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Robustness of Turing models and gene regulatory networks with a sweet spot
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Traditional linear stability analysis based on matrix diagonalization is a computationally intensive process for
high-dimensional systems of differential equations, posing substantial limitations for the exploration of Turing
systems of pattern formation where an additional wave-number parameter needs to be investigated. In this paper,
we introduce an efficient and intuitive technique that leverages Gershgorin’s theorem to determine upper limits
on regions of parameter space and the wave number beyond which Turing instabilities cannot occur. This method
offers a streamlined avenue for exploring the phase diagrams of other complex multi-parametric models, such
as those found in gene regulatory networks in systems biology. Due to its suitability for the asymptotic limit of
infinitely large systems, it predicts the existence of a sweet spot in network size for maximal Jacobian stability.
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I. INTRODUCTION

Deciphering reproducible pattern formation during em-
bryogenesis with multiparameter models calls for mecha-
nisms demonstrating robustness in parameter space. Turing
models of diffusion-driven instability [1], which serve as a
pivotal category of models, only induce patterns within a
highly restricted region of the parameter space [2–5]. The
exploration of such models for increased regions of parameter
space and hence enhanced robustness is markedly limited
due to their inherent complexity: they incorporate numerous
parameters, including rate constants and diffusion constants of
activator and inhibitor morphogens, as well as a wave number
parameter as part of the analysis.

Here, we consider autonomous spatiotemporal dy-
namic models that include diffusion, such as describing
reaction-diffusion phenomena. Their partial differential equa-
tions (PDEs) are written as

dX
dt

= f (X ; θ) + D∇2X , (1)

where X ∈ Rn are system variables, f is an n-valued func-
tion defined in n-dimensional phase space, θ ∈ Rm is the
system-independent parameter vector, D is the diffusion ma-
trix, and ∇2 the Laplacian. One biologically inspired example
is gene networks regulating embryonic development [3]. The
concentration of proteins can affect the production of other
proteins in the same or, via small messenger molecules, dif-
ferent cells. In fact, for n different proteins, the regulations’
direction is represented by the edges of a directed graph, in-
cluding self-loops for self-regulation. Typically, regulation is
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modeled by

fi(X ; θ) = bi − μixi +
∏
j∈Si

H (x j ), i ∈ {1, . . . , n}, (2)

with θ = {b,μ, . . . } such that the rate of change of species
i depends on a basal rate bi, a non-negative degradation rate
μi, and a product of Hill functions H (x j ) (to be defined later).
Note that the multiplication runs over Si, which is the set of
species that regulate the species i and correspond to in-edges
of the regulation network. Similarly, it represents a nonzero
entry in the network’s adjacency matrix.

For systems with diffusion-induced instability capable of
producing patterns, one requires the system without diffusion
to be stable. Hence, one needs to solve the system of equations

f (X∗; θ) = 0 (3)

for a given θ to find fixed points X∗, and then by writing the
n × n Jacobian matrix J0|X∗ of the system at X∗ and studying
its eigenvalues, classify the fixed point stability. However,
finding the eigenvalues of a matrix is an O(n3) process, which
is computationally challenging for high-dimensional phase
spaces. The mentioned problem becomes more acute when
considering that a candidate dynamical system can have some
parameters that change the system’s stability. In this case,
we need to redo all the steps for every point in parameter
space to study the dynamical system’s characteristics, e.g., the
bifurcation diagram.

Specifically, for our reaction-diffusion system with
diffusion-induced instability, the Laplacian is removed by
spatial Fourier transformation at the expense of an extra pa-
rameter, the wave number. Hence, the linear stability analysis
must be applied for different wave numbers to specify the
dominant wavelength that finally shapes the stationary solu-
tion [3]. For a diagonal diffusion matrix D, the Jacobian for a
given wave number, say k, is

J(k) = J0|X∗ − k2D. (4)
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FIG. 1. Overview of our method to efficiently explore the parameter space of Jacobian matrices. (a) The Gershgorin circle theorem is
used to extract information on the locations of the eigenvalues in the complex plane, in particular, to obtain bounds on the largest real part.
Note diffusion shifts circles to the left. Such bounds can be used to analytically exclude areas in parameter space which cannot lead to
Turing instabilities (superstable hatched area) (b), to derive the maximal wave number k∗

max beyond which stability sets (hatched line) in (c),
and to explore optimal stability of random Jacobian matrices as a function of network (or matrix) size n. Here, n∗ indicates the network
size corresponding to the maximum of the probability of being stable. Insets illustrate small (left) and large (right) random gene regulatory
networks.

