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We study random graphs densifying by adding edges. In each step, two vertices are randomly chosen, and
an edge between these vertices is created if the vertices belong to trees. An edge is added with probability p
if only one vertex belongs to a tree and an attempt fails otherwise. Simple random graphs generated by this
procedure contain only trees and unicycles. In the thermodynamic limit, the fraction of vertices in unicycles
exhibits a phase transition resembling a percolation transition in classical random graphs. In contrast to classical
random graphs, where a giant component born at the transition point eventually engulfs all finite components
and densifies forever, the evolution of simple random graphs freezes when trees disappear. We quantify simple
random graphs in the supercritical phase and the properties of the frozen state.
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I. INTRODUCTION

Classical evolving random graphs [1] are built by draw-
ing edges between pairs of randomly chosen vertices. In the
most interesting sparse regime, when the number of edges
is comparable with the number of vertices, components (i.e.,
maximal connected subgraphs) are predominantly trees. Uni-
cyclic components (shortly unicycles) occasionally appear,
yet the number of unicycles remains finite even in the ther-
modynamic limit when the size of the graph (the number of
vertices N) diverges. The only exception is the percolation
point where the number of unicycles is infinite; when N � 1,
the transition occurs in a scaling window where the number
of unicycles scales logarithmically with N . The giant compo-
nent arising in the supercritical phase is neither a tree nor a
unicycle [2].

Classical random graphs constitute a developed and grow-
ing field of research with applications to computer science,
mathematics, and natural sciences [3–7]. The probabilistic
treatment of classical random graphs is popular in mathe-
matical literature [3–5]. A dynamical treatment was already
used by Erdös and Rényi [1]. Earlier studies of gelation by
Flory and Stockmayer employed other techniques and ex-
plored somewhat different random graph models [8–10]; see
Refs. [11,12] for comparison of the Flory and Stockmayer
approaches. We employ a dynamical treatment, a version that
we call a kinetic theory approach [6,13]. Originally, such
an approach was applied to finding the distribution of trees
[14,15]. The distribution of the average number of unicycles
is also amenable to the kinetic theory treatment [16,17].

We distinguish the complexity of components by their Eu-
ler characteristics. For a graph with V vertices and E edges,
the Euler characteristic is

χ = V − E . (1)

The identities χ (tree) = 1 and χ (unicycle) = 0 illustrate the
topological nature of the Euler characteristic. Trees and uni-
cycles are known as simple components; components with

χ < 0 are complex [18]. Simple graphs, by definition, are
disjoined unions of trees and unicycles.

Bicyclic components are born when unicycles merge or
after adding an edge in a unicycle. In a classical random graph
process, such events are rare. The giant component appearing
in the postpercolation phase is complex. The probability that,
throughout the evolution, there never is more than a single
complex component is 5π/18. Up to the percolation point, the
evolving graph consists entirely of trees, unicycles, and bi-
cycles with probability

√
2/3 cosh (

√
5/18) = 0.932 548 . . ..

See Refs. [2,18–20] for these and other subtle behaviors. A
few complex components arise during the evolution of the
classical random graph in the sparse regime. This property
suggests exploring graph evolutions in which the formation of
complex components is strictly forbidden—attempts to draw
edges between unicycles and inside the same unicycle are
rejected, so components are either trees or unicycles.

We examine a one-parametric class of simple random
graph (SRG) processes. Initially, the graph is disjoint collec-
tion of N vertices. In each step, a pair of vertices is randomly
selected. An edge between these vertices is potentially created
according to the following procedure:

(1) An attempt to draw an edge between vertices belong-
ing to trees is always successful.

(2) An attempt to draw an edge between a vertex from a
tree and a vertex from a unicycle is successful with gluing
probability p.

(3) An attempt to draw an edge between vertices from
unicycles is rejected.

As in classical random graphs, we adopt the continuous
time formulation, namely, we postulate that pairs of vertices
are chosen at a constant rate which is conveniently set to
(2N )−1. The N−1 scaling ensures that in the thermodynamic
limit, N → ∞, the phase transition occurs at finite time; the
precise choice implies tc = 1.

There are no restrictions on the identity of pairs: (i) the
same pair can be chosen multiple times and (ii) a pair con-
sisting of two identical vertices can be chosen. Thus, up to
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two edges between two different vertices are allowed (but no
more than two to ensure that a component containing vertices
is simple). A loop, that is, an edge from a vertex to itself, is
possible (but not a bouquet of loops, i.e., more than one edge
from a vertex to itself).

We defined SRG processes by constraining the random
graph process to be free of complex components. There are
other constrained random graph processes in which the for-
mation of some subgraphs is forbidden [5,21,22]. In these
processes, the evolution eventually stops, and the graph
freezes. In the triangle-free process [23–26], a new edge is
randomly chosen and added if it is not present and not creating
triangles. The triangle-free process provides a lower bound for
the Ramsey number R(3, k). The triangle-free process ends
with a dense frozen graph [27,28]; sparse graphs emerge at
the end of the SRG processes. The sparsity is a simplifying
feature; constrained random graph processes creating dense
jammed graphs tend to be more challenging for analyses.

Random graphs with various constraints have been mostly
studied in static frameworks [29–32]. We employ an evolution
framework.

We now outline a few features of SRGs derived below. The
fraction of mass s(t ) in unicycles in the supercritical phase,
t > tc = 1, is implicitly determined by

t = 1 + 1

p s
1
p

∫ s

0
dz

z
1
p

1 − z
. (2)

The quantity s(t ) plays the role of the order parameter. Using
the implicit solution (2), we extract explicit asymptotic behav-
iors of s(t ):

s =
⎧⎨
⎩

0 t < 1
(1 + p)(t − 1) + O[(t − 1)2] t ↓ 1
1 − E + O[tE2] t ↑ ∞,

(3)

with

E (t ) = e−pt+p−γ−ψ (1+1/p). (4)

Here γ = 0.577215 . . . is the Euler-Masceroni constant,
ψ (z) = �′(z)/�(z) the digamma function, and �(z) the
gamma function.

