈e(D)〉 and (b) 〈N (D)〉
vs 〈EH (D)〉. Data corresponds to n = 50 and 400. The Pearson cor-
relation coefficients r are reported in the corresponding panels. The
black-dashed lines are fittings of the form y = Cx, with (a) C = 1/

√
2

and (b) C = 8/5.

IV. CONCLUSIONS AND DISCUSSION

This study aims to contribute to the understanding of
topological and spectral properties of random digraphs.
Specifically, we studied some topological and spectral prop-
erties of Erdős-Rényi (ER) digraphs D(n, p).

Initially, we focused on the statistical analysis of topo-
logical properties by computing the average number of
nonisolated vertices 〈Vx(D)〉, the average Randić index 〈R(D)〉
and the average sum-connectivity index 〈χ (D)〉. By means
of a scaling analysis, we found that the total average degree
〈k〉 works well as scaling parameter of 〈Vx(D)〉, 〈R(D)〉 and
〈χ (D)〉 but also for the average number of arcs 〈m(D)〉, the
average largest eigenvalue 〈λ1(D)〉 and the average closed
walks of length 2 〈c2(D)〉. Moreover, we were able to infer
the following relations: 〈m(D)〉/n ≈ 〈k〉/2, 〈c2(D)〉 ≈ 〈k〉2/8,
and 〈λ1(D)〉 ≈ 〈k〉/2 for 〈k〉 > 1.

Concerning spectral properties, we first explore the distri-
bution of the eigenvalues in the complex plane and observe
that the bulk eigenvalues mostly fall within the circle of radius√

np(p − 1). We also note that this quantity fixes the statisti-
cal properties of the second-largest eigenvalue. Subsequently,
we computed six different graph invariants for ensembles of
ER digraphs D(n, p): S (D), e(D), Eι(D), Ep(D), N (D), and
EH (D). Then, we showed that

√
np(1 − p) scales well all the

normalized averaged invariants, mainly scales 〈N (D)〉/n and
〈EH (D)〉/n over the entire range of connection probabilities.
We also observe that

√
np(p − 1) is an upper limit for most

invariants.
Then, we reformulated a set of bounds previously reported

in the literature for these quantities as a function (n, p). So,
by identifying strong correlations between S (D) and e(D),
and between N (D) and EH (D) we phenomenologically stated
linear relations between invariants; see Eqs. (28) and (29).

It is important to stress that Eqs. (28) and (29) can be used
to extend previously known bounds. That is, from Eqs. (14)
and (15) and (28) we get

2
√

c2 � S(D) �
√

n(m + c2),

by combining Eqs. (20), (21), and (29) we can write

8

5

√
m � EH (D) � 8

5

⎡
⎣m

n
+

√
(n − 1)

(
m − m2

n2

)⎤
⎦,

while from Eqs. (24) and (29) we obtain

5
4

√
m � N (D) � 5

4 m,

which in the particular case of ER digraphs, read as

√
2np � S(D) � n

√
np

(
1 + p

2

)
, (30)

8

5
n
√

p � EH (D) � 8

5
n[p +

√
(n − 1)p(1 − p)], (31)

and

5
4 n

√
p � N (D) � 5

4 n2 p, (32)
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FIG. 14. (a) 〈S(D)〉, (b) 〈N (D)〉, and (c) 〈EH (D)〉 as a function
of the connection probability p of Erdős-Rényi digraphs of size n =
400. The dashed lines in panels (a), (b), and (c) indicate the limits
given by Eqs. (30), (31), and (32), respectively.

respectively. Finally, in Fig. 14, we validate Eqs. (30) and (32)
on ER digraphs of size n = 400. We just note that the lower

bound in Eq. (30) fails to bound 〈S (D)〉, see Fig. 14(a);
however, this also happens in the original Eq. (15).

Finally, it is interesting to suggest as future work the con-
tinuation of the study of properties that imply dynamics within
these digraphs, especially it would be interesting to explore
the case of random walks.
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