Hence, any improvement that decreases the procedure’s
computational complexity is beneficial for general stability
analysis, particularly for pattern formation study.

In this paper, we introduce an efficient and intuitive
methodology based on the well-known Gershgorin’s theorem
[6,7] in linear algebra. For sparse matrices, our algorithm
scales as O(n) and hence transfers the computational bot-
tleneck to O(n2) root-finding methods, such as the Newton
method for the steady states (Fig. 1). Our method serves as
an initial screening process to rule out extensive portions of
the parameter space when searching for diffusion-driven in-
stabilities, to be followed up by complementary methods such
as the Busse balloon [8]. Our method, applicable numerically
and analytically, markedly accelerates the parameter space
exploration process [Figs. 1(a)–1(c)]. We illustrate the numer-
ical efficacy of this approach using a two-morphogen model
based on sigmoidal Hill functions, the Brusselator model [9],
and large gene regulatory networks based on Eq. (2) using
random matrix theory on Erdös-Rényi networks [Fig. 1(d)]
[10] (for details, see Supplemental Material [11]). Note our
method is markedly different from other recent work, such
as provided in Refs. [12,13]. The former discusses discrete
hopping on a network, while the latter derives conditions
for pattern formation in systems valid for n � 1, but with
the computational complexity being exponential and hence
intractable for systems with many chemical species.

II. METHODS AND ALGORITHMS

A. Gershgorin’s theorem

We start by introducing Gershgorin’s theorem and consider
its geometrical interpretation. As we shall see, it is possible
to construct an algorithm that checks the rows or columns of
a Jacobian matrix to find those that are unstable or remain

stable after introducing diffusion and consequently cannot
produce a diffusion-induced pattern. The theorem [6] states
that for n × n complex matrix A = (ai j ) and ri ≡ ∑n

j=1
j �=i

|ai j |,
the sum of moduli of off-diagonal elements in the ith row, each
union of circles |z − aii| � ri (for i = 1, 2, . . . , n) contains a
number of eigenvalues of A equal to the number of circles used
to create the union. The analogous result holds if columns of
A are considered. Note that in our case, ai j = ∂i f j , and for
diagonal terms aii = ∂i fi without and aii = ∂i fi − k2Di with
diffusion.

Let us consider the radius and position of a circle in the
complex plane as depicted in Fig. 2. Depending on the sign of
the diagonal term aii, the circle’s center is on the real axis’s
negative or positive side. Assume λi lies in the Gershgorin
circle belonging to the row or column i of the matrix A. Four
types of circles may appear: Type 1: As shown in Fig. 2(a),
we have aii < 0 and hi ≡ |aii| − ri � 0. Therefore, regardless
of where the eigenvalue is inside the circle, its real part must
be negative, Re(λi) � 0. 2: In Fig. 2(b), we can see aii < 0,
and the center of the circle is placed on the negative side of
the real axis. However, since |aii| < ri and hi < 0, the real
part of λi can be negative or positive. In other words, the
theorem is inconclusive about the sign of the real part of the
corresponding eigenvalue. Type 3: The diagonal element is
positive (aii > 0), and the center of the circle is on the positive
side of the real axis. Yet, |aii| > ri and hi > 0. Thus, the real
part of the eigenvalue must be positive Re(λi ) > 0. Type 4:
Similar to Type 2, the range of Gershgorin’s circle spans from
negative to positive values. Therefore, we cannot conclusively
decide about the real part of the eigenvalue inside this area.