In the supercritical phase, SRGs are significantly different
from classical random graphs. In Sec. III, we show that SRGs
undergo a continuous phase transition, determine the fraction
of mass in unicycles, and derive the distribution of trees.

The classical random graph becomes connected at time
tcond 	 ln N and the densification continues ad infinitum. The
SRG process, in contrast, reaches a jammed state once trees
disappear. Using heuristic arguments, we estimate the jam-
ming time:

tjam 	 p−1 ln N. (5)

The average number of unicycles U (t ) increases until the
system reaches a jammed state where

Ujam 	 1 + p

6p
ln N. (6)

Equations (2)–(6) do not apply when p = 0, i.e., to the
model with frozen unicycles. Some results simplify in this ex-
treme case, e.g., s = 1 − 1/t in the supercritical phase, t > 1.

The logarithmic scaling laws (5) and (6) valid for models with
p > 0 are replaced by algebraic scaling behaviors (Sec. IV B).

In Sec. II, we outline several properties of classical random
graphs needed for the analysis of SRGs. We also probe less-
known features like the complexity of the giant component.
In Secs. III–IV, we describe the phase transition in the SRGs,
determine the densities of trees and the average number of
unicycles in the supercritical phase, and probe the properties
of the final jammed state. In Sec V, we step away from average
characteristics and emphasize that fluctuations that could be
particularly important for the SRG process with frozen unicy-
cles (p = 0). We finish with concluding remarks (Sec. VI).

II. CLASSICAL RANDOM GRAPHS

It is customary to begin with a disjoint graph, i.e., a
collection of N isolated vertices. Edges are drawn between
any two vertices with rate 1/(2N ). With this convention,
an infinite system undergoes the percolation transition at
time tc = 1. If N � 1, almost all components are trees. The
number Tk of trees with k vertices (equivalently, of size k)
is a self-averaging random quantity. More precisely, Tk =
Nck + √

Nξk with random ξk = O(1). Therefore, fluctuations
are relatively small, so the deterministic densities ck provide
the chief insight. In the N → ∞ limit, the densities evolve
according to an infinite set of coupled nonlinear ordinary
differential equations (ODEs)

dck

dt
= 1

2

∑
i+ j=k

i j cic j − kck (7)

from which [6,12]

ck (t ) = kk−2

k!
t k−1 e−kt (8)

The smoothness of densities throughout the entire evolution,
0 < t < ∞, hides the emergence of the giant component
when t > tc = 1. Mass conservation,

∑
kck (t ) = 1, is man-

ifestly obeyed in the subcritical (prepercolation) phase. In the
supercritical phase,

∑
kck (t ) = 1 − g(t ), where g(t ) is the

fraction of vertices belonging to the giant component, shortly
the mass of the giant component. The mass g(t ) is implicitly
determined by [6,12]

g = 1 − e−gt . (9)

For instance, the giant component comprises half mass of the
system, g = 1/2, at time t = 2 ln 2.

The total cluster density c(t ) = ∑
k�1 ck (t ) reads

c(t ) =
{

1 − t
2 t � 1

1 − t
2 + 1

2

∫ t
1 dτ g2(τ ) t > 1.

(10)

The integral can be expressed as a function of g:∫ t

1
g2(τ ) dτ =

∫ g

0
h2 d[−h−1 ln(1 − h)]

=
∫ g

0

[
ln(1 − h) + h

1 − h

]
dh

= −2g − (2 − g) ln(1 − g). (11)
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Here h = g(τ ) and we use τ = −h−1 ln(1 − h) following
from (9). Thus, in the supercritical phase (t > 1):

c(t ) = 1 − t

2
− g −

(
1 − g

2

)
ln(1 − g). (12)

Using this formula, we extract more explicit results for the
cluster density c(t ) just beyond the critical point and in the
long time limit:

c =
{

1 − t/2 + 2(t − 1)3/3 + . . . t ↓ 1
e−t + (t/2) e−2t + . . . t ↑ ∞.

(13)

In the following, we shall also need the second moment
M2 = ∑

k�1 k2ck . It can be expressed [6] as follows:

M2(t ) =
{

(1 − t )−1 t < 1
1−g

1−t (1−g) t > 1.
(14)

In the supercritical (postpercolation) phase, the second mo-
ment accounts only for finite components. (In the leading
order, the second moment is Ng2 if we include the contri-
bution of the giant component.) The second moment rapidly
decays with time as the giant component quickly engulfs finite
components.

The giant component has more edges than vertices. The
ratio of the number of edges to the number of vertices in the
giant component is [16]

No. (edges)

No. (vertices)
= 1 + 1

2g(t )

∫ t

1
dτ g2(τ ). (15)

where the integral accounts that the number of edges within
the giant component increases with rate g2/2. The integral
on the right-hand side of (15) is given by (11), so Eq. (15)
simplifies to

No. (edges)

No. (vertices)
= −2 − g

2g
ln(1 − g). (16)

By definition, the number of vertices in the giant component is
No. (vertices) = gN , and from (1) and (16) we find the Euler
characteristic of the giant component:

χgiant = N

[
g + 2 − g

2
ln(1 − g)

]

= −N
∑
m�3

m − 2

2m(m − 1)
gm. (17)

The giant component is complex as its Euler characteristic is
negative. Further, the Euler characteristic of the giant compo-
nent is giant, viz. extensive in system size.

As an illustration, in Fig. 1, we show a random graph with
N = 80 vertices and E = 65 edges. Such a graph is generated,
on average, at time t = 13/8. So, the graph is in the supercrit-
ical phase and, indeed, it has a complex component, χ = −5,
that is significantly larger than other components. The fraction
of mass in the giant component of the graph in Fig. 1 is
54
80 = 0.675, a little larger than the expected g ≈ 0.655 pre-
dicted by (9) and realized when N → ∞. The average total
number of isolated vertices is N1 = Ne−t ≈ 15.753; the graph
shown in Fig. 1 has N1 = 18 isolated vertices. From (20b), we
get U ≈ 0.41; the graph in Fig. 1 has no finite unicycles. The
ratio of the number of edges to the number of vertices in the

FIG. 1. An example of a random graph with N = 80 vertices and
E = 65 edges. The average number of edges in an evolving random
graph is Nt/2. Hence, it is natural to interpret the above graph as a
possible outcome of the random graph process at time t = 2E/N =
13/8 and compare with theoretical predictions in the supercritical
phase at t = 13/8.

giant component is 59
54 = 1.0925925 . . . for the graph shown

in Fig. 1; the predicted ratio (16) realized in the N → ∞ limit
is 1.0927078 . . ..