We must emphasize that when two or more Gershgorin’s
circles overlap, the eigenvalues lie in the union of the circles.
Let us define the lower and upper bounds of each circle as
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FIG. 2. Gershgorin’s theorem and its geometrical interpretation. (a) Type 1 (stable). (b) Type 2 (inconclusive). (c) Two overlapping circles.
(d) Diagonal terms shift to the left when diffusion is included.

li ≡ aii − ri and ui ≡ aii + ri, respectively. For instance, in
Fig. 2(c), the union of two circles shows that the real part of
both eigenvalues corresponding to rows i and j must be in the
union of their diameters Re(λi ), Re(λ j ) ∈ [l j, u j]

⋃
[li, ui] =

[l j, ui]. And, correspondingly, for each row (or column) of the
matrix A, there exist intervals like

A =

⎛
⎜⎜⎝

a11 a12 . . . a1n

a21 a22 . . . a2n
...

. . .
...

an1 an2 . . . ann

⎞
⎟⎟⎠ ⇒

[l1, u1]
[l2, u2]

...

[ln, un],

(5)

where after taking their unions and reformulating as nonover-
lapping, disjoint intervals result in

A =
n⋃

i=1

[li, ui] ≡
p⋃

i=1

[Li,Ui], 1 � p � n, (6)

such that [Li,Ui] ∪ [Lj,Uj] = ∅, for i �= j. Therefore, the
[Lmax,Umax] is the rightmost disjoint interval constructed by
the unions of the original intervals and is sufficient to study
it to find the sign of the real part of the largest eigenvalue.
This introduces the following possibilities regarding the sta-
bility condition: (1) For Umax � 0, the real part of the largest
eigenvalue is negative. Consequently, the system is stable. (2)
For Lmax > 0, the real part of the largest eigenvalue is positive.
Consequently, the system is unstable. 3. For Lmax � 0 < Umax,
the situation is inconclusive.

At this stage, we can use the obtained results in two differ-
ent ways. The first possibility is when the Jacobian is written
in terms of the model’s parameters, θ, and we may be able to
derive the rightmost disjoint set parametrically. Accordingly,
our inequalities define the regions in parameter space where
the method can conclusively determine the stability or insta-
bility of the system. Nevertheless, the region corresponding to
the inconclusive range requires different classification tech-
niques. Note that even if the method is not always conclusive
for all the regions in parameter space, it can always find a
theoretical lower bound for the volume of the parameter space
that the system is stable or unstable. The second possibility
is when studying a system’s linear stability numerically. We
propose an algorithm that classifies a given Jacobian matrix
into stable, unstable, and inconclusive stability groups (see
Supplemental Material in Ref. [11]). The computational com-
plexity of this algorithm is O(n2) [O(n) for sparse matrices],

making this comparable to iterative solvers [14]. However,
due to its graphical interpretation and simple formalism, it is
intuitive. Note that the algorithm can also be used for random
matrices to find the average behavior of realistic systems or
to study systems in the asymptotic thermodynamic limit for
n → ∞, which assumes the number of different constituent
species is unbounded from above. Next, we include diffusion
to make predictions about the ability of reaction-diffusion
models to form patterns.

B. Effects of diffusion in reaction-diffusion models

To study pattern-forming systems based on Eq. (1) with
stationary solution X∗ = (X ∗

1 , . . . , X ∗
n ), we use our method

to find bounds on the linear stability of the Jacobian J|X∗ in
Eq. (4). We can write the lower and upper bounds correspond-
ing to row (or column) i as li = ∂i fi − ri and ui = ∂i fi + ri for
ri ≡ ∑

j �=i |∂ j fi|. Then, the stability (instability) criteria of the
Jacobian determine the patterning conditions.

Next, we study the effect of introducing diffusion and
derive bounds on maximally permissible wave numbers. For
a given wave number k, the inclusion of diffusion shifts all
the diagonal terms by −k2Di [see Eq. (4)]. Effectively, since
diagonal terms correspond to the location of the centers of
Gershgorin’s circles, it is geometrically equivalent to saying
all the circles shift to the left as shown in Fig. 2(d). Note,
since the off-diagonal terms have not changed, the circles’
radii remain unchanged.

Indeed, for any given circle partially on the positive side
of the real axis, there exists a maximum shift by a wave
number defined by k∗

i = √
(ri + ∂i fi )/Di that transfers the

circle entirely to the negative side of the real axis by k∗2
i Di—

note that k∗
i is calculated for the diffusing species only (for

details, see Supplemental Material in Ref. [11]). Furthermore,
the real part of the eigenvalue corresponding to that circle
must be negative for all the higher wave numbers ki > k∗

i . By
finding k∗

max ≡ max{k∗
1 , . . . , k∗

n } for all rows (or columns), the
linear stability of different wave numbers can be restricted
to the range k, such that for k = 0, or the case with no
diffusion, J0|X∗ specifies the stability condition and J(k) for
k ∈ (0, k∗

max] determines the evolution of the dominant wave
number in a perturbed system. Thus, we must have three
different regimes: (1) For J0|X∗ , when Umax � 0, all the circles
are on the negative side of the real line and including diffusion
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FIG. 3. Maximum shift of two diffusers. (a) Circles before in-
clusion of diffusion. (b) The maximum shifts of the first and second
circles due to diffusion.

for any given wave number shifts the circles further to the
left. Hence, all real parts of the eigenvalues are negative, and
diffusion cannot excite any wave number. Consequently, the
system is incapable of producing a diffusion-driven pattern
(superstable). (2) On the contrary, when Lmax > 0 for J0|X∗ ,
the initial stationary state is unstable and incapable of pro-
ducing a pattern (unstable). (3) Finally, when [Lmax,Umax] is
inconclusive (Lmax < 0 and Umax > 0), J0|X∗ must be studied
by finding its eigenvalues. And if one finds that it is stable,
the maximum of the dispersion relation λ(k) finds the dom-
inant wave number for pattern formation by restricting k to
[0, k∗

max]. These regimes are included in our algorithm to speed
up the process of checking the possibility of pattern forma-
tion for a given parameter set. Only parameters for which
the classification is inconclusive need further study of their
eigenvalues and are, in principle, able to form patterns.

C. Limitations

The dispersion relation of systems in which all species are
diffusing always satisfies Re(λ(k)) < 0 for k > k∗

max. In other
words, asymptotically, as long as all species are diffusers,
we have limk→∞ Re(λ(k)) → −∞. When some but not all
species in a reaction-diffusion model diffuse, introducing the
diffusion coefficients into the Jacobian matrix shifts some cir-
cles to the left while the others remain in the same place—see
Fig. 3. Although one can calculate the k∗

max values for the
diffuser rows in the matrix, a special situation can arise for
k > k∗

max in the dispersion relation. For instance, consider that
two of the three species are diffusers as shown in Fig. 3. As
we can see, after shifting the diffusers’ circle by an amount
−k∗2

maxD1 and −k∗2
maxD2, respectively, the third eigenvalue

corresponding to the nondiffuser element remains positive for
all k > k∗

max. Consequently, the real part of the dispersion
relation can remain positive with no upper bounds. As a result,
no dominant wave number exists to create a stationary pattern.

To overcome this limitation, note that the diffusing species’
circles will eventually separate from the rest of the circles for
large enough wave numbers. Therefore, a simple algorithm
can reexamine the matrix with shifts −k∗2

maxDi included for all
diffusing species. The classification is done for cases similar
to Fig. 3 or stable matrices. Otherwise, if one or more non-
diffusing species’ circles are in an inconclusive region and
the shifted diffusing circles overlap with them, the algorithm
retries to increase −(k∗

max + ε)2Di for ε > 0, until all diffusing
circles are separated from the inconclusive ones, such that any
excited wave number must be in (0, k∗

max + ε]. Note that this
procedure always halts after separation of diffusing circles
for some large enough ε, and the usual dispersion relation
analysis can be carried out.

D. Tightening the bounds

Further improvements to our bounds can be made by iso-
lating Gershgorin circles. Given an invertible matrix D, B =
DAD−1 introduces an equivalence relation between square
matrices A and B such that matrix B has the same eigenvalues
as A (see Supplemental Material [11] for details). Defining
an invertible n × n diagonal matrix D as the identity matrix
with exception of matrix element Dii = 1/di, the transformed
matrix DAD−1 has the form

DAD−1 =

⎛
⎜⎜⎜⎜⎜⎝

a11 . . . a1idi . . . a1n
...

. . .
...

...
ai1
di

. . . aii . . . ain
di

...
...

. . .
...

an1 . . . anidi . . . ann

⎞
⎟⎟⎟⎟⎟⎠

. (7)

The transformation’s effect is similar to dividing all the ele-
ments of the row i by di and multiplying the elements of the
column i by di. Consequently, the diagonal term aii remains
the same.