Unicycles in classical random graphs have been investi-
gated using probabilistic and combinatorial techniques [2,18–
20,33], kinetic theory approach [16,17], and other methods,
some of which are more suitable to random graph models dif-
ferent from classical random graphs, see, e.g., Refs. [34–37].
The number Uk of unicycles of size k is a non-self-averaging
random quantity, i.e., fluctuations of Uk are comparable with
the average. Still, the average Uk = 〈Uk〉 sheds light on unicy-
cles. The kinetic theory approach [16,17] leads to the infinite
set of ODEs:

dUk

dt
= 1

2
k2ck +

∑
i+ j=k

iUi jc j − k Uk . (18)

These equations are linear and, in this respect, simpler than
Eq. (7) for the densities of trees. An extra source term, the first
term on the right-hand side, accounting for turning a tree into a
unicycle by creating an edge inside the tree, is a complication.

Summing Eq. (18), we deduce an equation

dU

dt
= 1

2
M2 (19)

for the average total number of unicycles U = ∑
Uk in the

subcritical phase. Using M2 = 1/(1 − t ), we find

U (t ) = 1

2
ln

1

1 − t
(20a)

in the subcritical phase. Similarly, the average number of finite
unicycles is [16,17]

U (t ) = 1

2
ln

1

1 − (1 − g)t
(20b)

in the supercritical phase.
For a finite system, the critical point broadens into the scal-

ing window, |1 − t | ∼ N−1/3. Using this and either (20a) or
(20b), we find that the total number of unicycles remains finite
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but scales logarithmically with the total number of vertices in
the critical regime:

U (1) = 1
6 ln N. (21)

Solving (18) subject to Uk (0) = 0 recurrently for small k,
one guesses

Uk (t ) = Bk tk e−kt . (22)

Substituting (22) into (18), one fixes the amplitudes:

Uk (t ) = 1

2
t k e−kt

k−1∑
n=0

kn−1

n!
. (23)

At the critical point, the average number of unicycles decays
algebraically with the cycle, viz.

Uk (1) = 1

2
e−k

k−1∑
n=0

kn−1

n!
	 1

4k
(24)

for k � 1. For finite graphs, the largest components have size
O(N2/3) at the critical point [2–6]. Summing (24) up to k ∼
N2/3, one obtains (21).

We now turn to the SRG evolution processes in which, by
definition, complex components cannot be created.

III. SIMPLE RANDOM GRAPHS

In the SRG evolution processes, the merging of unicycles
is forbidden. The merging of two trees, say a tree of size i and
a tree of size j, proceeds at the same rate,

[Ti] ⊕ [Tj] → [Ti+ j] rate i j/(2N ), (25a)

as for the classical random graph process. The merging of a
tree and a unicycle proceeds via

[Ti] ⊕ [Uj] → [Ui+ j] rate pi j/(2N ). (25b)

Drawing an edge inside a tree turns it into a unicycle:

[Tk] → [Uk] rate k2/(2N ). (25c)

Two unicycles never merge and drawing an edge inside a
unicycle is also forbidden—such processes would have gener-
ated complex components. Thus, the total number of unicycles
increases via the reaction channel (25c).

A. Trees and the phase transition

The influence of the reaction channel (25b) on the evo-
lution of trees is asymptotically negligible in the subcritical
phase since the number of unicycles is N times smaller than
the number of trees. Therefore, Eq. (7) are applicable as in
the classical random graph, and the densities of trees are
given by the same Eq. (8) when t � 1. Below, we show that
the influence of unicycles on the evolution of trees is also
negligible in the supercritical phase. Only in the proximity of
the jammed state do unicycles affect the evolution of trees.

In classical random graphs, the components have a size
up to O(N2/3) at the critical point. The maximal merging
rate is N2/3 × N2/3/N = N1/3, explaining why the width of
the scaling window is |1 − t | ∼ N−1/3. When t − 1 � N−1/3,
the most massive components merge, and a single giant

component emerges. This giant component progressively en-
gulfs finite components. Eventually, only the giant component
remains.

In SRGs, trees of size O(N2/3) merge with the rate
O(N1/3), and any such tree turns into a unicycle with the
same rate. Thus, trees of size O(N2/3) become unicycles in
the scaling window.

The nature of the phase transition is captured by the be-
havior of s(t ) = N−1 ∑

k�1 kUk (t ), the fraction of vertices
belonging to unicycles, shortly the mass of unicycles. This
quantity plays the role of an order parameter. For finite sys-
tems, s(t ) ∼ N−1 in the subcritical phase and s ∼ N−1/3 in the
critical regime [see Sec. III B for details]. In the supercritical
phase, s(t ) is finite and growing with time.

1. The densities of trees

The densities of trees satisfy

dck

dt
= 1

2

∑
i+ j=k

i j cic j − kck

⎛
⎝∑

	�1

	c	 + ps

⎞
⎠. (26)

The second sum on the right-hand side of (26) goes over all
trees, so ∑

	�1

	c	 = 1 − s (27)

by the definition of s. Thus, Eq. (26) simplifies to

dck

dt
= 1

2

∑
i+ j=k

i j cic j − kck (1 − qs), (28)

with q = 1 − p. In the subcritical phase, s = 0 in the leading
order, so (28) and (7) coincide, and the solution (8) remains
valid. Finding s(t ) > 0 in the supercritical phase is part of the
solution.