Consider the rows of the resulting matrix. The radii of
all circles corresponding to rows other than i expand by the
amount |aji|(di − 1) (for di > 1), and the ith radius shrinks
by a factor of 1/di, while the centers of all circles stay the
same. Since the eigenvalues of the transformed matrix are the
same as the original one, one can hope the shrunk circle be-
comes isolated from the rest since the expansions of the other
radii are smaller than the shrinking of the single radius. In
practice, one can find di that isolates the circle with the largest
center from the rest. The interval of all rows except the ith
is [l j, u j] = [a j j − |a ji|(di − 1) − r j, a j j + |a ji|(di − 1) +
r j], and the interval for row i is [li, ui] = [aii − ri

di
, aii + ri

di
].

To tighten the bounds, we have two distinct cases that can
be studied separately. Case (1): When the diagonal term is
positive, or aii > 0, to isolate the circle corresponding to row
i, its leftmost point, or li = aii − ri

di
, must be larger than every

other circle’s rightmost point, or u j = a j j + |a ji|(di − 1) +
r j . As explained in detail in Ref. [11], if all the rows j and
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TABLE I. Empirical statistics of applying Algorithms (1) and (2) to the Hill-functions-based Turing model. Simulations are conducted for
109 parameter combinations.

Total Superstable Inconclusive Unstable No fixed point

Row-wise 109 850 677 030 140 394 311 4 870 615 4 058 044
100% 85.07% 14.04% 0.49% 0.41%

Columnwise 140 394 311 68 454 498 71 913 845 25,968
100% 48.76% 51.22% 0.02%

Tighten bounds 71 913 845 64 615 611 6 990 298 307 936
100% 89.85% 9.72% 0.43%

Combined 109 983 747 139 6 990 298 5 204 519 4 058 044
100% 98.37% 0.70% 0.52% 0.41%

the largest one, i, satisfy the inequalities{
(a j j − aii + r j − |a ji|)2 > 4|a ji|ri j �= i

a j j − aii + r j − |a ji| < 0 j = 1, . . . , n.
(8)

Simultaneously, there exists a di that isolates the rightmost
eigenvalue, and the Jacobian is conclusively unstable. Case
(2): When the largest diagonal term is negative, or aii < 0, the
latter implies all the other diagonal terms are negative too. In
this case, we search for a possible shrinkage value di, such
that while the circle of the row i shrinks with its upper bound
on the negative side of the real axis, the growth of all the other
circles keeps them at the negative side. Combined, this leads
to two conditioned bounds as

ri

|aii| < di < min
j �=i

( |a j j | − r j

|a ji| + 1

)
. (9)

Hence, if a nonempty interval can be found that satisfies the
above inequalities, the Jacobian is conclusively “superstable”
(see Supplemental Material [11] for details).

III. RESULTS AND APPLICATIONS

A. Numerical test on two-morphogen model

To test the fraction of rejections and, consequently, the
speedup due to Algorithms (1) and (2), we use a biologically
inspired model capable of producing Turing patterns [3] for
two proteins (morphogens) in Eq. (2) with sigmoidal Hill
functions and nine free parameters (see Supplemental Mate-
rial [11]),

∂u

∂t
= bu + Vu[

1 + (Kuu
u

)4][
1 + (

v
Kvu

)4]
− μuu + Du∇2u,

∂v

∂t
= bv + Vv

1 + (Kuv

u

)4 − μvv + Dv∇2v, (10)

with basal expression rates bi, maximal expression rates Vi

of regulated terms, thresholds Ki j , degradation rates μi, and
diffusion constants Di for i, j ∈ {u, v}. The Jacobian of the
linearized form of the above equations is a 2 × 2 matrix, and,
in practice, the computational cost of calculating its eigenval-
ues is not much different than our algorithm. However, we
selected this model since the algorithm’s correctness can be

easily checked by comparing the determinant and trace of the
Jacobian.