We solve Eq. (28) by employing the same approach [6] as
for classical random graphs. The emerging solution depends
on yet-unknown s, but by inserting this formal solution into
relation (27), we will fix s. The approach used in Ref. [6] relies
on the generating function technique [38]. It is convenient
to introduce an exponential generating function based on the
sequence kck:

C(y, t ) =
∑
k�1

k ck (t ) eyk . (29)

This allows us to recast an infinite set of ODEs, Eq. (28), into
a single partial differential equation:

∂tC = (C − 1 + qs)∂yC. (30)

Let us consider y = y(C, t ) instead of C = C(y, t ). This trans-
formation recasts (30) into

∂t y + C − 1 + qs = 0, (31)

which is integrated to give

y + (C − 1)t + q
∫ t

0
dτ s(τ ) = f (C). (32)
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FIG. 2. The mass s(t ) of unicycles determined by Eq. (2) in the
supercritical phase, t > 1. We show s(t ) for p = 1, 1

2 , 0 (top to bot-
tom). For p = 1, the mass of unicycles coincides with the mass g(t )
of the giant component in the classical random graph process. When
p = 0, the mass of unicycles is particularly simple: s = 1 − 1/t .

Initially, ck (0) = δk,1, and therefore C(y, 0) = ey. This fixes
f (C) = ln C, and (32) leads to

C e−Ct = ey−t+q
∫ t

0 dτ s(τ ). (33)

We rewrite Eq. (33) as Ze−Z = Y with Z = Ct and Y =
tey−t+q

∫ t
0 dτ s(τ ). The power series Y = Y (Z ) directly fol-

lows from Ze−Z = Y . The inverse power series Z = Z (Y )
can be deduced using the Lagrange inversion formula. One
gets [6,38]

Z =
∑
k�1

kk−1

k!
Y k . (34)

Substituting Z = Ct and Y = tey−t+q
∫ t

0 dτ s(τ ) into (34) and
comparing with the definition (29) of the generating function,
we arrive at a formal solution:

ck (t ) = kk−2

k!
t k−1 exp

[
−kt + kq

∫ t

0
s(τ ) dτ

]
. (35)

2. Phase transition

To complete the solution (35), we must determine s(t ). This
can be accomplished by specializing (33) to y = 0 and using
relation (27), i.e., C(0, t ) = 1 − s(t ). We obtain

q
∫ t

1
dτ s(τ ) = st + ln(1 − s), (36)

which implicitly determines s(t ). Differentiating the integral
equation (36) with respect to time gives an ODE:

(1 − t + st )
ds

dt
= ps(1 − s). (37)

Changing s = s(t ) to t = t (s), we obtain

p
dt

ds
= 1 − t

s
+ 1

1 − s
. (38)

Integrating Eq. (38) subject to t (0) = 1 we arrive at the an-
nounced result (2).

The quantity s(t ) plays a role of an order parameter. The
phase transition is continuous (see Fig. 2) and mean field in
nature as manifested by the asymptotic behavior of the order
parameter, s ∝ (t − 1), near the transition. More precisely,

s = (1 + p)T − (1+p)3

1+2p T 2 + (1+p)4(1+4p+2p2 )
(1+2p)2(1+3p) T 3 + . . . (39a)

when T = t − 1 ↓ 0. When t → ∞,

s = 1 − E − (t − 1)E2 + . . . , (39b)

with E (t ) defined by Eq. (4).
We compute the integral in (35) using the same trick as

in the computation of the integral (11), namely, we treat σ =
s(τ ) as an integration variable and use

p
dτ

dσ
= 1 − τ

σ
+ 1

1 − σ
(40)

following from Eq. (38). We get

p
∫ t

0
σ dτ =

∫ s

0
σ

[
1 − τ

σ
+ 1

1 − σ

]
dσ

=
∫ s

0

[
1

1 − σ
− τ

]
dσ

= − ln(1 − s) − ts +
∫ t

0
σ dτ,

from which we deduce

q
∫ t

0
σ dτ = ts + ln(1 − s). (41)

Using (41), we recast (35) into

ck (t ) = kk−2

k!
t k−1 (1 − s)k e−kt (1−s). (42)

The densities (8) in classical random graphs remain smooth
throughout the evolution, thereby hiding the phase transition.
In SRGs, the densities (42) undergo a jump in the second
derivative d2ck

dt2 at t = 1 for all k � 1 when p < 1. For instance
(T = t − 1),

c1 = e−1 ×
{

1 − T + (1 − p2/2)T 2 + . . . T ↓ 0
1 − T + T 2/2 + . . . T ↑ 0.

(43)

3. Moments M0 = c and M2

The total density of trees is given by

c(t ) =
{

1 − t
2 t � 1

1 − 1
2 (1 + s2)t + (t − 1)s t > 1.

(44)

In the subcritical phase, the total density of trees is the same
as in classical random graphs as the governing equations co-
incide (see Fig. 3). To derive c(t ) in the supercritical phase,
we sum Eq. (28) and use (27) to find

dc

dt
= −1

2
(1 − s)[1 + (2p − 1)s]. (45)

Integrating this equation, we obtain

c = 1 − t

2
+ q

∫ t

0
σ dτ +

(
p − 1

2

)∫ t

0
σ 2 dτ (46)

in the supercritical phase. We already computed the first inte-
gral on the right-hand side of (46), see Eq. (41). Employing
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FIG. 3. Time dependence of the density of trees c(t ) determined
by Eq. (44). We plot c(t ) in the supercritical phase for p = 1, 1

2 , 0
(bottom to top). When p = 0, the total density of trees is particularly
simple: c = 1

2t . In the subcritical phase, c = 1 − t/2 independently
on p.

the same approach, we determine the second integral. Com-
bining these results yields the total density (44). In the long
time limit, the density decays exponentially, namely, as

c = E +
(

t

2
− 1

)
E2 + . . . , (47)

with E given by (4).
Interestingly, the ratio of the total number of edges E to the

total number of vertices N can be expressed via the density of
trees (see Fig. 4):

E

N
=

∑
k�1

(k − 1)ck + s = 1 − c. (48)

We now consider the second moment which will be needed
for the determination of the average total number of unicycles.
The second moment M2 = ∑

k�1 k2ck can be expressed via

FIG. 4. Time dependence of the ratio of the total number of edges
to the total number of vertices. For classical random graphs, E

N = t
2

for all t > 0, and in the subcritical phase, the ratio is the same for
SRGs independently on the parameter p. In the supercritical phase,
the ratio depends on p as illustrated in the figure for p = 1, 1

2 , 0 (top
to bottom). When p = 0, the ratio is particularly simple: E

N = 1 − 1
2t .

FIG. 5. Time dependence of the second moment determined by
Eq. (52). We plot the second moment in the supercritical phase for
p = 1, 1

2 , 1
3 (bottom to top). In the subcritical phase, M2 = 1/(1 − t ).

the generating function:

M2 = ∂yC|y=0. (49)

Using (41), we rewrite (33) as

C e−Ct = (1 − s) ey−t (1−s). (50)

We take the logarithm of (50), differentiate with respect to y,
and set y = 0 to give

M2(t ) =
[

1

C(0, t )
− t

]−1

. (51)

Recalling that C(0, t ) = 1 in the subcritical phase and
C(0, t ) = 1 − s in the supercritical phase, we obtain

M2(t ) =
{

(1 − t )−1 t < 1
1−s

1−t (1−s) t > 1.
(52)

Note the similarity with Eq. (14), giving M2 for classical
random graphs. When p = 1, we have s = g and (52) reduces
to (14). In Fig. 5, we plot the second moment at three values
p = 1, 1

2 , 1
3 of the parameter.

Using (39a)–(39b), one finds extremal behaviors

M2(t ) =
{ 1

p(t−1) t ↓ 1
E (t ) t ↑ ∞ (53)

in the supercritical phase.

B. Unicycles

The number of trees decreases and at some moment, tjam,
the last tree disappears, and only unicycles remain. At this
moment, the graph freezes. The average number of trees Nc(t )
approaches NE (t ) in the large time limit [cf. (47)]. Combining
the criterion Nc(tjam) ∼ 1 with (4), we arrive at the asymptotic
(5) for the jamming time. The logarithmic scaling with N is
certainly correct (when p > 0), while the amplitude in Eq. (5)
is a bit questionable. Indeed, the number of trees is a ran-
dom variable. Fluctuations are significant when the average
number of trees is small. If fluctuations are comparable to the
average, the asymptotic (5) holds. Recalling that fluctuations
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in the number of trees scale
√

N when t = O(1) suggest
√

N
as an upper bound for fluctuations near the jamming time, and
then from Nc(tjam) ∼ √

N we get a lower bound, (2p)−1 ln N ,
for the jamming time. These heuristic arguments suggest the
asymptotic bounds:

(2p)−1 ln N � tjam � p−1 ln N. (54)

We conjecture that the upper bound is the true asymptotic,
so we used it in Eq. (5). Justifying or disproving Eq. (5) is left
for the future.

1. Unicycles in the jammed state

Arguments in favor of the scaling law (6) for the final
number of unicycles are also heuristic but stronger than the ar-
guments in favor of Eq. (5). Indeed, the dominant contribution
to U (tjam) is gathered at times t = O(1) far below the jamming
time where fluctuations are asymptotically negligible. Hence,
the arguments are more solid, and the amplitude in Eq. (6)
appears exact. We begin by noting that for the SRG process,
Eq. (19) remains valid in the supercritical phase: Unicycles
cannot disappear, and they are born with rate 1

2 M2. The exact
expressions (52) for the second moment are valid for infinite
graphs. For finite graphs, we do not know M2(t ) in the scaling
window, |t − 1| ∼ N−1/3, but we know the magnitude of the
second moment: M2 ∼ N1/3. To gain insight, let us take a test
expression for the second moment,

M test
2 (t ) =

⎧⎨
⎩

1√
(1−t )2+ε2

t < 1
1√

p2(t−1)2+ε2
2 > t > 1,

(55)

with ε ∼ N−1/3. This function is continuous, has the cor-
rect width of the scaling window, and provides an excellent
approximation in the t < 1 regime away from the scaling
window and in the ε � t − 1 � 1 regime. The gain of U
during the time interval 2 < t < tjam is of the order of unity
as M2(t ) decays exponentially with time [see Eq. (53) and
Fig. 5]. The choice t = 2 of the cutoff time is asymptotically
irrelevant; any cutoff time exceeding t = 1 suffices—the dom-
inant contribution comes from a small region containing the
scaling window. Thus,

1

2

∫ 2

0
dt M test

2 (t ) (56)

estimates Ujam. Using (55) and computing the integral in (56)
gives (6) in the leading order.

The specific form (55) plays little role—the important fea-
ture is the logarithmic divergence

∫ t

0
dt ′ M2(t ′) 	 ln

1

1 − t
,

∫ tjam

t
dt ′ M2(t ′) 	 1

p
ln

1

t − 1

of the integrals near t = 1 which follows from (52) and (53).
For finite N , we must use |t − 1| ∼ N−1/3 to find the integrals
in the (0,1) and (1, tjam) regions. Thanks to the logarith-
mic divergence, we obtain an asymptotically exact leading
behavior (6).

2. Intermediate SRG process

As another piece of evidence in favor of the prediction (6),
we notice that it reduces to

Ujam 	 1

2
ln N (57)

for p = 1
2 . An intermediate SRG process with p = 1

2 appears
in a recent study of a parking process on Cayley trees [39].
This SRG process has an intriguing connection with random
maps. A map of a set to itself, f : S → S, can be represented
by a graph with edges (x, f (x)) for all x ∈ S. This graph
decomposes into maximal connected components (commu-
nities). If maps are uniformly chosen among NN possible
maps (N = |S|), the distributions of the number of commu-
nities and the number of unicycles in the jammed state of the
intermediate SRG process coincide [39]. In particular, the av-
erage number of communities in random maps is well-known
[40–43], and it grows with N according to (57).