In this simulation, we selected 109 parameter combinations
and applied Algorithm (1) to classify them into unstable,
superstable, inconclusive, and no fixed point Note that no
fixed point refers to the parameter combinations for which the
root-finding algorithm could not find any stationary solutions.
We first used our Algorithm (1) for a rowwise comparison and,
after that, by using the inconclusive results from the first run,
we used the algorithm again for a columnwise calculation.
And, finally, we classified the remaining inconclusive cases
using our Algorithm (2). These results are presented in Table I,
showing that more than 99.3% of the parameter combinations
were rejected. This provides an upper limit on the robustness
of Turing patterns given a certain sampling of parameter space
[3]. Using Ref. [3] as a baseline, the range of biologically
relevant values for all parameters is [10−2, 500], except for
the diffusion coefficients which are fixed to Du = 0.01 and
Dv = 1.

B. Brusselator model

Next, we searched for inequalities that separate the pa-
rameter space of the Brusselator model [9] into inconclusive
and else. The Brusselator is a two-species reaction-diffusion
model with a set of partial differential equations like

du

dt
= Du∇2u + a − (b + 1)u + u2v,

dv

dt
= Dv∇2v + bu − u2v (11)

for two parameters a, b > 0. Using the stability analysis,
we can derive the Jacobian of the model at its fixed point
(u∗, v∗) = (a, b/a) as

(
b − 1 a2

−b −a2

) ⇒ [b − 1 − a2, b − 1 + a2]
⇒ [−a2 − b,−a2 + b]

⇓ ⇓
[ − 1, 2b − 1] [−2a2, 0]

.

(12)

After checking the sign of the circles’ center, we find
{

b > 1 + a2

a > 0,

{
b � 1 − a2

b � a2 (13)
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(a)

a

b

b = 1 + a2

b = 1 − a2

b = a2

b = 1/2
b = 1

(b)

a

b

b = 1
b = 1/2

FIG. 4. Brusselator’s parameter space. (a) Row-induced parts
of the parameter space (hatched area) that cannot produce Turing
patterns. (b) Analogous column-induced conclusive part of the pa-
rameter space (hatched area).

for the row constraints, shown in Fig. 4(a). Similarly, the
conditions for the columns are written as 0 � b � 1/2, as
depicted in Fig. 4(b).

C. Large random gene regulatory networks

When constructing Jacobian matrices for systems without
self-regulation using Eq. (2), we find that all the diagonal
terms simply correspond to −μi from degradation, and off-
diagonal entries are products of Hill functions and one of its
derivatives at X ∗. Specifically, defining the Hill functions as

H (u j ) ≡

⎧⎪⎪⎨
⎪⎪⎩

Vji

1+
(

Kji
u j

)n ji for activation

Vji

1+
(

u j
K ji

)n ji for inhibition
(14)

and furthermore

R ≡
∏
j∈Si

H (u j ), (15)

the off-diagonal terms are given by

dR

duk
= dH (uk )

duk

∏
j∈Si
j �=k

H (u j ). (16)

By assuming diagonal and off-diagonal entries as in-
dependent random variables, we derive the lower bound
probabilities of having a stable or a pattern forming random
Jacobian. To this end, we assume a uniformly distributed
range of biologically acceptable degradation rates between
zero and c such that μi ∼ U (0, c). Similarly, the sum of the
absolute values of the off-diagonal terms are assumed to be
distributed in a well-defined manner as ri ∼ fr (r).

A pattern-forming random Jacobian must be in the in-
conclusive regime, in which we denote its probability by
Pn(I ) for a matrix with n species. Furthermore, given a ma-
trix in the inconclusive regime, we denote the probability

of having a stable Jacobian by Pn(S|I ). Finally, among all
the stable inconclusive random matrices, the probability of
having a pattern-forming dispersion relation with finite ex-
citable wavelength is denoted by Pn(U |I, S), given the matrix
is inconclusive and stable without diffusion. Putting all to-
gether, the probability of having a pattern-forming random
matrix is

Pn(pattern) = Pn(I )Pn(S|I )Pn(U |I, S). (17)

Notice that the mentioned probability is constructed through
conditionals to eliminate superstable and unstable matrices
incapable of pattern formation.

To derive these conditional probabilities, we define

α ≡ P(r < μ), (18)

as the probability of a single Gershgorin circle on the left side
of the imaginary axis, and, similarly,

γ ≡ P(Re(λ) � 0) (19)

as the probability of having a real non-negative eigenvalue,
given the circle crosses the imaginary axis.

As the first result, we show that 0 < α < 1 (see Supple-
mental Material [11]), and consequently, the probability of
obtaining a Jacobian in the inconclusive regime is

Pn(I ) = 1 − P(r1 < μ1, . . . , rn < μn) = 1 −
n∏

i=1

P(ri < μi )

= 1 − αn. (20)

Asymptotically, we obtain

lim
n→∞ Pn(I ) → 1 (21)

as expected due to the unavoidable crossing of the imaginary
axis [Fig. 5(a)] .

Two simplifying assumptions are made for calculating
Pn(I )Pn(S|I ): (1) Eigenvalues are equally probable to be ev-
erywhere inside the Gershgorin circle. (2) The probabilities
of eigenvalues inside their circles are independent. Note that
the reason that these are simplifying assumptions is that the
locations of eigenvalues on the real axis are correlated. For
example, the complex eigenvalues of a real matrix are a pair
of complex conjugates, so their real parts are correlated. Also,
two or more eigenvalues can be inside the union of Gersh-
gorin circles while being entirely outside one of the circles.
However, as we will see, these simplifications lead to a lower
bound on the final probabilities.

Using these two assumptions, for a single circle the proba-
bility of crossing the imaginary axis is (1 − α) and of having
an eigenvalue on the right side of the imaginary axis is γ .
Given k out of n circles crossing the imaginary axis, the
probability of all eigenvalues being on the left side of the
imaginary axis (stable Jacobian) is(

n

k

)
αn−k (1 − α)k (1 − γ )k. (22)

The factor (1 − γ )k results from the assumed indepen-
dence, which would be reduced for correlated eigenvalues.
Furthermore, when calculating γ , the assumed uniform dis-
tribution underestimates its value since any nonuniformity
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FIG. 5. Numerical estimates of Pn(I ), Pn(I )Pn(S|I ) and their
lower bounds. μi ∼ U (0, c = 1) and the off-diagonal entries are
sampled from N (0, σ ). Each dot is the averaged value of five en-
sembles of 1000 random matrices. The lines are the estimated lower
bounds. (a) Pn(I ) and its lower bound. (b) Pn(I )Pn(S|I ) and its lower
bound. (c) Contour and the gradient of Pn(I )Pn(S|I ) for n = 6. The
domain of (α, γ ) is divided into two parts by a dashed-dot line: from
the right-side area toward the left-side one, the horizontal component
of the gradient vectors changes the sign.

increases the integrals contained in Eq. (19). Hence, the lower
bound of the probability of having an inconclusive and stable
matrix is

Pn(I )Pn(S|I ) �
n∑

k=1

(
n

k

)
αn−k (1 − α)k (1 − γ )k

= [1 − γ (1 − α)]n − αn. (23)

Further study of the last result shows that for increasing
n, there is always a maximum probability–see solid lines in
Fig. 5(b). In other words, a Goldilocks n∗ exists for gene reg-
ulatory networks, and the probability of the system’s stability
is peaked at that size.

Apart from the general properties mentioned above, we
wanted to investigate α(n) and γ (n) and, consequently, Pn(I )
and Pn(I )Pn(S|I ) analytically and numerically. In Ref. [11],
we derived two sets of results for when the off-diagonal terms
are identically sampled from an exponential distribution or
an arbitrary distribution that satisfies the condition for the
central limit theorem. In the former case, fr (r) is the Erlang
distribution and is exact for all ns, while in the latter, the
estimates are accurate for larger enough n. Figure 5 shows the
probabilities Pn(I ) and Pn(I )Pn(S|I ) of numerically sampled
matrices. To construct these random matrices, μi is sampled
from U (0, c = 1) and the off-diagonal entries from a normal
distribution N (0, σ ). As we can see, the Pn(I ) estimate is ex-
act [Fig. 5(a)], while Pn(I )Pn(S|I ) is a lower bound [Fig. 5(b),
which is very close to the sampled values for small n but
deviates for larger ones.