Other results about communities in random maps can be
restated in terms of unicycles in the SRG process with p = 1

2 .
Restating the prediction for the probability to have a single
community [44], we obtain the probability to end up with one
unicycle:

Prob[Ujam = 1] = (N − 1)!

NN

N−1∑
n=0

Nn

n!
	

√
π

2N
. (58a)

The probability to have the maximal number of
communities is

Prob[Ujam = N] = 1

NN
. (58b)

Let K be the size of the largest community. The size dis-
tribution of the largest community was probed numerically
in Ref. [45]. The average size of the largest community is
analytically known [43]:

〈K〉 = λN, (59a)

λ = 2
∫ ∞

0
dy

[
1 − e−�(0,y)/2

] = 0.757 823 . . . . (59b)

(Here �(0, y) = ∫ ∞
y dz z−1e−z is the incomplete gamma

function.)

3. Size distribution of the largest unicycle

We return to the SRG processes with arbitrary p > 0 and
denote by K the size of the largest unicycle at jamming. (For
the intermediate SRG process, K is the same random quantity
as the size of the largest community.) The linear scaling (59a)
of the average size in the intermediate SRG process suggests
that the same scaling holds generally when p > 0 and that the
distribution �p(K, N ) acquires the scaling form

�p(K, N ) = N−1ψp(κ ) (60)

when K → ∞ and N → ∞ with κ = K/N kept finite. The
distribution ψp(κ ) has singularities at κ = 1/m with m =
2, 3, . . ., weakening as m increases. These singularities were
noticed [45] in the special case of p = 1

2 , and they are present
in the general case. The origin of singularities is easy to appre-
ciate: One unicycle may have size exceeding N/2, i.e., in the
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1
2 < κ < 1 range; two unicycles may have size in the 1

3 < κ <
1
2 range; etc. Similar singularities appear in several random
processes ranging from fragmentation and random walks to
spin glasses and genealogical trees (see Refs. [45–51]).

An infinite set of singularities prevents an analytical deter-
mination of the scaled distribution ψp(κ ). For the intermediate
SRG process, Eqs. (58a) and (58b) imply the asymptotic
behaviors:

ψ 1
2
(κ ) ∝

{
(1 − κ )−1/2 κ ↑ 1
κ1/κ κ ↓ 0.

(61)

The scaled distribution ψ 1
2
(κ ) vanishes faster than any power

law in the κ ↓ 0 limit. This feature is a generic outcome
[45–51] of the accumulation of singularities in the κ ↓ 0 limit.
One thus anticipates a similar essential singularity of ψp(κ ) in
the κ ↓ 0 limit for all SRG processes with p > 0.

The scaling form (60) implies a linear scaling with N of the
average size of the largest unicycle,

〈K〉 = λ(p)N, λ(p) =
∫ 1

0
dκ κψp(κ ), (62)

with λ( 1
2 ) given by (59b).

In Sec. IV B below, we show that different behaviors occur
for the SRG process with frozen unicycles (p = 0).

4. Evolution of the distribution of unicycles

For SRG processes with arbitrary p > 0, it is difficult to
probe the evolution of the average number of unicycles Uk (t )
analytically. Even in the subcritical phase where the governing
equations

dUk

dt
= 1

2
k2ck + p

∑
i+ j=k

iUi jc j − p k Uk (63)

differ from Eq. (18) only by the factor of p in the last two
terms on the right-hand side, Eq. (63) does not admit a simple
general solution like the solution (23) of Eq. (18) in the case
of classical random graphs.

Equation (63) is recursive, so one can solve them one by
one. The average number of smallest unicycles is

U1 = e−pt − e−t

2(1 − p)
(64)

in the subcritical phase. For larger unicycles, the formulas
quickly become cumbersome:

U2 = (2 + p)e−2pt − 2pe−(1+p)t − (2 − p + 4qt )e−2t

8(1 − p)2
,

etc. There is no simple ansatz like (22) fixing the temporal
behavior of Uk (t ).

To shed light on the distribution Uk (t ), let us look at the
behavior of the moments. We have examined the behavior of
the zeroth moment, U (t ) = ∑

k�1 Uk (t ), and know that in the
subcritical phase, U (t ) = 1

2 ln 1
1−t . The first moment, i.e., the

average mass of unicycles

S(t ) =
∑
k�1

kUk (t ) (65)

satisfies

dS

dt
=

∑
k�1

k

⎡
⎣1

2
k2ck + p

∑
i+ j=k

iUi jc j − p k Uk

⎤
⎦ (66)

in the subcritical phase. Massaging the sums in (66), we arrive
at a neat formula:

dS

dt
= 1

2
M3 + pM2S. (67)

We already know M2 = ∑
k�1 k2ck = (1 − t )−1. Similarly,

one finds M3 = ∑
k�1 k3ck = (1 − t )−3 in the subcritical

phase. Combining these results with (67) gives

S = 1

2(2 − p)

[
1

(1 − t )2
− 1

(1 − t )p

]
, (68)

applicable in the subcritical phase. Combining (68) with
1 − t ∼ N−1/3 describing the scaling window, we deduce the
scaling behavior S(1) ∼ N2/3 of the average mass of unicycles
in the critical regime. In the supercritical phase, S(t ) = Ns(t )
by definition of s(t ).

Higher moments can be probed in a similar way. The exact
expressions are already cumbersome for the second moment,
so we just mention the leading asymptotic in the t ↑ 1 limit,

∑
k�1

knUk (t ) 	 An

(1 − t )2n
, (69)

with amplitudes

A1 = 1

2(2 − p)
, A2 = p

[2(2 − p)]2
+ 3

4(2 − p)
, (70)

etc. From (69), we conclude that in the scaling window, the
nth moment diverges as N2n/3.

IV. EXTREME SIMPLE RANDOM GRAPHS

Some of the above formulas [e.g., Eqs. (5) and (6)] become
singular when p = 0, so they are valid when p > 0. The model
with p = 0 in which unicycles are frozen exhibits different
behaviors than the models with p > 0. We now outline some
behaviors for the SRG processes with extreme values of glu-
ing probability.

A. p = 1

When p = 1, Eq. (63) coincide with Eq. (18). (A singular-
ity in the solution (64) at p = 1 disappears if one carefully
takes the p → 1 limit.) Thus, in the subcritical phase, the
solution is given by (23).

In the supercritical phase,

dUk

dt
= 1

2
k2ck +

∑
i+ j=k

iUi jc j − k Uk (1 − g), (71)

where we have taken into account that s = g when p = 1.
Consider the smallest unicycles. Solving

dU1

dt
+ U1(1 − g) = 1

2
c1 = 1

2
e−t (72)
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FIG. 6. Time dependence of the average number of smallest uni-
cycles U1(t ) for SRGs with p = 1. In the subcritical phase, U1 =
1
2 te−t , the same as for the classical random graphs. In the supercriti-
cal phase, U1(t ) is determined by (76). For comparison, we also show
(bottom curve) U1(t ) for classical random graphs.

yields

2U1et−G(t ) = 1 +
∫ t

1
dt ′ e−G(t ′ ), (73)

where we shortly write

G(t ) =
∫ t

1
dτ g(τ ). (74)

To compute this integral, we treat again G as a function of g
rather than t . Repeating the steps used in the computation of
the integral (11), we obtain

G = − ln(1 − g) − Li2(g), (75)

where Li2(g) = ∑
n�1

gn

n2 is the dilogarithm.
Similarly, we simplify the integral on the right-hand side

of (73) and arrive at the solution

2U1et (1−g)+Li2(g) = 1 +
∫ g

0
dh H (h) eLi2(h) (76)

in the supercritical phase with

H (h) = 1

h
+ (1 − h) ln(1 − h)

h2
. (77)

Figure 6 shows that the average number of smallest unicy-
cles is an increasing function of time over the entire evolution,
0 < t < tjam. In particular, the final average number of small-
est unicycles is

U1(tjam) = 1 + ∫ 1
0 dh H (h) eLi2(h)

2eπ2/6
≈ 0.23898433. (78)

Therefore, at least one smallest unicycle arises with a finite
probability in the thermodynamic limit. In contrast, the aver-
age number of smallest unicycles at the same time tjam 	 ln N
is inverse of the number of vertices, U1(tjam) ∼ N−1, for clas-
sical random graphs.

B. p = 0

The densities in the subcritical phase are given by (8)
independently on p. The densities in the supercritical phase
are given by (42) with s = 1 − 1/t , the latter result follows
from (2) in the p → 0 limit. Thus, in the supercritical phase
(t > 1), we arrive at

ck (t ) = kk−2e−k

k!
t−1, (79)

known as the Stockmayer solution [9]; see Refs. [11,12]. The
total cluster density is particularly simple:

c(t ) =
{

1 − t
2 t � 1

1
2t t > 1.

(80)

The governing equations

dUk

dt
= 1

2
k2ck (81)

for the average number of unicycles are valid throughout
the entire evolution. In the subcritical phase, we insert the
densities of trees (8) into (81) and integrate to give

Uk (t ) = 1

2k
e−kt

∑
n�k

(kt )n

n!
. (82)

This solution is different from the solution (23) for classical
random graphs. At the critical point,

Uk (1) = 1

2k
e−k

∑
n�k

kn

n!
(83)

differs from Uk (1) for classical random graphs, Eq. (24), but
the large k behaviors are the same: Uk (1) 	 1

4k when k � 1.
In the supercritical phase, the densities of trees are given

by (79), which we insert into (81) and deduce

Uk (t ) = Uk (1) + (k/e)k

2k!
ln t, (84)

with Uk (1) given by (83).
We now outline the chief properties of the jammed state.

Using c = (2t )−1 together with criterion Nc(tjam) ∼ 1, we
arrive at a linear scaling

tjam ∼ N (85)

of the jamming time. (For models with p > 0, the scaling
is logarithmic.) Using Eqs. (84) and (85) and the Strirling
formula, we deduce the large k asymptotic

Uk (tjam) 	 (8πk)−
1
2 ln N (86)

at the jamming time. There are only unicycles at the jamming
time. Therefore,

N =
N∑

k=1

kUk (tjam) ∼ ln N
∑
k�K

k
1
2 ∼ K

3
2 ln N, (87)

implying that Eq. (86) is applicable when 1 � k � K with

K ∼
(

N

ln N

) 2
3

. (88)
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Similarly to the estimating of the sum in (87), we deduce

Ujam =
N∑

k=1

Uk (tjam) ∼
∑
k�K

k− 1
2 ln tjam ∼ K

1
2 ln N, (89)

which we combine with (88) to obtain

Ujam ∼ N
1
3 (ln N )

2
3 . (90)

Thus, in the model with frozen unicycles (p = 0), the
average number of unicycles in the jammed state exhibits a
peculiar scaling (90). The size K is smaller by (ln N )2/3 than
the maximal size of unicycles in the jammed state: The com-
ponents of size N2/3 at the phase transition point are unicycles
or will become unicycles.

V. FLUCTUATIONS

Fluctuations are often relatively small in large systems.
Whenever this is true, fluctuations are traditionally investi-
gated in the realm of the van Kampen expansion [52]. Van
Kampen expansions have been applied to various reaction
processes, see, e.g., Refs. [52–59]. In our problem, we expect
the total number of trees to be the sum of the linear in N
deterministic contribution and proportional to

√
N stochastic

contribution:

T (t ) = Nc(t ) +
√

Nξ (t ). (91)

The criterion Nc(tjam) ∼ 1 for estimating the jamming time is
rather naive. The criterion

Nc(tjam) ∼
√

Nv(tjam), v(t ) =
√

〈ξ 2(t )〉 (92)

is better, albeit still nonrigorous as it assumes that the
√

N
scaling of fluctuations holds till the very end.

For the SRG processes with p > 0, the density of trees
decays exponentially, and the criterion (92) leads to the
logarithmic scaling, and only the amplitude can differ. For
instance, if v(tjam) = O(1), the amplitude is twice smaller than
predicted by naive criterion. As we argued in Sec. III B, these
two estimates provide asymptotic bounds (54).