D. Role of self-regulation in stability

Having self-regulation leads to the inclusion of a new
term in the diagonal matrix elements. To isolate the effect of
self-regulation, we keep all parameters the same, e.g., for a
given matrix size n, maximal degradation rate c, and constant
mean and standard deviation of the off-diagonal terms, we are
able to compare the probabilities Pn(I ) and Pn(I )Pn(S|I ) with
and without self-regulation. Observe that the multiplicative
terms in Eq. (16) are everywhere positive and, consequently,
the sign of dR/duk depends solely on the sign of dH/duk ,
which is positive (negative) for activating (inhibiting) Hill
functions. Accordingly, including self-inhibition adds a neg-
ative value to the diagonal term or, equivalently, shifts the
center of the circle toward minus infinity. Conversely, includ-
ing self-activation adds a positive value to the diagonal term
and shifts the circle’s center toward the imaginary axis. In the
Supplemental Material [11], we show that

Pn(I|self-inhibition) � Pn(I|no self-regulation)

� Pn(I|self-activation), (24)

which means including self-activation (self-inhibition) in-
creases (decreases) the probability of having an inconclusive
matrix.

At the same time, depending on which part of the (α, γ )
domain the model is in, self-activation and self-inhibition af-
fect the Pn(I )Pn(S|I ) differently. For instance, in Fig. 5(c) the
domain is divided into two regions (shown by a dash-dot line):
(1) In the left-side area, self-activation (self-inhibition) always
decreases (increases) Pn(I )Pn(S|I ). In other words, they act in
opposite directions. (2) In the right-side area, the change of
Pn(I )Pn(S|I ) depends on the model parameters. Note that for
increasing values of n, the left-side area grows. The results
are in agreement with the numerically sampled simulations,
as explained in the Supplemental Material [11].
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IV. CONCLUSIONS

We have introduced an efficient and intuitive method that
uses Gershgorin’s theorem to define robustness bounds in dy-
namical systems, particularly beneficial for reaction-diffusion
models such as diffusion-driven Turing systems [3]. This ap-
proach can eliminate unstable, nondiffusive cases or solutions
that remain stable postdiffusion while also setting an upper
limit for wave numbers capable of pattern formation. When
applied to specific models, our method not only enhances the
speed of numerical algorithms but also facilitates an analytical
study of parameter space. The method’s utility and power
increase significantly when accounting for parameters that
alter the behavior of a potential dynamical system, and large
networks as encountered in gene regulation. For the latter,
it predicts the existence of a sweet spot in network size for
maximal Jacobian stability.

While providing a number of powerful tools for constrain-
ing and excluding regions in parameter space, our study opens
a range of new questions worth exploring in the future. First,
we predict a sweet spot, but its exact value and interplay
with sparsity and correlations among matrix elements are still
largely unknown [15]. Second, investigating the probability
Pn(pattern) remains to be done, although its value depends on
the derived lower bounds of Pn(I )Pn(S|I ) and Pn(U |I, S), and
it must be peaked at some n value after multiplication, see Ref.
[16]. We also derived α(n) and γ (n) with random sparsity in
the gene regulatory network. However, investigating its effect
on the location of the maximum and its interplay with other
parameters is left for future study. Third, in the special case

when all the degradation rates are equal, the well-known
circular law can be used to study the stability problem [17].
In this case, all the Gershgorin circles have the same center,
and their radii grow as nE[r], while the circular law predicts
that the eigenvalues are inside a circle with radius

√
nE[r]

[15,18,19]. Therefore, the eigenvalues must be concentrated
more densely toward the center of the Gershgorin circles.
This observation can further reduce the underestimation of the
current results in future work.

In conclusion, our method helps explore high-dimensional
parameter spaces of dynamical systems for investigations of
stability, even in the asymptotic limit. For instance, we showed
that analytically Pn(I )Pn(S|I ) → 0 for n → ∞. This result
guarantees the eventual diminishing effect of including more
distinct species in the system. In some sense, the idea of
having a sweet-spot size of the system is based on the fact that
the probabilities are zero for n = 1 (corresponding to a single
species with P1(I ) = 0) and n → ∞, resulting in a peak in
between. The method is especially useful for spatiotemporal
models with additional wave number dependence.

The implementation of the algorithms and the code to
reproduce the plots in Python programming language are ac-
cessible through GitHub [20].
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