The naive criterion is difficult to justify, but it often leads
to asymptotically exact results. For classical random graphs,
the naive criterion, Nc(tcond) ∼ 1, gives the leading behavior
with correct amplitude, tcond 	 ln N , of the condensation time
when the graph becomes connected [3–5].

For the model with frozen unicycles, p = 0, fluctuations
are potentially more important than for models with p > 0,
where they only affect the amplitude (5). Indeed, the linear
scaling (85) of the jamming time is based on the naive cri-
terion. If v(tjam) = O(1), the criterion (92) leads to diffusive,
tjam ∼ √

N , rather than linear scaling of the jamming time.
The jammed states in the model with frozen unicycles are

remarkably similar to jammed states [60–62] discovered in a
few addition-fragmentation processes. These jammed states
are known as supercluster states, as clusters tend to be large
and the total number of clusters is nonextensive (scales sub-
linearly with N).

In the model with frozen unicycles, we have not computed
the variance v(t ), so the precise scaling of the jamming time
remains unknown. The formula (84) remains valid before the

jamming, and (86) with ln tjam instead of ln N . We anticipate
tjam ∼ Nb, which would modify (86) by a numerical factor.
This factor is irrelevant in deriving (88)–(90). The scaling
laws (88)–(90) suggest a similar scaling law

tjam ∼ Nb(ln N )β (93)

for the jamming time.

VI. CONCLUDING REMARKS

Classical random graphs undergo a percolation transition
at tc = 1 when the giant component is born. The mass of
the giant component, i.e., the fraction of vertices belonging
to the giant component, plays the role of the order parameter
in the supercritical phase t > tc = 1. Classical random graphs
subsequently condense into a single component, i.e., the giant
component engulfs all finite components. This condensation
transition occurs at tcond 	 ln N . The densification of classical
random graphs continues forever or until the graph becomes
complete if loops and multiple edges are forbidden.

SRGs evolve similarly to classical random graphs with
the constraint that the formation of complex components is
forbidden. (A complex component has a negative Euler char-
acteristic.) The SRGs undergo a phase transition at tc = 1.
When t � 1, the evolution of SRGs is asymptotically identical
to classical random graphs where only a few complex compo-
nents may arise. In the supercritical phase, t > 1, the mass of
unicycles is an order parameter behaving similarly to the mass
of the giant component for classical random graphs. A crucial
difference between classical random graphs and SRGs is that
for t > 1, the former contain a single giant component, while
SRGs contain many macroscopic unicycles (i.e., unicycles
with size proportional to N). Moreover, the size of the giant
component is a self-averaging random quantity—fluctuations
around the average gN scale as

√
N . For the SRGs, the size

of the largest unicycle at jamming is a non-self-averaging
random quantity with nontrivial distribution (60).

We have studied a class of SRG processes depending on
the gluing probability p ∈ [0, 1]. Some properties of random
graphs emerging in models with p = 0 and p = 1 resemble
classical results about aggregation processes with the merg-
ing rate of components proportional to the product of their
masses. The interpretation of mathematically identical formu-
las is different, however. For instance, the mass of unicycles
for the SRG process with frozen unicycles (p = 0) coincides
with the gel mass in the Stockmayer model of gel formation
[9]. The mass of unicycles for the SRG process with p = 1 is
the same as the gel mass in the Flory model of gelation [8,10]
or, equivalently, the mass of the giant component in classical
random graphs.

The SRG processes with arbitrary p were mentioned in
Ref. [39] as the generalization of the intermediate SRG pro-
cess with p = 1

2 , which was examined in Ref. [39] as the tool
to understand a parking process on Cayley trees. The behavior
of the intermediate SRG process, particularly the behavior
in the scaling window around the phase transition point, has
been analyzed in Ref. [39]. A remarkable connection [39]
between jammed unicycles in the intermediate SRG process
and communities in classical random maps [40–43] makes
the intermediate SRG process most tractable. Seeking a class
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of random maps similarly connected to the class of SRG
processes would be an interesting avenue for future work.

Jamming is a distinctive feature of the SRG processes. The
evolution of a simple random graph freezes when trees disap-
pear, and only unicycles remain. An analytical determination
of the distribution of the unicycles at the jamming time for
models with p > 0 is an open issue. We argued that the jam-
ming time and the average number of unicycles in a jammed
state scale logarithmically with system size, Eqs. (5) and (6).
The arguments leading to these scaling laws are heuristic since
we ignored fluctuations. The logarithmic scaling laws seem
correct. The amplitude in (5) is a bit questionable and could
be just an upper bound, see (54). Arguments in favor of the
amplitude in (6) are more solid.

The SRG process with frozen unicycles ends up in in-
triguing jammed states resembling supercluster jammed states
[60–62] found in aggregation-fragmentation processes. To
compute the jamming time, one should know the variance
〈ξ 2(t )〉. We argued, however, that the scaling laws (88)–(90)
derived without knowing the jamming time are asymptotically
exact. Relying on the form of the scaling laws (88)–(90),
we conjectured the scaling law (93) for the jamming time.
Needless to say, (93) is just the functional form as we do not
know the exponents b and β in (93).

Apart from nonextensive supercluster jammed states
[60–62], nonextensive steady states also appear in some
aggregation-fragmentation processes [63]. The emergence
of such nonthermodynamic behaviors often requires tun-
ing the parameters, like setting p = 0 in the SRG process.
Still, nonthermodynamic behaviors appear widespread. The
theoretical analysis is challenging since fluctuations often
play a decisive role, and computing fluctuations in a sys-
tem with numerous interacting cluster species tends to be
impossible.

Simple and classical random graphs undergo a mean-field
continuous phase transition. More exotic phase transitions can
also arise in random graph processes. It would be interesting
to modify these processes, forbidding the creation of com-
plex components or imposing other constraints. One can then
examine the robustness of the phase transition. For instance,
many growing networks [64–72] exhibit an infinite-order
percolation transition of the Berezinskii-Kosterlitz-Thouless
type [73,74]. Unicycles in such networks are also worth
investigating.
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